Files
swift-mirror/lib/SILOptimizer/Utils/InstOptUtils.cpp
Arnold Schwaighofer 7a251af60c AccessEnforcement: Fix analysis to include mayReleases as potentially
executing unknown code

This means we have to claw back some performance by recognizing harmless
releases.

Such as releases on types we known don't call a deinit with unknown
side-effects.

rdar://143497196
rdar://143141695
2025-02-07 15:10:13 -08:00

2601 lines
92 KiB
C++

//===--- InstOptUtils.cpp - SILOptimizer instruction utilities ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/AST/CanTypeVisitor.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/SmallPtrSetVector.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBridging.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDebugInfoExpression.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/ScopedAddressUtils.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/DestructorAnalysis.h"
#include "swift/SILOptimizer/OptimizerBridging.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include <optional>
using namespace swift;
static llvm::cl::opt<bool> KeepWillThrowCall(
"keep-will-throw-call", llvm::cl::init(false),
llvm::cl::desc(
"Keep calls to swift_willThrow, even if the throw is optimized away"));
std::optional<SILBasicBlock::iterator>
swift::getInsertAfterPoint(SILValue val) {
if (auto *inst = val->getDefiningInstruction()) {
return std::next(inst->getIterator());
}
if (isa<SILArgument>(val)) {
return cast<SILArgument>(val)->getParentBlock()->begin();
}
return std::nullopt;
}
/// Creates an increment on \p Ptr before insertion point \p InsertPt that
/// creates a strong_retain if \p Ptr has reference semantics itself or a
/// retain_value if \p Ptr is a non-trivial value without reference-semantics.
NullablePtr<SILInstruction>
swift::createIncrementBefore(SILValue ptr, SILInstruction *insertPt) {
// Set up the builder we use to insert at our insertion point.
SILBuilder builder(insertPt);
auto loc = RegularLocation::getAutoGeneratedLocation();
// If we have a trivial type, just bail, there is no work to do.
if (ptr->getType().isTrivial(builder.getFunction()))
return nullptr;
// If Ptr is refcounted itself, create the strong_retain and
// return.
if (ptr->getType().isReferenceCounted(builder.getModule())) {
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
if (ptr->getType().is<Name##StorageType>()) \
return builder.create##Name##Retain(loc, ptr, \
builder.getDefaultAtomicity());
#include "swift/AST/ReferenceStorage.def"
return builder.createStrongRetain(loc, ptr,
builder.getDefaultAtomicity());
}
// Otherwise, create the retain_value.
return builder.createRetainValue(loc, ptr, builder.getDefaultAtomicity());
}
/// Creates a decrement on \p ptr before insertion point \p InsertPt that
/// creates a strong_release if \p ptr has reference semantics itself or
/// a release_value if \p ptr is a non-trivial value without
/// reference-semantics.
NullablePtr<SILInstruction>
swift::createDecrementBefore(SILValue ptr, SILInstruction *insertPt) {
// Setup the builder we will use to insert at our insertion point.
SILBuilder builder(insertPt);
auto loc = RegularLocation::getAutoGeneratedLocation();
if (ptr->getType().isTrivial(builder.getFunction()))
return nullptr;
// If ptr has reference semantics itself, create a strong_release.
if (ptr->getType().isReferenceCounted(builder.getModule())) {
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
if (ptr->getType().is<Name##StorageType>()) \
return builder.create##Name##Release(loc, ptr, \
builder.getDefaultAtomicity());
#include "swift/AST/ReferenceStorage.def"
return builder.createStrongRelease(loc, ptr,
builder.getDefaultAtomicity());
}
// Otherwise create a release value.
return builder.createReleaseValue(loc, ptr, builder.getDefaultAtomicity());
}
/// Returns true if OSSA scope ending instructions end_borrow/destroy_value can
/// be deleted trivially
bool swift::canTriviallyDeleteOSSAEndScopeInst(SILInstruction *i) {
if (!isa<EndBorrowInst>(i) && !isa<DestroyValueInst>(i))
return false;
if (isa<StoreBorrowInst>(i->getOperand(0)))
return false;
auto opValue = i->getOperand(0);
// We can delete destroy_value with operands of none ownership unless
// they are move-only values, which can have custom deinit
return opValue->getOwnershipKind() == OwnershipKind::None &&
!opValue->getType().isMoveOnly();
}
/// Perform a fast local check to see if the instruction is dead.
///
/// This routine only examines the state of the instruction at hand.
bool swift::isInstructionTriviallyDead(SILInstruction *inst) {
// At Onone, consider all uses, including the debug_info.
// This way, debug_info is preserved at Onone.
if (inst->hasUsesOfAnyResult()
&& inst->getFunction()->getEffectiveOptimizationMode()
<= OptimizationMode::NoOptimization)
return false;
if (!onlyHaveDebugUsesOfAllResults(inst) || isa<TermInst>(inst))
return false;
if (auto *bi = dyn_cast<BuiltinInst>(inst)) {
// Although the onFastPath builtin has no side-effects we don't want to
// remove it.
if (bi->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath)
return false;
return !bi->mayHaveSideEffects();
}
// condfail instructions that obviously can't fail are dead.
if (auto *cfi = dyn_cast<CondFailInst>(inst))
if (auto *ili = dyn_cast<IntegerLiteralInst>(cfi->getOperand()))
if (!ili->getValue())
return true;
// mark_uninitialized is never dead.
if (isa<MarkUninitializedInst>(inst))
return false;
if (isa<DebugValueInst>(inst))
return false;
// A dead borrowed-from can only be removed if the argument (= operand) is also removed.
if (isa<BorrowedFromInst>(inst))
return false;
// These invalidate enums so "write" memory, but that is not an essential
// operation so we can remove these if they are trivially dead.
if (isa<UncheckedTakeEnumDataAddrInst>(inst))
return true;
// An ossa end scope instruction is trivially dead if its operand has
// OwnershipKind::None. This can occur after CFG simplification in the
// presence of non-payloaded or trivial payload cases of non-trivial enums.
//
// Examples of ossa end_scope instructions: end_borrow, destroy_value.
if (inst->getFunction()->hasOwnership() &&
canTriviallyDeleteOSSAEndScopeInst(inst))
return true;
if (!inst->mayHaveSideEffects())
return true;
return false;
}
/// Return true if this is a release instruction and the released value
/// is a part of a guaranteed parameter.
bool swift::isIntermediateRelease(SILInstruction *inst,
EpilogueARCFunctionInfo *eafi) {
// Check whether this is a release instruction.
if (!isa<StrongReleaseInst>(inst) && !isa<ReleaseValueInst>(inst))
return false;
// OK. we have a release instruction.
// Check whether this is a release on part of a guaranteed function argument.
SILValue Op = stripValueProjections(inst->getOperand(0));
auto *arg = dyn_cast<SILFunctionArgument>(Op);
if (!arg)
return false;
// This is a release on a guaranteed parameter. Its not the final release.
if (arg->hasConvention(SILArgumentConvention::Direct_Guaranteed))
return true;
// This is a release on an owned parameter and its not the epilogue release.
// Its not the final release.
auto rel = eafi->computeEpilogueARCInstructions(
EpilogueARCContext::EpilogueARCKind::Release, arg);
if (rel.size() && !rel.count(inst))
return true;
// Failed to prove anything.
return false;
}
bool swift::hasOnlyEndOfScopeOrEndOfLifetimeUses(SILInstruction *inst) {
for (SILValue result : inst->getResults()) {
for (Operand *use : result->getUses()) {
SILInstruction *user = use->getUser();
bool isDebugUser = user->isDebugInstruction();
if (!isa<DestroyValueInst>(user) && !isa<EndLifetimeInst>(user)
&& !isa<DeallocStackInst>(user) && !isEndOfScopeMarker(user)
&& !isDebugUser) {
return false;
}
// Include debug uses only in Onone mode.
if (isDebugUser && inst->getFunction()->getEffectiveOptimizationMode() <=
OptimizationMode::NoOptimization)
return false;
}
}
return true;
}
unsigned swift::getNumInOutArguments(FullApplySite applySite) {
assert(applySite);
auto substConv = applySite.getSubstCalleeConv();
unsigned numIndirectResults = substConv.getNumIndirectSILResults();
unsigned numInOutArguments = 0;
for (unsigned argIndex = 0; argIndex < applySite.getNumArguments();
argIndex++) {
// Skip indirect results.
if (argIndex < numIndirectResults) {
continue;
}
auto paramNumber = argIndex - numIndirectResults;
auto ParamConvention =
substConv.getParameters()[paramNumber].getConvention();
switch (ParamConvention) {
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable: {
++numInOutArguments;
break;
default:
break;
}
}
}
return numInOutArguments;
}
/// If the given instruction is dead, delete it along with its dead
/// operands.
///
/// \param inst The instruction to be deleted.
/// \param force If force is set, don't check if the top level instruction is
/// considered dead - delete it regardless.
void swift::recursivelyDeleteTriviallyDeadInstructions(
SILInstruction *inst, bool force, InstModCallbacks callbacks) {
ArrayRef<SILInstruction *> ai = ArrayRef<SILInstruction *>(inst);
recursivelyDeleteTriviallyDeadInstructions(ai, force, callbacks);
}
void swift::collectUsesOfValue(SILValue v,
llvm::SmallPtrSetImpl<SILInstruction *> &insts) {
for (auto ui = v->use_begin(), E = v->use_end(); ui != E; ++ui) {
auto *user = ui->getUser();
// Instruction has been processed.
if (!insts.insert(user).second)
continue;
// Collect the users of this instruction.
for (auto result : user->getResults())
collectUsesOfValue(result, insts);
}
}
void swift::eraseUsesOfValue(SILValue v) {
llvm::SmallPtrSet<SILInstruction *, 4> insts;
// Collect the uses.
collectUsesOfValue(v, insts);
// Erase the uses, we can have instructions that become dead because
// of the removal of these instructions, leave to DCE to cleanup.
// Its not safe to do recursively delete here as some of the SILInstruction
// maybe tracked by this set.
for (auto inst : insts) {
inst->replaceAllUsesOfAllResultsWithUndef();
inst->eraseFromParent();
}
}
bool swift::hasValueDeinit(SILType type) {
// Do not look inside an aggregate type that has a user-deinit, for which
// memberwise-destruction is not equivalent to aggregate destruction.
if (auto *nominal = type.getNominalOrBoundGenericNominal()) {
return nominal->getValueTypeDestructor() != nullptr;
}
return false;
}
SILValue swift::
getConcreteValueOfExistentialBox(AllocExistentialBoxInst *existentialBox,
SILInstruction *ignoreUser) {
StoreInst *singleStore = nullptr;
SmallPtrSetVector<Operand *, 32> worklist;
for (auto *use : getNonDebugUses(existentialBox)) {
worklist.insert(use);
}
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
SILInstruction *user = use->getUser();
switch (user->getKind()) {
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::EndBorrowInst:
break;
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::BeginBorrowInst:
// Look through copy_value, begin_borrow
for (SILValue result : user->getResults())
for (auto *transitiveUse : result->getUses())
worklist.insert(transitiveUse);
break;
case SILInstructionKind::ProjectExistentialBoxInst: {
auto *projectedAddr = cast<ProjectExistentialBoxInst>(user);
for (Operand *addrUse : getNonDebugUses(projectedAddr)) {
if (auto *store = dyn_cast<StoreInst>(addrUse->getUser())) {
assert(store->getSrc() != projectedAddr && "cannot store an address");
// Bail if there are multiple stores.
if (singleStore)
return SILValue();
singleStore = store;
continue;
}
// If there are other users to the box value address then bail out.
return SILValue();
}
break;
}
case SILInstructionKind::BuiltinInst: {
auto *builtin = cast<BuiltinInst>(user);
if (KeepWillThrowCall ||
builtin->getBuiltinInfo().ID != BuiltinValueKind::WillThrow) {
return SILValue();
}
break;
}
default:
if (user != ignoreUser)
return SILValue();
break;
}
}
if (!singleStore)
return SILValue();
return singleStore->getSrc();
}
SILValue swift::
getConcreteValueOfExistentialBoxAddr(SILValue addr, SILInstruction *ignoreUser) {
auto *stackLoc = dyn_cast<AllocStackInst>(addr);
if (!stackLoc)
return SILValue();
StoreInst *singleStackStore = nullptr;
for (Operand *stackUse : stackLoc->getUses()) {
SILInstruction *stackUser = stackUse->getUser();
switch (stackUser->getKind()) {
case SILInstructionKind::DestroyAddrInst: {
// Make sure the destroy_addr is the instruction before one of our
// dealloc_stack insts and is directly on the stack location.
auto next = std::next(stackUser->getIterator());
if (auto *dsi = dyn_cast<DeallocStackInst>(next))
if (dsi->getOperand() != stackLoc)
return SILValue();
break;
}
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::LoadInst:
break;
case SILInstructionKind::DebugValueInst:
if (!DebugValueInst::hasAddrVal(stackUser)) {
if (stackUser != ignoreUser)
return SILValue();
}
break;
case SILInstructionKind::StoreInst: {
auto *store = cast<StoreInst>(stackUser);
assert(store->getSrc() != stackLoc && "cannot store an address");
// Bail if there are multiple stores.
if (singleStackStore)
return SILValue();
singleStackStore = store;
break;
}
default:
if (stackUser != ignoreUser)
return SILValue();
break;
}
}
if (!singleStackStore)
return SILValue();
// Look through copy value insts.
SILValue val = singleStackStore->getSrc();
while (auto *cvi = dyn_cast<CopyValueInst>(val))
val = cvi->getOperand();
auto *box = dyn_cast<AllocExistentialBoxInst>(val);
if (!box)
return SILValue();
return getConcreteValueOfExistentialBox(box, singleStackStore);
}
bool swift::mayBindDynamicSelf(SILFunction *F) {
if (!F->hasDynamicSelfMetadata())
return false;
SILValue mdArg = F->getDynamicSelfMetadata();
for (Operand *mdUse : mdArg->getUses()) {
SILInstruction *mdUser = mdUse->getUser();
for (Operand &typeDepOp : mdUser->getTypeDependentOperands()) {
if (typeDepOp.get() == mdArg)
return true;
}
}
return false;
}
static SILValue skipAddrProjections(SILValue v) {
for (;;) {
switch (v->getKind()) {
case ValueKind::IndexAddrInst:
case ValueKind::IndexRawPointerInst:
case ValueKind::StructElementAddrInst:
case ValueKind::TupleElementAddrInst:
v = cast<SingleValueInstruction>(v)->getOperand(0);
break;
default:
return v;
}
}
llvm_unreachable("there is no escape from an infinite loop");
}
/// Check whether the \p addr is an address of a tail-allocated array element.
bool swift::isAddressOfArrayElement(SILValue addr) {
addr = stripAddressProjections(addr);
if (auto *md = dyn_cast<MarkDependenceInst>(addr))
addr = stripAddressProjections(md->getValue());
// High-level SIL: check for an get_element_address array semantics call.
if (auto *ptrToAddr = dyn_cast<PointerToAddressInst>(addr))
if (auto *sei = dyn_cast<StructExtractInst>(ptrToAddr->getOperand())) {
ArraySemanticsCall call(sei->getOperand());
if (call && call.getKind() == ArrayCallKind::kGetElementAddress)
return true;
}
// Check for an tail-address (of an array buffer object).
if (isa<RefTailAddrInst>(skipAddrProjections(addr)))
return true;
return false;
}
/// Find a new position for an ApplyInst's FuncRef so that it dominates its
/// use. Not that FunctionRefInsts may be shared by multiple ApplyInsts.
void swift::placeFuncRef(ApplyInst *ai, DominanceInfo *domInfo) {
FunctionRefInst *funcRef = cast<FunctionRefInst>(ai->getCallee());
SILBasicBlock *domBB = domInfo->findNearestCommonDominator(
ai->getParent(), funcRef->getParent());
if (domBB == ai->getParent() && domBB != funcRef->getParent())
// Prefer to place the FuncRef immediately before the call. Since we're
// moving FuncRef up, this must be the only call to it in the block.
funcRef->moveBefore(ai);
else
// Otherwise, conservatively stick it at the beginning of the block.
funcRef->moveBefore(&*domBB->begin());
}
/// Add an argument, \p val, to the branch-edge that is pointing into
/// block \p Dest. Return a new instruction and do not erase the old
/// instruction.
TermInst *swift::addArgumentsToBranch(ArrayRef<SILValue> vals,
SILBasicBlock *dest, TermInst *branch) {
SILBuilderWithScope builder(branch);
if (auto *cbi = dyn_cast<CondBranchInst>(branch)) {
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
for (auto arg : cbi->getTrueArgs())
trueArgs.push_back(arg);
for (auto arg : cbi->getFalseArgs())
falseArgs.push_back(arg);
if (dest == cbi->getTrueBB()) {
for (auto val : vals)
trueArgs.push_back(val);
assert(trueArgs.size() == dest->getNumArguments());
} else {
for (auto val : vals)
falseArgs.push_back(val);
assert(falseArgs.size() == dest->getNumArguments());
}
return builder.createCondBranch(
cbi->getLoc(), cbi->getCondition(), cbi->getTrueBB(), trueArgs,
cbi->getFalseBB(), falseArgs, cbi->getTrueBBCount(),
cbi->getFalseBBCount());
}
if (auto *bi = dyn_cast<BranchInst>(branch)) {
SmallVector<SILValue, 8> args;
for (auto arg : bi->getArgs())
args.push_back(arg);
for (auto val : vals)
args.push_back(val);
assert(args.size() == dest->getNumArguments());
return builder.createBranch(bi->getLoc(), bi->getDestBB(), args);
}
llvm_unreachable("unsupported terminator");
}
SILLinkage swift::getSpecializedLinkage(SILFunction *f, SILLinkage linkage) {
if (hasPrivateVisibility(linkage) && !f->isAnySerialized()) {
// Specializations of private symbols should remain so, unless
// they were serialized, which can only happen when specializing
// definitions from a standard library built with -sil-serialize-all.
return SILLinkage::Private;
}
return SILLinkage::Shared;
}
/// Cast a value into the expected, ABI compatible type if necessary.
/// This may happen e.g. when:
/// - a type of the return value is a subclass of the expected return type.
/// - actual return type and expected return type differ in optionality.
/// - both types are tuple-types and some of the elements need to be casted.
/// Return the cast value and true if a CFG modification was required
/// NOTE: We intentionally combine the checking of the cast's handling
/// possibility and the transformation performing the cast in the same function,
/// to avoid any divergence between the check and the implementation in the
/// future.
///
/// \p usePoints are required when \p value has guaranteed ownership. It must be
/// the last users of the returned, casted value. A usePoint cannot be a
/// BranchInst (a phi is never the last guaranteed user). \p builder's current
/// insertion point must dominate all \p usePoints. \p usePoints must
/// collectively post-dominate \p builder's current insertion point.
///
/// NOTE: The implementation of this function is very closely related to the
/// rules checked by SILVerifier::requireABICompatibleFunctionTypes. It must
/// handle all cases recognized by SILFunctionType::isABICompatibleWith (see
/// areABICompatibleParamsOrReturns()).
std::pair<SILValue, bool /* changedCFG */>
swift::castValueToABICompatibleType(SILBuilder *builder, SILPassManager *pm,
SILLocation loc,
SILValue value, SILType srcTy,
SILType destTy,
ArrayRef<SILInstruction *> usePoints) {
assert(value->getOwnershipKind() != OwnershipKind::Guaranteed ||
!usePoints.empty() && "guaranteed value must have use points");
// No cast is required if types are the same.
if (srcTy == destTy)
return {value, false};
if (srcTy.isAddress() && destTy.isAddress()) {
// Cast between two addresses and that's it.
return {builder->createUncheckedAddrCast(loc, value, destTy), false};
}
// If both types are classes and dest is the superclass of src,
// simply perform an upcast.
if (destTy.isExactSuperclassOf(srcTy)) {
return {builder->createUpcast(loc, value, destTy), false};
}
if (srcTy.isHeapObjectReferenceType() && destTy.isHeapObjectReferenceType()) {
return {builder->createUncheckedRefCast(loc, value, destTy), false};
}
if (auto mt1 = srcTy.getAs<AnyMetatypeType>()) {
if (auto mt2 = destTy.getAs<AnyMetatypeType>()) {
if (mt1->getRepresentation() == mt2->getRepresentation()) {
// If builder.Type needs to be casted to A.Type and
// A is a superclass of builder, then it can be done by means
// of a simple upcast.
if (mt2.getInstanceType()->isExactSuperclassOf(mt1.getInstanceType())) {
return {builder->createUpcast(loc, value, destTy), false};
}
// Cast between two metatypes and that's it.
return {builder->createUncheckedReinterpretCast(loc, value, destTy),
false};
}
}
}
// Check if src and dest types are optional.
auto optionalSrcTy = srcTy.getOptionalObjectType();
auto optionalDestTy = destTy.getOptionalObjectType();
// Both types are optional.
if (optionalDestTy && optionalSrcTy) {
// If both wrapped types are classes and dest is the superclass of src,
// simply perform an upcast.
if (optionalDestTy.isExactSuperclassOf(optionalSrcTy)) {
// Insert upcast.
return {builder->createUpcast(loc, value, destTy), false};
}
// Unwrap the original optional value.
auto *someDecl = builder->getASTContext().getOptionalSomeDecl();
auto *curBB = builder->getInsertionPoint()->getParent();
auto *contBB = curBB->split(builder->getInsertionPoint());
auto *someBB = builder->getFunction().createBasicBlockAfter(curBB);
auto *noneBB = builder->getFunction().createBasicBlockAfter(someBB);
auto *phi = contBB->createPhiArgument(destTy, value->getOwnershipKind());
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 1> caseBBs;
caseBBs.push_back(std::make_pair(someDecl, someBB));
builder->setInsertionPoint(curBB);
auto *switchEnum = builder->createSwitchEnum(loc, value, noneBB, caseBBs);
// In OSSA switch_enum destinations have terminator results.
//
// TODO: This should be in a switchEnum utility.
SILValue unwrappedValue;
if (builder->hasOwnership()) {
unwrappedValue = switchEnum->createOptionalSomeResult();
builder->setInsertionPoint(someBB);
} else {
builder->setInsertionPoint(someBB);
unwrappedValue = builder->createUncheckedEnumData(loc, value, someDecl);
}
// Cast the unwrapped value.
SILValue castedUnwrappedValue;
std::tie(castedUnwrappedValue, std::ignore) = castValueToABICompatibleType(
builder, pm, loc, unwrappedValue, optionalSrcTy, optionalDestTy, usePoints);
// Wrap into optional. An owned value is forwarded through the cast and into
// the Optional. A borrowed value will have a nested borrow for the
// rewrapped Optional.
SILValue someValue =
builder->createOptionalSome(loc, castedUnwrappedValue, destTy);
builder->createBranch(loc, contBB, {someValue});
// Handle the None case.
builder->setInsertionPoint(noneBB);
SILValue noneValue = builder->createOptionalNone(loc, destTy);
builder->createBranch(loc, contBB, {noneValue});
builder->setInsertionPoint(contBB->begin());
updateGuaranteedPhis(pm, { phi });
return {lookThroughBorrowedFromUser(phi), true};
}
// Src is not optional, but dest is optional.
if (!optionalSrcTy && optionalDestTy) {
auto optionalSrcCanTy =
OptionalType::get(srcTy.getASTType())->getCanonicalType();
auto loweredOptionalSrcType =
SILType::getPrimitiveObjectType(optionalSrcCanTy);
// Wrap the source value into an optional first.
SILValue wrappedValue =
builder->createOptionalSome(loc, value, loweredOptionalSrcType);
// Cast the wrapped value.
return castValueToABICompatibleType(builder, pm, loc, wrappedValue,
wrappedValue->getType(), destTy,
usePoints);
}
// Handle tuple types.
// Extract elements, cast each of them, create a new tuple.
if (auto srcTupleTy = srcTy.getAs<TupleType>()) {
SmallVector<SILValue, 8> expectedTuple;
bool changedCFG = false;
auto castElement = [&](unsigned idx, SILValue element) {
// Cast the value if necessary.
bool neededCFGChange;
std::tie(element, neededCFGChange) = castValueToABICompatibleType(
builder, pm, loc, element, srcTy.getTupleElementType(idx),
destTy.getTupleElementType(idx), usePoints);
changedCFG |= neededCFGChange;
expectedTuple.push_back(element);
};
builder->emitDestructureValueOperation(loc, value, castElement);
return {builder->createTuple(loc, destTy, expectedTuple), changedCFG};
}
// Function types are interchangeable if they're also ABI-compatible.
if (srcTy.is<SILFunctionType>()) {
if (destTy.is<SILFunctionType>()) {
assert(srcTy.getAs<SILFunctionType>()->isNoEscape()
== destTy.getAs<SILFunctionType>()->isNoEscape()
|| srcTy.getAs<SILFunctionType>()->getRepresentation()
!= SILFunctionType::Representation::Thick
&& "Swift thick functions that differ in escapeness are "
"not ABI "
"compatible");
// Insert convert_function.
return {builder->createConvertFunction(loc, value, destTy,
/*WithoutActuallyEscaping=*/false),
false};
}
}
NominalTypeDecl *srcNominal = srcTy.getNominalOrBoundGenericNominal();
NominalTypeDecl *destNominal = destTy.getNominalOrBoundGenericNominal();
if (srcNominal && srcNominal == destNominal &&
!layoutIsTypeDependent(srcNominal) &&
srcTy.isObject() && destTy.isObject()) {
// This can be a result from whole-module reasoning of protocol conformances.
// If a protocol only has a single conformance where the associated type (`ID`) is some
// concrete type (e.g. `Int`), then the devirtualizer knows that `p.get()`
// can only return an `Int`:
// ```
// public struct X2<ID> {
// let p: any P2<ID>
// public func testit(i: ID, x: ID) -> S2<ID> {
// return p.get(x: x)
// }
// }
// ```
// and after devirtualizing the `get` function, its result must be cast from `Int` to `ID`.
//
// The `layoutIsTypeDependent` utility is basically only used here to assert that this
// cast can only happen between layout compatible types.
return {builder->createUncheckedForwardingCast(loc, value, destTy), false};
}
llvm::errs() << "Source type: " << srcTy << "\n";
llvm::errs() << "Destination type: " << destTy << "\n";
llvm_unreachable("Unknown combination of types for casting");
}
namespace {
class TypeDependentVisitor : public CanTypeVisitor<TypeDependentVisitor, bool> {
public:
// If the type isn't actually dependent, we're okay.
bool visit(CanType type) {
if (!type->hasArchetype() && !type->hasTypeParameter())
return false;
return CanTypeVisitor::visit(type);
}
bool visitStructType(CanStructType type) {
return visitStructDecl(type->getDecl());
}
bool visitBoundGenericStructType(CanBoundGenericStructType type) {
return visitStructDecl(type->getDecl());
}
bool visitStructDecl(StructDecl *decl) {
auto rawLayout = decl->getAttrs().getAttribute<RawLayoutAttr>();
if (rawLayout) {
if (auto likeType = rawLayout->getResolvedScalarLikeType(decl)) {
return visit((*likeType)->getCanonicalType());
} else if (auto likeArray = rawLayout->getResolvedArrayLikeTypeAndCount(decl)) {
return visit(likeArray->first->getCanonicalType());
}
}
for (auto field : decl->getStoredProperties()) {
if (visit(field->getInterfaceType()->getCanonicalType()))
return true;
}
return false;
}
bool visitEnumType(CanEnumType type) {
return visitEnumDecl(type->getDecl());
}
bool visitBoundGenericEnumType(CanBoundGenericEnumType type) {
return visitEnumDecl(type->getDecl());
}
bool visitEnumDecl(EnumDecl *decl) {
if (decl->isIndirect())
return false;
for (auto elt : decl->getAllElements()) {
if (!elt->hasAssociatedValues() || elt->isIndirect())
continue;
if (visit(elt->getPayloadInterfaceType()->getCanonicalType()))
return true;
}
return false;
}
bool visitTupleType(CanTupleType type) {
for (auto eltTy : type.getElementTypes()) {
if (visit(eltTy->getCanonicalType()))
return true;
}
return false;
}
// A class reference does not depend on the layout of the class.
bool visitClassType(CanClassType type) {
return false;
}
bool visitBoundGenericClassType(CanBoundGenericClassType type) {
return false;
}
// The same for non-strong references.
bool visitReferenceStorageType(CanReferenceStorageType type) {
return false;
}
// All function types have the same layout.
bool visitAnyFunctionType(CanAnyFunctionType type) {
return false;
}
// The safe default for types we didn't handle above.
bool visitType(CanType type) {
return true;
}
};
} // end anonymous namespace
bool swift::layoutIsTypeDependent(NominalTypeDecl *decl) {
if (isa<ClassDecl>(decl)) {
return false;
} else if (auto *structDecl = dyn_cast<StructDecl>(decl)) {
return TypeDependentVisitor().visitStructDecl(structDecl);
} else {
auto *enumDecl = cast<EnumDecl>(decl);
return TypeDependentVisitor().visitEnumDecl(enumDecl);
}
}
ProjectBoxInst *swift::getOrCreateProjectBox(AllocBoxInst *abi,
unsigned index) {
SILBasicBlock::iterator iter(abi);
++iter;
assert(iter != abi->getParent()->end()
&& "alloc_box cannot be the last instruction of a block");
SILInstruction *nextInst = &*iter;
if (auto *pbi = dyn_cast<ProjectBoxInst>(nextInst)) {
if (pbi->getOperand() == abi && pbi->getFieldIndex() == index)
return pbi;
}
SILBuilder builder(nextInst);
return builder.createProjectBox(abi->getLoc(), abi, index);
}
// Peek through trivial Enum initialization, typically for pointless
// Optionals.
//
// Given an UncheckedTakeEnumDataAddrInst, check that there are no
// other uses of the Enum value and return the address used to initialized the
// enum's payload:
//
// %stack_adr = alloc_stack
// %data_adr = init_enum_data_addr %stk_adr
// %enum_adr = inject_enum_addr %stack_adr
// %copy_src = unchecked_take_enum_data_addr %enum_adr
// dealloc_stack %stack_adr
// (No other uses of %stack_adr.)
InitEnumDataAddrInst *
swift::findInitAddressForTrivialEnum(UncheckedTakeEnumDataAddrInst *utedai) {
auto *asi = dyn_cast<AllocStackInst>(utedai->getOperand());
if (!asi)
return nullptr;
InjectEnumAddrInst *singleInject = nullptr;
InitEnumDataAddrInst *singleInit = nullptr;
for (auto use : asi->getUses()) {
auto *user = use->getUser();
if (user == utedai)
continue;
// If there is a single init_enum_data_addr and a single inject_enum_addr,
// those instructions must dominate the unchecked_take_enum_data_addr.
// Otherwise the enum wouldn't be initialized on all control flow paths.
if (auto *inj = dyn_cast<InjectEnumAddrInst>(user)) {
if (singleInject)
return nullptr;
singleInject = inj;
continue;
}
if (auto *init = dyn_cast<InitEnumDataAddrInst>(user)) {
if (singleInit)
return nullptr;
singleInit = init;
continue;
}
if (isa<DeallocStackInst>(user) || isa<DebugValueInst>(user))
continue;
}
return singleInit;
}
//===----------------------------------------------------------------------===//
// Closure Deletion
//===----------------------------------------------------------------------===//
/// NOTE: Instructions with transitive ownership kind are assumed to not keep
/// the underlying value alive as well. This is meant for instructions only
/// with non-transitive users.
static bool useDoesNotKeepValueAlive(const SILInstruction *inst) {
switch (inst->getKind()) {
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::DebugValueInst:
case SILInstructionKind::EndBorrowInst:
return true;
default:
return false;
}
}
static bool useHasTransitiveOwnership(const SILInstruction *inst) {
// convert_escape_to_noescape is used to convert to a @noescape function type.
// It does not change ownership of the function value.
if (isa<ConvertEscapeToNoEscapeInst>(inst))
return true;
// Look through copy_value, begin_borrow, move_value. They are inert for our
// purposes, but we need to look through it.
return isa<CopyValueInst>(inst) || isa<BeginBorrowInst>(inst) ||
isa<MoveValueInst>(inst);
}
static bool shouldDestroyPartialApplyCapturedArg(SILValue arg,
SILParameterInfo paramInfo,
const SILFunction &F) {
// If we have a non-trivial type and the argument is passed in @inout, we do
// not need to destroy it here. This is something that is implicit in the
// partial_apply design that will be revisited when partial_apply is
// redesigned.
if (paramInfo.isIndirectMutating())
return false;
// If we have a trivial type, we do not need to put in any extra releases.
if (arg->getType().isTrivial(F))
return false;
// We handle all other cases.
return true;
}
void swift::emitDestroyOperation(SILBuilder &builder, SILLocation loc,
SILValue operand, InstModCallbacks callbacks) {
// If we have an address, we insert a destroy_addr and return. Any live range
// issues must have been dealt with by our caller.
if (operand->getType().isAddress()) {
// Then emit the destroy_addr for this operand. This function does not
// delete any instructions
SILInstruction *newInst = builder.emitDestroyAddrAndFold(loc, operand);
if (newInst != nullptr)
callbacks.createdNewInst(newInst);
return;
}
// Otherwise, we have an object. We emit the most optimized form of release
// possible for that value.
// If we have qualified ownership, we should just emit a destroy value.
if (builder.getFunction().hasOwnership()) {
callbacks.createdNewInst(builder.createDestroyValue(loc, operand));
return;
}
if (operand->getType().isUnownedStorageType()) {
auto release = builder.createUnownedRelease(loc, operand,
builder.getDefaultAtomicity());
callbacks.createdNewInst(release);
return;
}
if (operand->getType().isReferenceCounted(builder.getModule())) {
auto u = builder.emitStrongRelease(loc, operand);
if (u.isNull())
return;
if (auto *SRI = u.dyn_cast<StrongRetainInst *>()) {
callbacks.deleteInst(SRI);
return;
}
callbacks.createdNewInst(u.get<StrongReleaseInst *>());
return;
}
auto u = builder.emitReleaseValue(loc, operand);
if (u.isNull())
return;
if (auto *rvi = u.dyn_cast<RetainValueInst *>()) {
callbacks.deleteInst(rvi);
return;
}
callbacks.createdNewInst(u.get<ReleaseValueInst *>());
}
// NOTE: The ownership of the partial_apply argument does not match the
// convention of the closed over function. All non-inout arguments to a
// partial_apply are passed at +1 for regular escaping closures and +0 for
// closures that have been promoted to partial_apply [on_stack]. An escaping
// partial apply stores each capture in an owned box, even for guaranteed and
// in_guaranteed argument convention. A non-escaping/on-stack closure either
// borrows its arguments or takes an inout_aliasable address. Non-escaping
// closures do not support owned arguments.
void swift::releasePartialApplyCapturedArg(SILBuilder &builder, SILLocation loc,
SILValue arg,
SILParameterInfo paramInfo,
InstModCallbacks callbacks) {
if (!shouldDestroyPartialApplyCapturedArg(arg, paramInfo,
builder.getFunction()))
return;
emitDestroyOperation(builder, loc, arg, callbacks);
}
static bool
deadMarkDependenceUser(SILInstruction *inst,
SmallVectorImpl<SILInstruction *> &deleteInsts) {
if (!isa<MarkDependenceInst>(inst))
return false;
deleteInsts.push_back(inst);
for (auto *use : cast<SingleValueInstruction>(inst)->getUses()) {
if (!deadMarkDependenceUser(use->getUser(), deleteInsts))
return false;
}
return true;
}
void swift::getConsumedPartialApplyArgs(PartialApplyInst *pai,
SmallVectorImpl<Operand *> &argOperands,
bool includeTrivialAddrArgs) {
ApplySite applySite(pai);
SILFunctionConventions calleeConv = applySite.getSubstCalleeConv();
unsigned firstCalleeArgIdx = applySite.getCalleeArgIndexOfFirstAppliedArg();
auto argList = pai->getArgumentOperands();
SILFunction *F = pai->getFunction();
for (unsigned i : indices(argList)) {
auto argConv = calleeConv.getSILArgumentConvention(firstCalleeArgIdx + i);
if (argConv.isInoutConvention())
continue;
Operand &argOp = argList[i];
SILType ty = argOp.get()->getType();
if (!ty.isTrivial(*F) || (includeTrivialAddrArgs && ty.isAddress()))
argOperands.push_back(&argOp);
}
}
bool swift::collectDestroys(SingleValueInstruction *inst,
SmallVectorImpl<Operand *> &destroys) {
bool isDead = true;
for (Operand *use : inst->getUses()) {
SILInstruction *user = use->getUser();
if (useHasTransitiveOwnership(user)) {
if (!collectDestroys(cast<SingleValueInstruction>(user), destroys))
isDead = false;
destroys.push_back(use);
} else if (useDoesNotKeepValueAlive(user)) {
destroys.push_back(use);
} else {
isDead = false;
}
}
return isDead;
}
/// Move the original arguments of the partial_apply into newly created
/// temporaries to extend the lifetime of the arguments until the partial_apply
/// is finally destroyed.
///
/// TODO: figure out why this is needed at all. Probably because of some
/// weirdness of the old retain/release ARC model. Most likely this will
/// not be needed anymore with OSSA.
static bool keepArgsOfPartialApplyAlive(PartialApplyInst *pai,
ArrayRef<Operand *> paiUses,
SILBuilderContext &builderCtxt,
InstModCallbacks callbacks) {
SmallVector<Operand *, 8> argsToHandle;
getConsumedPartialApplyArgs(pai, argsToHandle,
/*includeTrivialAddrArgs*/ false);
if (argsToHandle.empty())
return true;
// Compute the set of endpoints, which will be used to insert destroys of
// temporaries. This may fail if the frontier is located on a critical edge
// which we may not split.
ValueLifetimeAnalysis vla(pai, paiUses);
ValueLifetimeAnalysis::Frontier partialApplyFrontier;
if (!vla.computeFrontier(partialApplyFrontier,
ValueLifetimeAnalysis::DontModifyCFG)) {
return false;
}
// We must not introduce copies for move only types.
// TODO: in OSSA, instead of bailing, it's possible to destroy the arguments
// without the need of copies.
for (Operand *argOp : argsToHandle) {
if (argOp->get()->getType().isMoveOnly())
return false;
}
for (Operand *argOp : argsToHandle) {
SILValue arg = argOp->get();
SILValue tmp = arg;
if (arg->getType().isAddress()) {
// Move the value to a stack-allocated temporary.
SILBuilderWithScope builder(pai, builderCtxt);
tmp = builder.createAllocStack(pai->getLoc(), arg->getType());
builder.createCopyAddr(pai->getLoc(), arg, tmp, IsTake_t::IsTake,
IsInitialization_t::IsInitialization);
}
// Delay the destroy of the value (either as SSA value or in the stack-
// allocated temporary) at the end of the partial_apply's lifetime.
endLifetimeAtFrontier(tmp, partialApplyFrontier, builderCtxt, callbacks);
}
return true;
}
bool swift::tryDeleteDeadClosure(SingleValueInstruction *closure,
InstModCallbacks callbacks,
bool needKeepArgsAlive) {
auto *pa = dyn_cast<PartialApplyInst>(closure);
// We currently only handle locally identified values that do not escape. We
// also assume that the partial apply does not capture any addresses.
if (!pa && !isa<ThinToThickFunctionInst>(closure))
return false;
// A stack allocated partial apply does not have any release users. Delete it
// if the only users are the dealloc_stack and mark_dependence instructions.
if (pa && pa->isOnStack()) {
SmallVector<SILInstruction *, 8> deleteInsts;
for (auto *use : pa->getUses()) {
SILInstruction *user = use->getUser();
if (isa<DeallocStackInst>(user)
|| isa<DebugValueInst>(user)
|| isa<DestroyValueInst>(user)) {
deleteInsts.push_back(user);
} else if (!deadMarkDependenceUser(user, deleteInsts)) {
return false;
}
}
for (auto *inst : reverse(deleteInsts))
callbacks.deleteInst(inst);
callbacks.deleteInst(pa);
// Note: the lifetime of the captured arguments is managed outside of the
// trivial closure value i.e: there will already be releases for the
// captured arguments. Releasing captured arguments is not necessary.
return true;
}
// Collect all destroys of the closure (transitively including destroys of
// copies) and check if those are the only uses of the closure.
SmallVector<Operand *, 16> closureDestroys;
if (!collectDestroys(closure, closureDestroys))
return false;
// If we have a partial_apply, release each captured argument at each one of
// the final release locations of the partial apply.
if (auto *pai = dyn_cast<PartialApplyInst>(closure)) {
assert(!pa->isOnStack() &&
"partial_apply [stack] should have been handled before");
SILBuilderContext builderCtxt(pai->getModule());
if (needKeepArgsAlive) {
if (!keepArgsOfPartialApplyAlive(pai, closureDestroys, builderCtxt,
callbacks))
return false;
} else {
// A preceding partial_apply -> apply conversion (done in
// tryOptimizeApplyOfPartialApply) already ensured that the arguments are
// kept alive until the end of the partial_apply's lifetime.
SmallVector<Operand *, 8> argsToHandle;
getConsumedPartialApplyArgs(pai, argsToHandle,
/*includeTrivialAddrArgs*/ false);
// We can just destroy the arguments at the point of the partial_apply
// (remember: partial_apply consumes all arguments).
for (Operand *argOp : argsToHandle) {
SILValue arg = argOp->get();
SILBuilderWithScope builder(pai, builderCtxt);
emitDestroyOperation(builder, pai->getLoc(), arg, callbacks);
}
}
}
// Delete all copy and destroy instructions in order so that leaf uses are
// deleted first.
for (auto *use : closureDestroys) {
auto *user = use->getUser();
assert(
(useDoesNotKeepValueAlive(user) || useHasTransitiveOwnership(user)) &&
"We expect only ARC operations without "
"results or a cast from escape to noescape without users");
callbacks.deleteInst(user);
}
callbacks.deleteInst(closure);
return true;
}
bool swift::simplifyUsers(SingleValueInstruction *inst) {
bool changed = false;
InstModCallbacks callbacks;
for (auto ui = inst->use_begin(), ue = inst->use_end(); ui != ue;) {
SILInstruction *user = ui->getUser();
++ui;
auto svi = dyn_cast<SingleValueInstruction>(user);
if (!svi)
continue;
callbacks.resetHadCallbackInvocation();
simplifyAndReplaceAllSimplifiedUsesAndErase(svi, callbacks);
changed |= callbacks.hadCallbackInvocation();
}
return changed;
}
/// Some support functions for the global-opt and let-properties-opts
// Encapsulate the state used for recursive analysis of a static
// initializer. Discover all the instruction in a use-def graph and return them
// in topological order.
//
// TODO: We should have a DFS utility for this sort of thing so it isn't
// recursive.
class StaticInitializerAnalysis {
SmallVectorImpl<SILInstruction *> &postOrderInstructions;
llvm::SmallDenseSet<SILValue, 8> visited;
int recursionLevel = 0;
public:
StaticInitializerAnalysis(
SmallVectorImpl<SILInstruction *> &postOrderInstructions)
: postOrderInstructions(postOrderInstructions) {}
// Perform a recursive DFS on on the use-def graph rooted at `V`. Insert
// values in the `visited` set in preorder. Insert values in
// `postOrderInstructions` in postorder so that the instructions are
// topologically def-use ordered (in execution order).
bool analyze(SILValue rootValue) {
return recursivelyAnalyzeOperand(rootValue);
}
protected:
bool recursivelyAnalyzeOperand(SILValue v) {
if (!visited.insert(v).second)
return true;
if (++recursionLevel > 50)
return false;
// TODO: For multi-result instructions, we could simply insert all result
// values in the visited set here.
auto *inst = dyn_cast<SingleValueInstruction>(v);
if (!inst)
return false;
if (!recursivelyAnalyzeInstruction(inst))
return false;
postOrderInstructions.push_back(inst);
--recursionLevel;
return true;
}
bool recursivelyAnalyzeInstruction(SILInstruction *inst) {
if (auto *si = dyn_cast<StructInst>(inst)) {
// If it is not a struct which is a simple type, bail.
if (!si->getType().isTrivial(*si->getFunction()))
return false;
return llvm::all_of(si->getAllOperands(), [&](Operand &operand) -> bool {
return recursivelyAnalyzeOperand(operand.get());
});
}
if (auto *ti = dyn_cast<TupleInst>(inst)) {
// If it is not a tuple which is a simple type, bail.
if (!ti->getType().isTrivial(*ti->getFunction()))
return false;
return llvm::all_of(ti->getAllOperands(), [&](Operand &operand) -> bool {
return recursivelyAnalyzeOperand(operand.get());
});
}
if (auto *bi = dyn_cast<BuiltinInst>(inst)) {
switch (bi->getBuiltinInfo().ID) {
case BuiltinValueKind::FPTrunc:
if (auto *li = dyn_cast<LiteralInst>(bi->getArguments()[0])) {
return recursivelyAnalyzeOperand(li);
}
return false;
default:
return false;
}
}
return isa<IntegerLiteralInst>(inst) || isa<FloatLiteralInst>(inst)
|| isa<StringLiteralInst>(inst);
}
};
/// Check if the value of v is computed by means of a simple initialization.
/// Populate `forwardInstructions` with references to all the instructions
/// that participate in the use-def graph required to compute `V`. The
/// instructions will be in def-use topological order.
bool swift::analyzeStaticInitializer(
SILValue v, SmallVectorImpl<SILInstruction *> &forwardInstructions) {
return StaticInitializerAnalysis(forwardInstructions).analyze(v);
}
/// FIXME: This must be kept in sync with replaceLoadSequence()
/// below. What a horrible design.
bool swift::canReplaceLoadSequence(SILInstruction *inst) {
if (isa<CopyAddrInst>(inst))
return true;
if (isa<LoadInst>(inst))
return true;
if (auto *seai = dyn_cast<StructElementAddrInst>(inst)) {
for (auto seaiUse : seai->getUses()) {
if (!canReplaceLoadSequence(seaiUse->getUser()))
return false;
}
return true;
}
if (auto *teai = dyn_cast<TupleElementAddrInst>(inst)) {
for (auto teaiUse : teai->getUses()) {
if (!canReplaceLoadSequence(teaiUse->getUser()))
return false;
}
return true;
}
if (auto *ba = dyn_cast<BeginAccessInst>(inst)) {
for (auto use : ba->getUses()) {
if (!canReplaceLoadSequence(use->getUser()))
return false;
}
return true;
}
// Incidental uses of an address are meaningless with regard to the loaded
// value.
if (isIncidentalUse(inst) || isa<BeginUnpairedAccessInst>(inst))
return true;
return false;
}
/// Replace load sequence which may contain
/// a chain of struct_element_addr followed by a load.
/// The sequence is traversed inside out, i.e.
/// starting with the innermost struct_element_addr
/// Move into utils.
///
/// FIXME: this utility does not make sense as an API. How can the caller
/// guarantee that the only uses of `I` are struct_element_addr and
/// tuple_element_addr?
void swift::replaceLoadSequence(SILInstruction *inst, SILValue value) {
if (auto *cai = dyn_cast<CopyAddrInst>(inst)) {
SILBuilder builder(cai);
builder.createStore(cai->getLoc(), value, cai->getDest(),
StoreOwnershipQualifier::Unqualified);
return;
}
if (auto *li = dyn_cast<LoadInst>(inst)) {
li->replaceAllUsesWith(value);
return;
}
if (auto *seai = dyn_cast<StructElementAddrInst>(inst)) {
SILBuilder builder(seai);
auto *sei =
builder.createStructExtract(seai->getLoc(), value, seai->getField());
for (auto seaiUse : seai->getUses()) {
replaceLoadSequence(seaiUse->getUser(), sei);
}
return;
}
if (auto *teai = dyn_cast<TupleElementAddrInst>(inst)) {
SILBuilder builder(teai);
auto *tei =
builder.createTupleExtract(teai->getLoc(), value, teai->getFieldIndex());
for (auto teaiUse : teai->getUses()) {
replaceLoadSequence(teaiUse->getUser(), tei);
}
return;
}
if (auto *ba = dyn_cast<BeginAccessInst>(inst)) {
for (auto use : ba->getUses()) {
replaceLoadSequence(use->getUser(), value);
}
return;
}
// Incidental uses of an address are meaningless with regard to the loaded
// value.
if (isIncidentalUse(inst) || isa<BeginUnpairedAccessInst>(inst))
return;
llvm_unreachable("Unknown instruction sequence for reading from a global");
}
std::optional<FindLocalApplySitesResult>
swift::findLocalApplySites(FunctionRefBaseInst *fri) {
SmallVector<Operand *, 32> worklist(fri->use_begin(), fri->use_end());
std::optional<FindLocalApplySitesResult> f;
f.emplace();
// Optimistically state that we have no escapes before our def-use dataflow.
f->escapes = false;
while (!worklist.empty()) {
auto *op = worklist.pop_back_val();
auto *user = op->getUser();
// If we have a full apply site as our user.
if (auto apply = FullApplySite::isa(user)) {
if (apply.getCallee() == op->get()) {
f->fullApplySites.push_back(apply);
continue;
}
}
// If we have a partial apply as a user, start tracking it, but also look at
// its users.
if (auto *pai = dyn_cast<PartialApplyInst>(user)) {
if (pai->getCallee() == op->get()) {
// Track the partial apply that we saw so we can potentially eliminate
// dead closure arguments.
f->partialApplySites.push_back(pai);
// Look to see if we can find a full application of this partial apply
// as well.
llvm::copy(pai->getUses(), std::back_inserter(worklist));
continue;
}
}
// Otherwise, see if we have any function casts to look through...
switch (user->getKind()) {
case SILInstructionKind::ThinToThickFunctionInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
llvm::copy(cast<SingleValueInstruction>(user)->getUses(),
std::back_inserter(worklist));
continue;
// A partial_apply [stack] marks its captured arguments with
// mark_dependence.
case SILInstructionKind::MarkDependenceInst:
llvm::copy(cast<SingleValueInstruction>(user)->getUses(),
std::back_inserter(worklist));
continue;
// Look through any reference count instructions since these are not
// escapes:
case SILInstructionKind::CopyValueInst:
llvm::copy(cast<CopyValueInst>(user)->getUses(),
std::back_inserter(worklist));
continue;
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::DestroyValueInst:
// A partial_apply [stack] is deallocated with a dealloc_stack.
case SILInstructionKind::DeallocStackInst:
continue;
default:
break;
}
// But everything else is considered an escape.
f->escapes = true;
}
// If we did escape and didn't find any apply sites, then we have no
// information for our users that is interesting.
if (f->escapes && f->partialApplySites.empty() && f->fullApplySites.empty())
return std::nullopt;
return f;
}
/// Insert destroys of captured arguments of partial_apply [stack].
void swift::insertDestroyOfCapturedArguments(
PartialApplyInst *pai, SILBuilder &builder,
llvm::function_ref<SILValue(SILValue)> getValueToDestroy,
SILLocation origLoc) {
assert(pai->isOnStack());
ApplySite site(pai);
SILFunctionConventions calleeConv(site.getSubstCalleeType(),
pai->getModule());
auto loc = CleanupLocation(origLoc);
for (auto &arg : pai->getArgumentOperands()) {
SILValue argValue = getValueToDestroy(arg.get());
if (!argValue)
continue;
assert(!pai->getFunction()->hasOwnership()
|| (argValue->getOwnershipKind().isCompatibleWith(
OwnershipKind::Owned)));
unsigned calleeArgumentIndex = site.getCalleeArgIndex(arg);
assert(calleeArgumentIndex >= calleeConv.getSILArgIndexOfFirstParam());
auto paramInfo = calleeConv.getParamInfoForSILArg(calleeArgumentIndex);
releasePartialApplyCapturedArg(builder, loc, argValue, paramInfo);
}
}
void swift::insertDeallocOfCapturedArguments(
PartialApplyInst *pai,
DominanceInfo *domInfo,
llvm::function_ref<SILValue(SILValue)> getAddressToDealloc)
{
assert(pai->isOnStack());
ApplySite site(pai);
SILFunctionConventions calleeConv(site.getSubstCalleeType(),
pai->getModule());
for (auto &arg : pai->getArgumentOperands()) {
unsigned calleeArgumentIndex = site.getCalleeArgIndex(arg);
assert(calleeArgumentIndex >= calleeConv.getSILArgIndexOfFirstParam());
auto paramInfo = calleeConv.getParamInfoForSILArg(calleeArgumentIndex);
if (!paramInfo.isIndirectInGuaranteed())
continue;
SILValue argValue = getAddressToDealloc(arg.get());
if (!argValue) {
continue;
}
SmallVector<SILBasicBlock *, 4> boundary;
auto *asi = cast<AllocStackInst>(argValue);
computeDominatedBoundaryBlocks(asi->getParent(), domInfo, boundary);
SmallVector<Operand *, 2> uses;
auto useFinding = findTransitiveUsesForAddress(asi, &uses);
InstructionSet users(asi->getFunction());
if (useFinding != AddressUseKind::Unknown) {
for (auto use : uses) {
users.insert(use->getUser());
}
}
for (auto *block : boundary) {
auto *terminator = block->getTerminator();
if (isa<UnreachableInst>(terminator))
continue;
SILInstruction *insertionPoint = nullptr;
if (useFinding != AddressUseKind::Unknown) {
insertionPoint = &block->front();
for (auto &instruction : llvm::reverse(*block)) {
if (users.contains(&instruction)) {
insertionPoint = instruction.getNextInstruction();
break;
}
}
} else {
insertionPoint = terminator;
}
SILBuilderWithScope builder(insertionPoint);
builder.createDeallocStack(CleanupLocation(insertionPoint->getLoc()),
argValue);
}
}
}
AbstractFunctionDecl *swift::getBaseMethod(AbstractFunctionDecl *FD) {
while (FD->getOverriddenDecl()) {
FD = FD->getOverriddenDecl();
}
return FD;
}
FullApplySite
swift::cloneFullApplySiteReplacingCallee(FullApplySite applySite,
SILValue newCallee,
SILBuilderContext &builderCtx) {
SmallVector<SILValue, 16> arguments;
llvm::copy(applySite.getArguments(), std::back_inserter(arguments));
SILBuilderWithScope builder(applySite.getInstruction(), builderCtx);
switch (applySite.getKind()) {
case FullApplySiteKind::TryApplyInst: {
auto *tai = cast<TryApplyInst>(applySite.getInstruction());
return builder.createTryApply(tai->getLoc(), newCallee,
tai->getSubstitutionMap(), arguments,
tai->getNormalBB(), tai->getErrorBB(),
tai->getApplyOptions());
}
case FullApplySiteKind::ApplyInst: {
auto *ai = cast<ApplyInst>(applySite);
auto fTy = newCallee->getType().getAs<SILFunctionType>();
auto options = ai->getApplyOptions();
// The optimizer can generate a thin_to_thick_function from a throwing thin
// to a non-throwing thick function (in case it can prove that the function
// is not throwing).
// Therefore we have to check if the new callee (= the argument of the
// thin_to_thick_function) is a throwing function and set the not-throwing
// flag in this case.
if (fTy->hasErrorResult())
options |= ApplyFlags::DoesNotThrow;
return builder.createApply(applySite.getLoc(), newCallee,
applySite.getSubstitutionMap(), arguments,
options);
}
case FullApplySiteKind::BeginApplyInst: {
llvm_unreachable("begin_apply support not implemented?!");
}
}
llvm_unreachable("Unhandled case?!");
}
// FIXME: For any situation where this may be called on an unbounded number of
// uses, it should perform a single callback invocation to notify the client
// that newValue has new uses rather than a callback for every new use.
//
// FIXME: This should almost certainly replace end_lifetime uses rather than
// deleting them.
SILBasicBlock::iterator swift::replaceAllUses(SILValue oldValue,
SILValue newValue,
SILBasicBlock::iterator nextii,
InstModCallbacks &callbacks) {
assert(oldValue != newValue && "Cannot RAUW a value with itself");
while (!oldValue->use_empty()) {
Operand *use = *oldValue->use_begin();
SILInstruction *user = use->getUser();
// Erase the end of scope marker.
if (isEndOfScopeMarker(user)) {
if (&*nextii == user)
++nextii;
callbacks.deleteInst(user);
continue;
}
callbacks.setUseValue(use, newValue);
}
return nextii;
}
SILBasicBlock::iterator
swift::replaceAllUsesAndErase(SingleValueInstruction *svi, SILValue newValue,
InstModCallbacks &callbacks) {
SILBasicBlock::iterator nextii = replaceAllUses(
svi, newValue, std::next(svi->getIterator()), callbacks);
callbacks.deleteInst(svi);
return nextii;
}
SILBasicBlock::iterator
swift::replaceAllUsesAndErase(SILValue oldValue, SILValue newValue,
InstModCallbacks &callbacks) {
auto *blockArg = dyn_cast<SILPhiArgument>(oldValue);
if (!blockArg) {
// SingleValueInstruction SSA replacement.
return replaceAllUsesAndErase(cast<SingleValueInstruction>(oldValue),
newValue, callbacks);
}
llvm_unreachable("Untested");
#if 0 // FIXME: to be enabled in a following commit
TermInst *oldTerm = blockArg->getTerminatorForResult();
assert(oldTerm && "can only replace and erase terminators, not phis");
// Before:
// oldTerm bb1, bb2
// bb1(%oldValue):
// use %oldValue
// bb2:
//
// After:
// br bb1
// bb1:
// use %newValue
// bb2:
auto nextii = replaceAllUses(blockArg, newValue,
oldTerm->getParent()->end(), callbacks);
// Now that oldValue is replaced, the terminator should have no uses
// left. The caller should have removed uses from other results.
for (auto *succBB : oldTerm->getSuccessorBlocks()) {
assert(succBB->getNumArguments() == 1 && "expected terminator result");
succBB->eraseArgument(0);
}
auto *newBr = SILBuilderWithScope(oldTerm).createBranch(
oldTerm->getLoc(), blockArg->getParent());
callbacks.createdNewInst(newBr);
callbacks.deleteInst(oldTerm);
return nextii;
#endif
}
/// Given that we are going to replace use's underlying value, if the use is a
/// lifetime ending use, insert an end scope use for the underlying value
/// before we RAUW.
static void cleanupUseOldValueBeforeRAUW(Operand *use, SILBuilder &builder,
SILLocation loc,
InstModCallbacks &callbacks) {
if (!use->isLifetimeEnding()) {
return;
}
switch (use->get()->getOwnershipKind()) {
case OwnershipKind::Any:
llvm_unreachable("Invalid ownership for value");
case OwnershipKind::Owned: {
auto *dvi = builder.createDestroyValue(loc, use->get());
callbacks.createdNewInst(dvi);
return;
}
case OwnershipKind::Guaranteed: {
// Should only happen once we model destructures as true reborrows.
auto *ebi = builder.createEndBorrow(loc, use->get());
callbacks.createdNewInst(ebi);
return;
}
case OwnershipKind::None:
return;
case OwnershipKind::Unowned:
llvm_unreachable("Unowned object can never be consumed?!");
}
llvm_unreachable("Covered switch isn't covered");
}
SILBasicBlock::iterator swift::replaceSingleUse(Operand *use, SILValue newValue,
InstModCallbacks &callbacks) {
auto oldValue = use->get();
assert(oldValue != newValue && "Cannot RAUW a value with itself");
auto *user = use->getUser();
auto nextII = std::next(user->getIterator());
// If we have an end of scope marker, just return next. We are done.
if (isEndOfScopeMarker(user)) {
return nextII;
}
// Otherwise, first insert clean up our use's value if we need to and then set
// use to have a new value.
SILBuilderWithScope builder(user);
cleanupUseOldValueBeforeRAUW(use, builder, user->getLoc(), callbacks);
callbacks.setUseValue(use, newValue);
return nextII;
}
SILValue swift::makeCopiedValueAvailable(SILValue value, SILBasicBlock *inBlock) {
if (isa<SILUndef>(value))
return value;
if (!value->getFunction()->hasOwnership())
return value;
if (value->getOwnershipKind() == OwnershipKind::None)
return value;
auto insertPt = getInsertAfterPoint(value).value();
SILBuilderWithScope builder(insertPt);
auto *copy = builder.createCopyValue(
RegularLocation::getAutoGeneratedLocation(), value);
return makeValueAvailable(copy, inBlock);
}
SILValue swift::makeValueAvailable(SILValue value, SILBasicBlock *inBlock) {
if (isa<SILUndef>(value))
return value;
if (!value->getFunction()->hasOwnership())
return value;
if (value->getOwnershipKind() == OwnershipKind::None)
return value;
assert(value->getOwnershipKind() == OwnershipKind::Owned);
SmallVector<SILBasicBlock *, 4> userBBs;
for (auto use : value->getUses()) {
userBBs.push_back(use->getParentBlock());
}
userBBs.push_back(inBlock);
// Use \p jointPostDomComputer to:
// 1. Create a control equivalent copy at \p inBlock if needed
// 2. Insert destroy_value at leaking blocks
SILValue controlEqCopy;
findJointPostDominatingSet(
value->getParentBlock(), userBBs,
[&](SILBasicBlock *loopBlock) {
assert(loopBlock == inBlock);
auto front = loopBlock->begin();
SILBuilderWithScope newBuilder(front);
controlEqCopy = newBuilder.createCopyValue(
RegularLocation::getAutoGeneratedLocation(), value);
},
[&](SILBasicBlock *postDomBlock) {
// Insert a destroy_value in the leaking block
auto front = postDomBlock->begin();
SILBuilderWithScope newBuilder(front);
newBuilder.createDestroyValue(
RegularLocation::getAutoGeneratedLocation(), value);
});
return controlEqCopy ? controlEqCopy : value;
}
bool swift::tryEliminateOnlyOwnershipUsedForwardingInst(
SingleValueInstruction *forwardingInst, InstModCallbacks &callbacks) {
auto fwdOp = ForwardingOperation(forwardingInst);
if (!fwdOp) {
return false;
}
auto *singleFwdOp = fwdOp.getSingleForwardingOperand();
if (!singleFwdOp) {
return false;
}
SmallVector<Operand *, 32> worklist(getNonDebugUses(forwardingInst));
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
auto *user = use->getUser();
if (isa<EndBorrowInst>(user) || isa<DestroyValueInst>(user) ||
isa<RefCountingInst>(user))
continue;
if (isa<CopyValueInst>(user) || isa<BeginBorrowInst>(user)) {
for (auto result : user->getResults())
for (auto *resultUse : getNonDebugUses(result))
worklist.push_back(resultUse);
continue;
}
return false;
}
// Now that we know we can perform our transform, set all uses of
// forwardingInst to be used of its operand and then delete \p forwardingInst.
auto newValue = singleFwdOp->get();
while (!forwardingInst->use_empty()) {
auto *use = *(forwardingInst->use_begin());
use->set(newValue);
}
callbacks.deleteInst(forwardingInst);
return true;
}
// The consuming use blocks are assumed either not to inside a loop relative to
// \p value or they must have their own copies.
void swift::endLifetimeAtLeakingBlocks(SILValue value,
ArrayRef<SILBasicBlock *> uses) {
if (!value->getFunction()->hasOwnership())
return;
if (value->getOwnershipKind() != OwnershipKind::Owned)
return;
findJointPostDominatingSet(
value->getParentBlock(), uses, [&](SILBasicBlock *loopBlock) {},
[&](SILBasicBlock *postDomBlock) {
// Insert a destroy_value in the leaking block
auto front = postDomBlock->begin();
SILBuilderWithScope newBuilder(front);
newBuilder.createDestroyValue(
RegularLocation::getAutoGeneratedLocation(), value);
});
}
/// Create a new debug value from a store and a debug variable.
static void transferStoreDebugValue(DebugVarCarryingInst DefiningInst,
SILInstruction *SI,
SILValue original) {
auto VarInfo = DefiningInst.getVarInfo();
if (!VarInfo)
return;
// Fix the op_deref.
if (!isa<CopyAddrInst>(SI) && VarInfo->DIExpr.startsWithDeref())
VarInfo->DIExpr.eraseElement(VarInfo->DIExpr.element_begin());
else if (isa<CopyAddrInst>(SI) && !VarInfo->DIExpr.startsWithDeref())
VarInfo->DIExpr.prependElements({
SILDIExprElement::createOperator(SILDIExprOperator::Dereference)});
// Note: The instruction should logically be in the SI's scope.
// However, LLVM does not support variables and stores in different scopes,
// so we use the variable's scope.
SILBuilder(SI, DefiningInst->getDebugScope())
.createDebugValue(SI->getLoc(), original, *VarInfo);
}
void swift::salvageStoreDebugInfo(SILInstruction *SI,
SILValue SrcVal, SILValue DestVal) {
if (auto *ASI = dyn_cast_or_null<AllocStackInst>(
DestVal.getDefiningInstruction())) {
transferStoreDebugValue(ASI, SI, SrcVal);
for (Operand *U : getDebugUses(ASI))
transferStoreDebugValue(U->getUser(), SI, SrcVal);
}
}
// TODO: this currently fails to notify the pass with notifyNewInstruction.
//
// TODO: whenever a debug_value is inserted at a new location, check that no
// other debug_value instructions exist between the old and new location for
// the same variable.
void swift::salvageDebugInfo(SILInstruction *I) {
if (!I)
return;
if (auto *SI = dyn_cast<StoreInst>(I)) {
if (SILValue DestVal = SI->getDest())
salvageStoreDebugInfo(SI, SI->getSrc(), DestVal);
}
if (auto *SI = dyn_cast<StoreBorrowInst>(I)) {
if (SILValue DestVal = SI->getDest())
salvageStoreDebugInfo(SI, SI->getSrc(), DestVal);
for (Operand *U : getDebugUses(SI))
transferStoreDebugValue(U->getUser(), SI, SI->getSrc());
}
// If a `struct` SIL instruction is "unwrapped" and removed,
// for instance, in favor of using its enclosed value directly,
// we need to make sure any of its related `debug_value` instructions
// are preserved.
if (auto *STI = dyn_cast<StructInst>(I)) {
auto STVal = STI->getResult(0);
llvm::ArrayRef<VarDecl *> FieldDecls =
STI->getStructDecl()->getStoredProperties();
for (Operand *U : getDebugUses(STVal)) {
auto *DbgInst = cast<DebugValueInst>(U->getUser());
auto VarInfo = DbgInst->getVarInfo();
if (!VarInfo)
continue;
for (VarDecl *FD : FieldDecls) {
SILDebugVariable NewVarInfo = *VarInfo;
auto FieldVal = STI->getFieldValue(FD);
// Build the corresponding fragment DIExpression
auto FragDIExpr = SILDebugInfoExpression::createFragment(FD);
NewVarInfo.DIExpr.append(FragDIExpr);
if (!NewVarInfo.Type)
NewVarInfo.Type = STI->getType();
// Create a new debug_value
SILBuilder(STI, DbgInst->getDebugScope())
.createDebugValue(DbgInst->getLoc(), FieldVal, NewVarInfo);
}
}
}
// Similarly, if a `tuple` SIL instruction is "unwrapped" and removed,
// we need to make sure any of its related `debug_value` instructions
// are preserved.
if (auto *TTI = dyn_cast<TupleInst>(I)) {
auto TTVal = TTI->getResult(0);
for (Operand *U : getDebugUses(TTVal)) {
auto *DbgInst = cast<DebugValueInst>(U->getUser());
auto VarInfo = DbgInst->getVarInfo();
if (!VarInfo)
continue;
TupleType *TT = TTI->getTupleType();
for (auto i : indices(TT->getElements())) {
SILDebugVariable NewVarInfo = *VarInfo;
auto FragDIExpr = SILDebugInfoExpression::createTupleFragment(TT, i);
NewVarInfo.DIExpr.append(FragDIExpr);
if (!NewVarInfo.Type)
NewVarInfo.Type = TTI->getType();
// Create a new debug_value
SILBuilder(TTI, DbgInst->getDebugScope())
.createDebugValue(DbgInst->getLoc(), TTI->getElement(i), NewVarInfo);
}
}
}
if (auto *IA = dyn_cast<IndexAddrInst>(I)) {
if (IA->getBase() && IA->getIndex())
// Only handle cases where offset is constant.
if (const auto *LiteralInst =
dyn_cast<IntegerLiteralInst>(IA->getIndex())) {
SILValue Base = IA->getBase();
SILValue ResultAddr = IA->getResult(0);
APInt OffsetVal = LiteralInst->getValue();
const SILDIExprElement ExprElements[3] = {
SILDIExprElement::createOperator(OffsetVal.isNegative() ?
SILDIExprOperator::ConstSInt : SILDIExprOperator::ConstUInt),
SILDIExprElement::createConstInt(OffsetVal.getLimitedValue()),
SILDIExprElement::createOperator(SILDIExprOperator::Plus)
};
for (Operand *U : getDebugUses(ResultAddr)) {
auto *DbgInst = cast<DebugValueInst>(U->getUser());
auto VarInfo = DbgInst->getVarInfo();
if (!VarInfo)
continue;
VarInfo->DIExpr.prependElements(ExprElements);
// Create a new debug_value
SILBuilder(IA, DbgInst->getDebugScope())
.createDebugValue(DbgInst->getLoc(), Base, *VarInfo);
}
}
}
if (auto *IL = dyn_cast<IntegerLiteralInst>(I)) {
APInt value = IL->getValue();
const SILDIExprElement ExprElements[2] = {
SILDIExprElement::createOperator(value.isNegative() ?
SILDIExprOperator::ConstSInt : SILDIExprOperator::ConstUInt),
SILDIExprElement::createConstInt(value.getLimitedValue()),
};
for (Operand *U : getDebugUses(IL)) {
auto *DbgInst = cast<DebugValueInst>(U->getUser());
auto VarInfo = DbgInst->getVarInfo();
if (!VarInfo)
continue;
VarInfo->DIExpr.prependElements(ExprElements);
// Create a new debug_value, with undef, and the correct const int
SILBuilder(DbgInst, DbgInst->getDebugScope())
.createDebugValue(DbgInst->getLoc(), SILUndef::get(IL), *VarInfo);
}
}
}
void swift::salvageLoadDebugInfo(LoadOperation load) {
for (Operand *debugUse : getDebugUses(load.getLoadInst())) {
// Create a new debug_value rather than reusing the old one so the
// SILBuilder adds 'expr(deref)' to account for the indirection.
auto *debugInst = cast<DebugValueInst>(debugUse->getUser());
auto varInfo = debugInst->getVarInfo();
if (!varInfo)
continue;
// The new debug_value must be "hoisted" to the load to ensure that the
// address is still valid.
SILBuilder(load.getLoadInst(), debugInst->getDebugScope())
.createDebugValueAddr(debugInst->getLoc(), load.getOperand(),
varInfo.value());
}
}
// TODO: this currently fails to notify the pass with notifyNewInstruction.
void swift::createDebugFragments(SILValue oldValue, Projection proj,
SILValue newValue) {
if (proj.getKind() != ProjectionKind::Struct)
return;
for (auto *use : getDebugUses(oldValue)) {
auto debugVal = dyn_cast<DebugValueInst>(use->getUser());
if (!debugVal)
continue;
auto varInfo = debugVal->getVarInfo();
SILType baseType = oldValue->getType();
// Copy VarInfo and add the corresponding fragment DIExpression.
SILDebugVariable newVarInfo = *varInfo;
newVarInfo.DIExpr.append(
SILDebugInfoExpression::createFragment(proj.getVarDecl(baseType)));
if (!newVarInfo.Type)
newVarInfo.Type = baseType;
// Create a new debug_value
SILBuilder(debugVal, debugVal->getDebugScope())
.createDebugValue(debugVal->getLoc(), newValue, newVarInfo);
}
}
IntegerLiteralInst *swift::optimizeBuiltinCanBeObjCClass(BuiltinInst *bi,
SILBuilder &builder) {
assert(bi->getBuiltinInfo().ID == BuiltinValueKind::CanBeObjCClass);
assert(bi->hasSubstitutions() && "Expected substitutions for canBeClass");
auto const &subs = bi->getSubstitutions();
assert((subs.getReplacementTypes().size() == 1) &&
"Expected one substitution in call to canBeClass");
auto ty = subs.getReplacementTypes()[0]->getCanonicalType();
switch (ty->canBeClass()) {
case TypeTraitResult::IsNot:
return builder.createIntegerLiteral(bi->getLoc(), bi->getType(),
APInt(8, 0));
case TypeTraitResult::Is:
return builder.createIntegerLiteral(bi->getLoc(), bi->getType(),
APInt(8, 1));
case TypeTraitResult::CanBe:
return nullptr;
}
llvm_unreachable("Unhandled TypeTraitResult in switch.");
}
SILValue swift::createEmptyAndUndefValue(SILType ty,
SILInstruction *insertionPoint,
SILBuilderContext &ctx,
bool noUndef) {
auto *function = insertionPoint->getFunction();
if (auto tupleTy = ty.getAs<TupleType>()) {
SmallVector<SILValue, 4> elements;
for (unsigned idx : range(tupleTy->getNumElements())) {
SILType elementTy = ty.getTupleElementType(idx);
auto element = createEmptyAndUndefValue(elementTy, insertionPoint, ctx);
elements.push_back(element);
}
SILBuilderWithScope builder(insertionPoint, ctx);
return builder.createTuple(insertionPoint->getLoc(), ty, elements);
}
if (auto *decl = ty.getStructOrBoundGenericStruct()) {
TypeExpansionContext tec = *function;
auto &module = function->getModule();
if (decl->isResilient(tec.getContext()->getParentModule(),
tec.getResilienceExpansion())) {
llvm::errs() << "Attempting to create value for illegal empty type:\n";
ty.print(llvm::errs());
llvm::report_fatal_error("illegal empty type: resilient struct");
}
SmallVector<SILValue, 4> elements;
for (auto *field : decl->getStoredProperties()) {
auto elementTy = ty.getFieldType(field, module, tec);
auto element = createEmptyAndUndefValue(elementTy, insertionPoint, ctx);
elements.push_back(element);
}
SILBuilderWithScope builder(insertionPoint, ctx);
return builder.createStruct(insertionPoint->getLoc(), ty, elements);
}
assert(!noUndef);
return SILUndef::get(insertionPoint->getFunction(), ty);
}
bool swift::findUnreferenceableStorage(StructDecl *decl, SILType structType,
SILFunction *func) {
if (decl->hasUnreferenceableStorage()) {
return true;
}
// Check if any fields have unreferenceable stoage
for (auto *field : decl->getStoredProperties()) {
TypeExpansionContext tec = *func;
auto fieldTy = structType.getFieldType(field, func->getModule(), tec);
if (auto *fieldStructDecl = fieldTy.getStructOrBoundGenericStruct()) {
if (findUnreferenceableStorage(fieldStructDecl, fieldTy, func)) {
return true;
}
}
}
return false;
}
//===----------------------------------------------------------------------===//
// MARK: Find Initialization Value Of Temporary Alloc Stack
//===----------------------------------------------------------------------===//
namespace {
struct AddressWalkerState {
bool foundError = false;
InstructionSet writes;
AddressWalkerState(SILFunction *fn) : writes(fn) {}
};
} // namespace
static SILValue
findRootValueForNonTupleTempAllocation(AllocationInst *allocInst,
AddressWalkerState &state) {
// These are instructions which we are ok with looking through when
// identifying our allocation. It must always refer to the entire allocation.
auto isAlloc = [&](SILValue value) -> bool {
if (auto *ieai = dyn_cast<InitExistentialAddrInst>(value))
value = ieai->getOperand();
return value == SILValue(allocInst);
};
// Walk from our allocation to one of our writes. Then make sure that the
// write writes to our entire value.
for (auto &inst : allocInst->getParent()->getRangeStartingAtInst(allocInst)) {
// See if we have a full tuple value.
if (!state.writes.contains(&inst))
continue;
if (auto *copyAddr = dyn_cast<CopyAddrInst>(&inst)) {
if (isAlloc(copyAddr->getDest()) && copyAddr->isInitializationOfDest()) {
return copyAddr->getSrc();
}
}
if (auto *si = dyn_cast<StoreInst>(&inst)) {
if (isAlloc(si->getDest()) &&
si->getOwnershipQualifier() != StoreOwnershipQualifier::Assign) {
return si->getSrc();
}
}
if (auto *sbi = dyn_cast<StoreBorrowInst>(&inst)) {
if (isAlloc(sbi->getDest()))
return sbi->getSrc();
}
// If we do not identify the write... return SILValue(). We weren't able
// to understand the write.
break;
}
return SILValue();
}
static SILValue findRootValueForTupleTempAllocation(AllocationInst *allocInst,
AddressWalkerState &state) {
SmallVector<SILValue, 8> tupleValues;
for (unsigned i : range(allocInst->getType().getNumTupleElements())) {
(void)i;
tupleValues.push_back(nullptr);
}
unsigned numEltsLeft = tupleValues.size();
// If we have an empty tuple, just return SILValue() for now.
//
// TODO: What does this pattern look like out of SILGen?
if (!numEltsLeft)
return SILValue();
// Walk from our allocation to one of our writes. Then make sure that the
// write writes to our entire value.
DestructureTupleInst *foundDestructure = nullptr;
SILValue foundRootAddress;
for (auto &inst : allocInst->getParent()->getRangeStartingAtInst(allocInst)) {
if (!state.writes.contains(&inst))
continue;
if (auto *copyAddr = dyn_cast<CopyAddrInst>(&inst)) {
if (copyAddr->isInitializationOfDest()) {
if (auto *tei = dyn_cast<TupleElementAddrInst>(copyAddr->getDest())) {
if (tei->getOperand() == allocInst) {
unsigned i = tei->getFieldIndex();
if (auto *otherTei = dyn_cast_or_null<TupleElementAddrInst>(
copyAddr->getSrc()->getDefiningInstruction())) {
// If we already were processing destructures, then we have a mix
// of struct/destructures... we do not support that, so bail.
if (foundDestructure)
return SILValue();
// Otherwise, update our root address. If we already had a root
// address and it doesn't match our tuple_element_addr's operand,
// bail. There is some sort of mix/match of tuple addresses that
// we do not support. We are looking for a specific SILGen
// pattern.
if (!foundRootAddress) {
foundRootAddress = otherTei->getOperand();
} else if (foundRootAddress != otherTei->getOperand()) {
return SILValue();
}
if (i != otherTei->getFieldIndex())
return SILValue();
if (tupleValues[i])
return SILValue();
tupleValues[i] = otherTei;
// If we have completely covered the tuple, break.
--numEltsLeft;
if (!numEltsLeft)
break;
// Otherwise, continue so we keep processing.
continue;
}
}
}
}
}
if (auto *si = dyn_cast<StoreInst>(&inst)) {
if (si->getOwnershipQualifier() != StoreOwnershipQualifier::Assign) {
// Check if we are updating the entire tuple value.
if (si->getDest() == allocInst) {
// If we already found a root address (meaning we were processing
// tuple_elt_addr), bail. We have some sort of unhandled mix of
// copy_addr and store.
if (foundRootAddress)
return SILValue();
// If we already found a destructure, return SILValue(). We are
// initializing twice.
if (foundDestructure)
return SILValue();
// We are looking for a pattern where we construct a tuple from
// destructured parts.
if (auto *ti = dyn_cast<TupleInst>(si->getSrc())) {
for (auto p : llvm::enumerate(ti->getOperandValues())) {
SILValue value = lookThroughOwnershipInsts(p.value());
if (auto *dti = dyn_cast_or_null<DestructureTupleInst>(
value->getDefiningInstruction())) {
// We should always go through the same dti.
if (foundDestructure && foundDestructure != dti)
return SILValue();
if (!foundDestructure)
foundDestructure = dti;
// If we have a mixmatch of indices, we cannot look through.
if (p.index() != dti->getIndexOfResult(value))
return SILValue();
if (tupleValues[p.index()])
return SILValue();
tupleValues[p.index()] = value;
// If we have completely covered the tuple, break.
--numEltsLeft;
if (!numEltsLeft)
break;
}
}
// If we haven't completely covered the tuple, return SILValue(). We
// should completely cover the tuple.
if (numEltsLeft)
return SILValue();
// Otherwise, break since we are done.
break;
}
}
// If we store to a tuple_element_addr, update for a single value.
if (auto *tei = dyn_cast<TupleElementAddrInst>(si->getDest())) {
if (tei->getOperand() == allocInst) {
unsigned i = tei->getFieldIndex();
if (auto *dti = dyn_cast_or_null<DestructureTupleInst>(
si->getSrc()->getDefiningInstruction())) {
// If we already found a root address (meaning we were processing
// tuple_elt_addr), bail. We have some sort of unhandled mix of
// copy_addr and store [init].
if (foundRootAddress)
return SILValue();
if (!foundDestructure) {
foundDestructure = dti;
} else if (foundDestructure != dti) {
return SILValue();
}
if (i != dti->getIndexOfResult(si->getSrc()))
return SILValue();
if (tupleValues[i])
return SILValue();
tupleValues[i] = si->getSrc();
// If we have completely covered the tuple, break.
--numEltsLeft;
if (!numEltsLeft)
break;
// Otherwise, continue so we keep processing.
continue;
}
}
}
}
}
// Found a write that we did not understand... bail.
break;
}
// Now check if we have a complete tuple with all elements coming from the
// same destructure_tuple. In such a case, we can look through the
// destructure_tuple.
if (numEltsLeft)
return SILValue();
if (foundDestructure)
return foundDestructure->getOperand();
if (foundRootAddress)
return foundRootAddress;
return SILValue();
}
SILValue swift::getInitOfTemporaryAllocStack(AllocStackInst *asi) {
// If we are from a VarDecl, bail.
if (asi->isFromVarDecl())
return SILValue();
struct AddressWalker final : public TransitiveAddressWalker<AddressWalker> {
AddressWalkerState &state;
AddressWalker(AddressWalkerState &state) : state(state) {}
bool visitUse(Operand *use) {
if (use->getUser()->mayWriteToMemory())
state.writes.insert(use->getUser());
return true;
}
TransitiveUseVisitation visitTransitiveUseAsEndPointUse(Operand *use) {
if (isa<StoreBorrowInst>(use->getUser()))
return TransitiveUseVisitation::OnlyUser;
return TransitiveUseVisitation::OnlyUses;
}
void onError(Operand *use) { state.foundError = true; }
};
AddressWalkerState state(asi->getFunction());
AddressWalker walker(state);
if (std::move(walker).walk(asi) == AddressUseKind::Unknown ||
state.foundError)
return SILValue();
if (asi->getType().is<TupleType>())
return findRootValueForTupleTempAllocation(asi, state);
return findRootValueForNonTupleTempAllocation(asi, state);
}
SILType getTypeOfLoadOfArrayOperandStorage(SILValue val) {
// The projection should look something like this:
// %29 = struct_element_addr %28 : $*Array<UInt8>, #Array._buffer
// %30 = struct_element_addr %29 : $*_ArrayBuffer<UInt8>, #_ArrayBuffer._storage
// %31 = struct_element_addr %30 : $*_BridgeStorage<__ContiguousArrayStorageBase>, #_BridgeStorage.rawValue
// %32 = load %31 : $*Builtin.BridgeObject
// We can strip casts and init_existential_ref leading to a load.
if (auto initExistRef = dyn_cast<InitExistentialRefInst>(val))
val = initExistRef->getOperand();
auto ld = dyn_cast<LoadInst>(stripCasts(val));
if (!ld)
return SILType();
auto opd = ld->getOperand();
auto opdTy = opd->getType();
if (opdTy.getObjectType() !=
SILType::getBridgeObjectType(opdTy.getASTContext()))
return SILType();
auto bridgedStoragePrj = dyn_cast<StructElementAddrInst>(opd);
if (!bridgedStoragePrj)
return SILType();
auto arrayBufferStoragePrj =
dyn_cast<StructElementAddrInst>(bridgedStoragePrj->getOperand());
if (!arrayBufferStoragePrj)
return SILType();
// If successfull return _ArrayBuffer<UInt8>.
return arrayBufferStoragePrj->getOperand()->getType().getObjectType();
}
static bool isBoxTypeWithoutSideEffectsOnRelease(SILFunction *f,
DestructorAnalysis *DA,
SILType ty) {
auto silBoxedTy = ty.getSILBoxFieldType(f);
if (silBoxedTy && !DA->mayStoreToMemoryOnDestruction(silBoxedTy))
return true;
return false;
}
static bool isReleaseOfClosureWithoutSideffects(SILFunction *f,
DestructorAnalysis *DA,
SILValue opd) {
auto fnTy = dyn_cast<SILFunctionType>(opd->getType().getASTType());
if (!fnTy)
return false;
if (fnTy->isNoEscape() &&
fnTy->getRepresentation() == SILFunctionType::Representation::Thick)
return true;
auto pa = dyn_cast<PartialApplyInst>(lookThroughOwnershipInsts(opd));
if (!pa)
return false;
// Check that all captured argument types are "trivial".
for (auto &opd: pa->getArgumentOperands()) {
auto OpdTy = opd.get()->getType().getObjectType();
if (!DA->mayStoreToMemoryOnDestruction(OpdTy))
continue;
if (isBoxTypeWithoutSideEffectsOnRelease(f, DA, OpdTy))
continue;
return false;
}
return true;
}
bool swift::isDestructorSideEffectFree(SILInstruction *mayRelease,
DestructorAnalysis *DA) {
switch (mayRelease->getKind()) {
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::ReleaseValueInst: {
auto opd = mayRelease->getOperand(0);
auto opdTy = opd->getType();
if (!DA->mayStoreToMemoryOnDestruction(opdTy))
return true;
auto arrayTy = getTypeOfLoadOfArrayOperandStorage(opd);
if (arrayTy && !DA->mayStoreToMemoryOnDestruction(arrayTy))
return true;
if (isReleaseOfClosureWithoutSideffects(mayRelease->getFunction(), DA, opd))
return true;
if (isBoxTypeWithoutSideEffectsOnRelease(mayRelease->getFunction(), DA,
opdTy))
return true;
return false;
}
case SILInstructionKind::BuiltinInst: {
auto *builtin = cast<BuiltinInst>(mayRelease);
switch (builtin->getBuiltinInfo().ID) {
case BuiltinValueKind::CopyArray:
case BuiltinValueKind::TakeArrayNoAlias:
case BuiltinValueKind::TakeArrayFrontToBack:
case BuiltinValueKind::TakeArrayBackToFront:
return true; // nothing is released, harmless regardless of type
case BuiltinValueKind::AssignCopyArrayNoAlias:
case BuiltinValueKind::AssignCopyArrayFrontToBack:
case BuiltinValueKind::AssignCopyArrayBackToFront:
case BuiltinValueKind::AssignTakeArray:
case BuiltinValueKind::DestroyArray: {
SubstitutionMap substitutions = builtin->getSubstitutions();
auto eltTy = substitutions.getReplacementTypes()[0];
return !DA->mayStoreToMemoryOnDestruction(
builtin->getFunction()->getLoweredType(eltTy));
// Only harmless if the array element type destruction is harmless.
}
default:
break;
}
return false;
}
// Unhandled instruction.
default:
return false;
}
return false;
}