Files
swift-mirror/lib/ClangImporter/ImportDecl.cpp
Jordan Rose e1f46b5a26 [ClangImporter] Handle subscript getters redeclared in subclasses (#13470)
Objective-C subscripts don't have special declarations like
properties; they're just specially-named methods (or method pairs),
and we have to make an independent SubscriptDecl in Swift. This means
that when a subclass wants to make a subscript settable, they just add
the appropriately-named setter method.

Swift handled this by detecting when the getter and setter weren't
declared in the same type, and assuming this meant it was a subclass
adding a setter. Unfortunately, the same condition /also/ picked up
the case where the getter (and only the getter) is /redeclared/ in a
subclass (perhaps to add an attribute), and the new subscript was
getting added to the base class instead of the subclass.

The fix relies on the fact that the original decl we provide is what
we use to look up the other accessor. If the getter and setter are in
different types, whichever one we started with must be the
more-derived one. So the final change is just "did we start with the
setter?" rather than "is there a setter at all?".

I'm not sure why this is only just now causing problems, given that we
seem to have been getting this wrong for years, but it definitely
/was/ wrong and now it's not.

rdar://problem/36033356
2017-12-18 11:01:34 -08:00

8368 lines
317 KiB
C++

//===--- ImportDecl.cpp - Import Clang Declarations -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for importing Clang declarations into Swift.
//
//===----------------------------------------------------------------------===//
#include "CFTypeInfo.h"
#include "ImporterImpl.h"
#include "swift/Strings.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/GenericSignatureBuilder.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/PrettyStackTrace.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Parse/Lexer.h"
#include "swift/Config.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/Basic/CharInfo.h"
#include "swift/Basic/Statistic.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Lookup.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#define DEBUG_TYPE "Clang module importer"
STATISTIC(NumTotalImportedEntities, "# of imported clang entities");
STATISTIC(NumFactoryMethodsAsInitializers,
"# of factory methods mapped to initializers");
using namespace swift;
using namespace importer;
namespace swift {
namespace inferred_attributes {
enum {
requires_stored_property_inits = 0x01
};
} // end namespace inferred_attributes
} // end namespace swift
namespace {
enum class MakeStructRawValuedFlags {
/// whether to also create an unlabeled init
MakeUnlabeledValueInit = 0x01,
/// whether the raw value should be a let
IsLet = 0x02,
/// whether to mark the rawValue as implicit
IsImplicit = 0x04,
};
using MakeStructRawValuedOptions = OptionSet<MakeStructRawValuedFlags>;
} // end anonymous namespace
static MakeStructRawValuedOptions
getDefaultMakeStructRawValuedOptions() {
MakeStructRawValuedOptions opts;
opts -= MakeStructRawValuedFlags::MakeUnlabeledValueInit; // default off
opts |= MakeStructRawValuedFlags::IsLet; // default on
opts |= MakeStructRawValuedFlags::IsImplicit; // default on
return opts;
}
static bool isInSystemModule(DeclContext *D) {
return cast<ClangModuleUnit>(D->getModuleScopeContext())->isSystemModule();
}
static AccessLevel getOverridableAccessLevel(DeclContext *dc) {
return (dc->getAsProtocolOrProtocolExtensionContext()
? AccessLevel::Public : AccessLevel::Open);
}
/// Create a typedpattern(namedpattern(decl))
static Pattern *createTypedNamedPattern(VarDecl *decl) {
ASTContext &Ctx = decl->getASTContext();
Type ty = decl->getType();
Pattern *P = new (Ctx) NamedPattern(decl);
P->setType(ty);
P->setImplicit();
P = new (Ctx) TypedPattern(P, TypeLoc::withoutLoc(ty));
P->setType(ty);
P->setImplicit();
return P;
}
/// Create a var member for this struct, along with its pattern binding, and add
/// it as a member
static std::pair<VarDecl *, PatternBindingDecl *>
createVarWithPattern(ASTContext &ctx, DeclContext *dc, Identifier name, Type ty,
VarDecl::Specifier specifier, bool isImplicit,
AccessLevel access,
AccessLevel setterAccess) {
// Create a variable to store the underlying value.
auto var = new (ctx) VarDecl(
/*IsStatic*/false,
specifier,
/*IsCaptureList*/false,
SourceLoc(), name, dc->mapTypeIntoContext(ty), dc);
if (isImplicit)
var->setImplicit();
var->setInterfaceType(ty);
var->setValidationStarted();
var->setAccess(access);
var->setSetterAccess(setterAccess);
// Create a pattern binding to describe the variable.
Pattern *varPattern = createTypedNamedPattern(var);
auto patternBinding =
PatternBindingDecl::create(ctx, SourceLoc(), StaticSpellingKind::None,
SourceLoc(), varPattern, nullptr, dc);
return {var, patternBinding};
}
#ifndef NDEBUG
static bool verifyNameMapping(MappedTypeNameKind NameMapping,
StringRef left, StringRef right) {
return NameMapping == MappedTypeNameKind::DoNothing || left != right;
}
#endif
/// \brief Map a well-known C type to a swift type from the standard library.
///
/// \param IsError set to true when we know the corresponding swift type name,
/// but we could not find it. (For example, the type was not defined in the
/// standard library or the required standard library module was not imported.)
/// This should be a hard error, we don't want to map the type only sometimes.
///
/// \returns A pair of a swift type and its name that corresponds to a given
/// C type.
static std::pair<Type, StringRef>
getSwiftStdlibType(const clang::TypedefNameDecl *D,
Identifier Name,
ClangImporter::Implementation &Impl,
bool *IsError, MappedTypeNameKind &NameMapping) {
*IsError = false;
MappedCTypeKind CTypeKind;
unsigned Bitwidth;
StringRef SwiftModuleName;
bool IsSwiftModule; // True if SwiftModuleName == STDLIB_NAME.
StringRef SwiftTypeName;
bool CanBeMissing;
do {
#define MAP_TYPE(C_TYPE_NAME, C_TYPE_KIND, C_TYPE_BITWIDTH, \
SWIFT_MODULE_NAME, SWIFT_TYPE_NAME, \
CAN_BE_MISSING, C_NAME_MAPPING) \
if (Name.str() == C_TYPE_NAME) { \
CTypeKind = MappedCTypeKind::C_TYPE_KIND; \
Bitwidth = C_TYPE_BITWIDTH; \
if (StringRef(SWIFT_MODULE_NAME) == StringRef(STDLIB_NAME)) \
IsSwiftModule = true; \
else { \
IsSwiftModule = false; \
SwiftModuleName = SWIFT_MODULE_NAME; \
} \
SwiftTypeName = SWIFT_TYPE_NAME; \
CanBeMissing = CAN_BE_MISSING; \
NameMapping = MappedTypeNameKind::C_NAME_MAPPING; \
assert(verifyNameMapping(MappedTypeNameKind::C_NAME_MAPPING, \
C_TYPE_NAME, SWIFT_TYPE_NAME) && \
"MappedTypes.def: Identical names must use DoNothing"); \
break; \
}
#include "MappedTypes.def"
// We did not find this type, thus it is not mapped.
return std::make_pair(Type(), "");
} while (0);
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
auto ClangType = D->getUnderlyingType();
// If the C type does not have the expected size, don't import it as a stdlib
// type.
unsigned ClangTypeSize = ClangCtx.getTypeSize(ClangType);
if (Bitwidth != 0 && Bitwidth != ClangTypeSize)
return std::make_pair(Type(), "");
// Check other expected properties of the C type.
switch(CTypeKind) {
case MappedCTypeKind::UnsignedInt:
if (!ClangType->isUnsignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::SignedInt:
if (!ClangType->isSignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::UnsignedWord:
if (ClangTypeSize != 64 && ClangTypeSize != 32)
return std::make_pair(Type(), "");
if (!ClangType->isUnsignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::SignedWord:
if (ClangTypeSize != 64 && ClangTypeSize != 32)
return std::make_pair(Type(), "");
if (!ClangType->isSignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEsingle:
case MappedCTypeKind::FloatIEEEdouble:
case MappedCTypeKind::FloatX87DoubleExtended: {
if (!ClangType->isFloatingType())
return std::make_pair(Type(), "");
const llvm::fltSemantics &Sem = ClangCtx.getFloatTypeSemantics(ClangType);
switch(CTypeKind) {
case MappedCTypeKind::FloatIEEEsingle:
assert(Bitwidth == 32 && "FloatIEEEsingle should be 32 bits wide");
if (&Sem != &APFloat::IEEEsingle())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEdouble:
assert(Bitwidth == 64 && "FloatIEEEdouble should be 64 bits wide");
if (&Sem != &APFloat::IEEEdouble())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatX87DoubleExtended:
assert(Bitwidth == 80 && "FloatX87DoubleExtended should be 80 bits wide");
if (&Sem != &APFloat::x87DoubleExtended())
return std::make_pair(Type(), "");
break;
default:
llvm_unreachable("should see only floating point types here");
}
}
break;
case MappedCTypeKind::VaList:
if (ClangTypeSize != ClangCtx.getTypeSize(ClangCtx.VoidPtrTy))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCBool:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.ObjCBuiltinBoolTy) &&
!(ClangCtx.getBOOLDecl() &&
ClangCtx.hasSameType(ClangType, ClangCtx.getBOOLType())))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCSel:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCSelType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCSelRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCId:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCIdType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCIdRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCClass:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCClassType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCClassRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::CGFloat:
if (!ClangType->isFloatingType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::Block:
if (!ClangType->isBlockPointerType())
return std::make_pair(Type(), "");
break;
}
ModuleDecl *M;
if (IsSwiftModule)
M = Impl.getStdlibModule();
else
M = Impl.getNamedModule(SwiftModuleName);
if (!M) {
// User did not import the library module that contains the type we want to
// substitute.
*IsError = true;
return std::make_pair(Type(), "");
}
Type SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
if (!SwiftType && !CanBeMissing) {
// The required type is not defined in the standard library.
*IsError = true;
return std::make_pair(Type(), "");
}
return std::make_pair(SwiftType, SwiftTypeName);
}
static bool isNSDictionaryMethod(const clang::ObjCMethodDecl *MD,
clang::Selector cmd) {
if (MD->getSelector() != cmd)
return false;
if (isa<clang::ObjCProtocolDecl>(MD->getDeclContext()))
return false;
if (MD->getClassInterface()->getName() != "NSDictionary")
return false;
return true;
}
void ClangImporter::Implementation::forEachDistinctName(
const clang::NamedDecl *decl,
llvm::function_ref<bool(ImportedName, ImportNameVersion)> action) {
using ImportNameKey = std::pair<DeclName, EffectiveClangContext>;
SmallVector<ImportNameKey, 8> seenNames;
ImportedName newName = importFullName(decl, CurrentVersion);
ImportNameKey key(newName, newName.getEffectiveContext());
if (action(newName, CurrentVersion))
seenNames.push_back(key);
CurrentVersion.forEachOtherImportNameVersion(
[&](ImportNameVersion nameVersion) {
// Check to see if the name is different.
ImportedName newName = importFullName(decl, nameVersion);
ImportNameKey key(newName, newName.getEffectiveContext());
bool seen = llvm::any_of(seenNames,
[&key](const ImportNameKey &existing) -> bool {
if (key.first != existing.first)
return false;
return key.second.equalsWithoutResolving(existing.second);
});
if (seen)
return;
if (action(newName, nameVersion))
seenNames.push_back(key);
});
}
// Build the init(rawValue:) initializer for an imported NS_ENUM.
// enum NSSomeEnum: RawType {
// init?(rawValue: RawType) {
// self = Builtin.reinterpretCast(rawValue)
// }
// }
// Unlike a standard init(rawValue:) enum initializer, this does a reinterpret
// cast in order to preserve unknown or future cases from C.
static ConstructorDecl *
makeEnumRawValueConstructor(ClangImporter::Implementation &Impl,
EnumDecl *enumDecl) {
ASTContext &C = Impl.SwiftContext;
auto rawTy = enumDecl->getRawType();
auto enumTy = enumDecl->getDeclaredInterfaceType();
auto metaTy = MetatypeType::get(enumTy);
auto selfDecl = ParamDecl::createSelf(SourceLoc(), enumDecl,
/*static*/false, /*inout*/true);
auto param = new (C) ParamDecl(VarDecl::Specifier::Owned, SourceLoc(),
SourceLoc(), C.Id_rawValue,
SourceLoc(), C.Id_rawValue,
rawTy,
enumDecl);
param->setInterfaceType(enumDecl->getRawType());
param->setValidationStarted();
auto paramPL = ParameterList::createWithoutLoc(param);
DeclName name(C, C.Id_init, paramPL);
auto *ctorDecl =
new (C) ConstructorDecl(name, enumDecl->getLoc(),
OTK_Optional, /*FailabilityLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
selfDecl, paramPL,
/*GenericParams=*/nullptr, enumDecl);
ctorDecl->setImplicit();
ctorDecl->setAccess(AccessLevel::Public);
auto optEnumTy = OptionalType::get(enumTy);
auto fnTy = FunctionType::get(paramPL->getType(C), optEnumTy);
auto allocFnTy = FunctionType::get(metaTy, fnTy);
auto initFnTy = FunctionType::get(enumTy, fnTy);
ctorDecl->setInterfaceType(allocFnTy);
ctorDecl->setInitializerInterfaceType(initFnTy);
ctorDecl->setValidationStarted();
// Don't bother synthesizing the body if we've already finished type-checking.
if (Impl.hasFinishedTypeChecking())
return ctorDecl;
auto selfRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/true);
selfRef->setType(LValueType::get(selfDecl->getType()->getInOutObjectType()));
selfRef->propagateLValueAccessKind(AccessKind::Write);
auto paramRef = new (C) DeclRefExpr(param, DeclNameLoc(),
/*implicit*/ true);
paramRef->setType(param->getType());
auto reinterpretCast
= getBuiltinValueDecl(C, C.getIdentifier("reinterpretCast"));
ConcreteDeclRef concreteDeclRef(C, reinterpretCast,
{ Substitution(rawTy, {}),
Substitution(enumTy, {}) });
auto reinterpretCastRef
= new (C) DeclRefExpr(concreteDeclRef, DeclNameLoc(), /*implicit*/ true);
reinterpretCastRef->setType(FunctionType::get({rawTy}, enumTy));
auto reinterpreted = CallExpr::createImplicit(C, reinterpretCastRef,
{ paramRef }, { Identifier() });
reinterpreted->setType(enumTy);
auto assign = new (C) AssignExpr(selfRef, SourceLoc(), reinterpreted,
/*implicit*/ true);
assign->setType(TupleType::getEmpty(C));
auto result = TupleExpr::createEmpty(C, SourceLoc(), SourceLoc(),
/*Implicit=*/true);
auto ret = new (C) ReturnStmt(SourceLoc(), result, /*Implicit=*/true);
auto body = BraceStmt::create(C, SourceLoc(), {assign, ret}, SourceLoc(),
/*implicit*/ true);
ctorDecl->setBody(body);
ctorDecl->setBodyTypeCheckedIfPresent();
C.addExternalDecl(ctorDecl);
return ctorDecl;
}
// Build the rawValue getter for an imported NS_ENUM.
// enum NSSomeEnum: RawType {
// var rawValue: RawType {
// return Builtin.reinterpretCast(self)
// }
// }
// Unlike a standard init(rawValue:) enum initializer, this does a reinterpret
// cast in order to preserve unknown or future cases from C.
static FuncDecl *makeEnumRawValueGetter(ClangImporter::Implementation &Impl,
EnumDecl *enumDecl,
VarDecl *rawValueDecl) {
ASTContext &C = Impl.SwiftContext;
auto rawTy = enumDecl->getRawType();
auto enumTy = enumDecl->getDeclaredType();
auto selfDecl = ParamDecl::createSelf(SourceLoc(), enumDecl);
ParameterList *params[] = {
ParameterList::createWithoutLoc(selfDecl),
ParameterList::createEmpty(C)
};
auto getterDecl =
FuncDecl::create(C, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/SourceLoc(), DeclName(), /*NameLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, params,
TypeLoc::withoutLoc(rawTy), enumDecl);
getterDecl->setImplicit();
auto type = ParameterList::getFullInterfaceType(rawTy, params, C);
getterDecl->setInterfaceType(type);
getterDecl->setValidationStarted();
getterDecl->setAccess(AccessLevel::Public);
rawValueDecl->makeComputed(SourceLoc(), getterDecl, nullptr, nullptr,
SourceLoc());
// Don't bother synthesizing the body if we've already finished type-checking.
if (Impl.hasFinishedTypeChecking())
return getterDecl;
auto selfRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/true);
selfRef->setType(selfDecl->getType());
auto reinterpretCast
= getBuiltinValueDecl(C, C.getIdentifier("reinterpretCast"));
ConcreteDeclRef concreteDeclRef(C, reinterpretCast,
{ Substitution(enumTy, {}),
Substitution(rawTy, {}) });
auto reinterpretCastRef
= new (C) DeclRefExpr(concreteDeclRef, DeclNameLoc(), /*implicit*/ true);
reinterpretCastRef->setType(FunctionType::get({enumTy}, rawTy));
auto reinterpreted = CallExpr::createImplicit(C, reinterpretCastRef,
{ selfRef }, { Identifier() });
reinterpreted->setType(rawTy);
auto ret = new (C) ReturnStmt(SourceLoc(), reinterpreted);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(ret), SourceLoc(),
/*implicit*/ true);
getterDecl->setBody(body);
getterDecl->setBodyTypeCheckedIfPresent();
C.addExternalDecl(getterDecl);
return getterDecl;
}
// Build the rawValue getter for a struct type.
//
// struct SomeType: RawRepresentable {
// private var _rawValue: ObjCType
// var rawValue: SwiftType {
// return _rawValue as SwiftType
// }
// }
static FuncDecl *makeStructRawValueGetter(
ClangImporter::Implementation &Impl,
StructDecl *structDecl,
VarDecl *computedVar,
VarDecl *storedVar) {
assert(storedVar->hasStorage());
ASTContext &C = Impl.SwiftContext;
auto selfDecl = ParamDecl::createSelf(SourceLoc(), structDecl);
ParameterList *params[] = {
ParameterList::createWithoutLoc(selfDecl),
ParameterList::createEmpty(C)
};
auto computedType = computedVar->getInterfaceType();
auto storedType = storedVar->getInterfaceType();
auto getterDecl =
FuncDecl::create(C, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/SourceLoc(), DeclName(), /*NameLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr,
params,
TypeLoc::withoutLoc(computedType), structDecl);
getterDecl->setImplicit();
auto type = ParameterList::getFullInterfaceType(computedType, params, C);
getterDecl->setInterfaceType(type);
getterDecl->setValidationStarted();
getterDecl->setAccess(AccessLevel::Public);
// Don't bother synthesizing the body if we've already finished type-checking.
if (Impl.hasFinishedTypeChecking())
return getterDecl;
auto selfRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/true);
selfRef->setType(selfDecl->getType());
auto storedRef = new (C) MemberRefExpr(selfRef, SourceLoc(), storedVar,
DeclNameLoc(), /*Implicit=*/true,
AccessSemantics::DirectToStorage);
storedRef->setType(storedType);
Expr *result = storedRef;
if (!computedType->isEqual(storedType)) {
auto bridge = new (C) BridgeFromObjCExpr(storedRef, computedType);
bridge->setType(computedType);
auto coerce = new (C) CoerceExpr(bridge, {}, {nullptr, computedType});
coerce->setType(computedType);
result = coerce;
}
auto ret = new (C) ReturnStmt(SourceLoc(), result);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(ret), SourceLoc(),
/*implicit*/ true);
getterDecl->setBody(body);
getterDecl->setBodyTypeCheckedIfPresent();
C.addExternalDecl(getterDecl);
return getterDecl;
}
static FuncDecl *makeFieldGetterDecl(ClangImporter::Implementation &Impl,
StructDecl *importedDecl,
VarDecl *importedFieldDecl,
ClangNode clangNode = ClangNode()) {
auto &C = Impl.SwiftContext;
auto selfDecl = ParamDecl::createSelf(SourceLoc(), importedDecl);
ParameterList *params[] = {
ParameterList::createWithoutLoc(selfDecl),
ParameterList::createEmpty(C)
};
auto getterType = importedFieldDecl->getType();
auto getterDecl =
FuncDecl::create(C, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/importedFieldDecl->getLoc(),
DeclName(), /*NameLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, params,
TypeLoc::withoutLoc(getterType), importedDecl, clangNode);
getterDecl->setAccess(AccessLevel::Public);
auto type = ParameterList::getFullInterfaceType(getterType, params, C);
getterDecl->setInterfaceType(type);
getterDecl->setValidationStarted();
return getterDecl;
}
static FuncDecl *makeFieldSetterDecl(ClangImporter::Implementation &Impl,
StructDecl *importedDecl,
VarDecl *importedFieldDecl,
ClangNode clangNode = ClangNode()) {
auto &C = Impl.SwiftContext;
auto selfDecl = ParamDecl::createSelf(SourceLoc(), importedDecl,
/*isStatic*/false, /*isInOut*/true);
auto newValueDecl = new (C) ParamDecl(VarDecl::Specifier::Owned,
SourceLoc(), SourceLoc(),
Identifier(), SourceLoc(), C.Id_value,
importedFieldDecl->getType(),
importedDecl);
newValueDecl->setInterfaceType(importedFieldDecl->getInterfaceType());
ParameterList *params[] = {
ParameterList::createWithoutLoc(selfDecl),
ParameterList::createWithoutLoc(newValueDecl),
};
auto voidTy = TupleType::getEmpty(C);
auto setterDecl =
FuncDecl::create(C, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/SourceLoc(), DeclName(), /*NameLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, params,
TypeLoc::withoutLoc(voidTy), importedDecl, clangNode);
auto type = ParameterList::getFullInterfaceType(voidTy, params, C);
setterDecl->setInterfaceType(type);
setterDecl->setValidationStarted();
setterDecl->setAccess(AccessLevel::Public);
setterDecl->setSelfAccessKind(SelfAccessKind::Mutating);
return setterDecl;
}
/// Build the indirect field getter and setter.
///
/// \code
/// struct SomeImportedIndirectField {
/// struct __Unnamed_struct___Anonymous_field_1 {
/// var myField : Int
/// }
/// var __Anonymous_field_1 : __Unnamed_struct___Anonymous_field_1
/// var myField : Int {
/// get {
/// __Anonymous_field_1.myField
/// }
/// set(newValue) {
/// __Anonymous_field_1.myField = newValue
/// }
/// }
/// }
/// \endcode
///
/// \returns a pair of getter and setter function decls.
static std::pair<FuncDecl *, FuncDecl *>
makeIndirectFieldAccessors(ClangImporter::Implementation &Impl,
const clang::IndirectFieldDecl *indirectField,
ArrayRef<VarDecl *> members,
StructDecl *importedStructDecl,
VarDecl *importedFieldDecl) {
auto &C = Impl.SwiftContext;
auto getterDecl = makeFieldGetterDecl(Impl,
importedStructDecl,
importedFieldDecl);
auto setterDecl = makeFieldSetterDecl(Impl,
importedStructDecl,
importedFieldDecl);
importedFieldDecl->makeComputed(SourceLoc(), getterDecl, setterDecl, nullptr,
SourceLoc());
auto containingField = indirectField->chain().front();
VarDecl *anonymousFieldDecl = nullptr;
// Reverse scan of the members because indirect field are generated just
// after the corresponding anonymous type, so a reverse scan allows
// switching from O(n) to O(1) here.
for (auto decl : reverse(members)) {
if (decl->getClangDecl() == containingField) {
anonymousFieldDecl = cast<VarDecl>(decl);
break;
}
}
assert (anonymousFieldDecl && "anonymous field not generated");
auto anonymousFieldType = anonymousFieldDecl->getInterfaceType();
auto anonymousFieldTypeDecl = anonymousFieldType->getStructOrBoundGenericStruct();
VarDecl *anonymousInnerFieldDecl = nullptr;
for (auto decl : anonymousFieldTypeDecl->lookupDirect(importedFieldDecl->getName())) {
if (isa<VarDecl>(decl)) {
anonymousInnerFieldDecl = cast<VarDecl>(decl);
break;
}
}
assert (anonymousInnerFieldDecl && "cannot find field in anonymous generated structure");
// Don't bother synthesizing the body if we've already finished type-checking.
if (Impl.hasFinishedTypeChecking())
return { getterDecl, setterDecl };
// Synthesize the getter body
{
auto selfDecl = getterDecl->getImplicitSelfDecl();
Expr *expr = new (C) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/true);
expr = new (C) MemberRefExpr(expr, SourceLoc(), anonymousFieldDecl,
DeclNameLoc(), /*implicit*/true);
expr = new (C) MemberRefExpr(expr, SourceLoc(), anonymousInnerFieldDecl,
DeclNameLoc(), /*implicit*/true);
auto ret = new (C) ReturnStmt(SourceLoc(), expr);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(ret), SourceLoc(),
/*implicit*/ true);
getterDecl->setBody(body);
getterDecl->getAttrs().add(new (C) TransparentAttr(/*implicit*/ true));
C.addExternalDecl(getterDecl);
}
// Synthesize the setter body
{
auto selfDecl = setterDecl->getImplicitSelfDecl();
Expr *lhs = new (C) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/true);
lhs = new (C) MemberRefExpr(lhs, SourceLoc(), anonymousFieldDecl,
DeclNameLoc(), /*implicit*/true);
lhs = new (C) MemberRefExpr(lhs, SourceLoc(), anonymousInnerFieldDecl,
DeclNameLoc(), /*implicit*/true);
auto newValueDecl = setterDecl->getParameterList(1)->get(0);
auto rhs = new (C) DeclRefExpr(newValueDecl, DeclNameLoc(),
/*implicit*/ true);
auto assign = new (C) AssignExpr(lhs, SourceLoc(), rhs, /*implicit*/true);
auto body = BraceStmt::create(C, SourceLoc(), { assign }, SourceLoc(),
/*implicit*/ true);
setterDecl->setBody(body);
setterDecl->getAttrs().add(new (C) TransparentAttr(/*implicit*/ true));
C.addExternalDecl(setterDecl);
}
return { getterDecl, setterDecl };
}
/// Build the union field getter and setter.
///
/// \code
/// struct SomeImportedUnion {
/// var myField: Int {
/// get {
/// return Builtin.reinterpretCast(self)
/// }
/// set(newValue) {
/// Builtin.initialize(Builtin.addressof(self), newValue))
/// }
/// }
/// }
/// \endcode
///
/// \returns a pair of the getter and setter function decls.
static std::pair<FuncDecl *, FuncDecl *>
makeUnionFieldAccessors(ClangImporter::Implementation &Impl,
StructDecl *importedUnionDecl,
VarDecl *importedFieldDecl) {
auto &C = Impl.SwiftContext;
auto getterDecl = makeFieldGetterDecl(Impl,
importedUnionDecl,
importedFieldDecl);
auto setterDecl = makeFieldSetterDecl(Impl,
importedUnionDecl,
importedFieldDecl);
importedFieldDecl->makeComputed(SourceLoc(), getterDecl, setterDecl, nullptr,
SourceLoc());
// Don't bother synthesizing the body if we've already finished type-checking.
if (Impl.hasFinishedTypeChecking())
return { getterDecl, setterDecl };
// Synthesize the getter body
{
auto selfDecl = getterDecl->getImplicitSelfDecl();
auto selfRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
auto reinterpretCast = cast<FuncDecl>(getBuiltinValueDecl(
C, C.getIdentifier("reinterpretCast")));
auto reinterpretCastRef
= new (C) DeclRefExpr(reinterpretCast, DeclNameLoc(), /*implicit*/ true);
auto reinterpreted = CallExpr::createImplicit(C, reinterpretCastRef,
{ selfRef },
{ Identifier() });
auto ret = new (C) ReturnStmt(SourceLoc(), reinterpreted);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(ret), SourceLoc(),
/*implicit*/ true);
getterDecl->setBody(body);
getterDecl->getAttrs().add(new (C) TransparentAttr(/*implicit*/ true));
C.addExternalDecl(getterDecl);
}
// Synthesize the setter body
{
auto inoutSelfDecl = setterDecl->getImplicitSelfDecl();
auto inoutSelfRef = new (C) DeclRefExpr(inoutSelfDecl, DeclNameLoc(),
/*implicit*/ true);
auto inoutSelf = new (C) InOutExpr(SourceLoc(), inoutSelfRef,
importedUnionDecl->getDeclaredType(), /*implicit*/ true);
auto newValueDecl = setterDecl->getParameterList(1)->get(0);
auto newValueRef = new (C) DeclRefExpr(newValueDecl, DeclNameLoc(),
/*implicit*/ true);
auto addressofFn = cast<FuncDecl>(getBuiltinValueDecl(
C, C.getIdentifier("addressof")));
auto addressofFnRef
= new (C) DeclRefExpr(addressofFn, DeclNameLoc(), /*implicit*/ true);
auto selfPointer = CallExpr::createImplicit(C, addressofFnRef,
{ inoutSelf },
{ Identifier() });
auto initializeFn = cast<FuncDecl>(getBuiltinValueDecl(
C, C.getIdentifier("initialize")));
auto initializeFnRef
= new (C) DeclRefExpr(initializeFn, DeclNameLoc(), /*implicit*/ true);
auto initialize = CallExpr::createImplicit(C, initializeFnRef,
{ newValueRef, selfPointer },
{ Identifier(), Identifier() });
auto body = BraceStmt::create(C, SourceLoc(), { initialize }, SourceLoc(),
/*implicit*/ true);
setterDecl->setBody(body);
setterDecl->getAttrs().add(new (C) TransparentAttr(/*implicit*/ true));
C.addExternalDecl(setterDecl);
}
return { getterDecl, setterDecl };
}
static clang::DeclarationName
getAccessorDeclarationName(clang::ASTContext &Ctx,
StructDecl *structDecl,
VarDecl *fieldDecl,
const char *suffix) {
std::string id;
llvm::raw_string_ostream IdStream(id);
IdStream << "$" << structDecl->getName()
<< "$" << fieldDecl->getName()
<< "$" << suffix;
return clang::DeclarationName(&Ctx.Idents.get(IdStream.str()));
}
/// Build the bitfield getter and setter using Clang.
///
/// \code
/// static inline int get(RecordType self) {
/// return self.field;
/// }
/// static inline void set(int newValue, RecordType *self) {
/// self->field = newValue;
/// }
/// \endcode
///
/// \returns a pair of the getter and setter function decls.
static std::pair<FuncDecl *, FuncDecl *>
makeBitFieldAccessors(ClangImporter::Implementation &Impl,
clang::RecordDecl *structDecl,
StructDecl *importedStructDecl,
clang::FieldDecl *fieldDecl,
VarDecl *importedFieldDecl) {
clang::ASTContext &Ctx = Impl.getClangASTContext();
// Getter: static inline FieldType get(RecordType self);
auto recordType = Ctx.getRecordType(structDecl);
auto recordPointerType = Ctx.getPointerType(recordType);
auto fieldType = fieldDecl->getType();
auto fieldNameInfo = clang::DeclarationNameInfo(fieldDecl->getDeclName(),
clang::SourceLocation());
auto cGetterName = getAccessorDeclarationName(Ctx, importedStructDecl,
importedFieldDecl, "getter");
auto cGetterType = Ctx.getFunctionType(fieldDecl->getType(),
recordType,
clang::FunctionProtoType::ExtProtoInfo());
auto cGetterTypeInfo = Ctx.getTrivialTypeSourceInfo(cGetterType);
auto cGetterDecl = clang::FunctionDecl::Create(Ctx,
structDecl->getDeclContext(),
clang::SourceLocation(),
clang::SourceLocation(),
cGetterName,
cGetterType,
cGetterTypeInfo,
clang::SC_Static);
cGetterDecl->setImplicitlyInline();
assert(!cGetterDecl->isExternallyVisible());
auto getterDecl = makeFieldGetterDecl(Impl,
importedStructDecl,
importedFieldDecl,
cGetterDecl);
// Setter: static inline void set(FieldType newValue, RecordType *self);
SmallVector<clang::QualType, 8> cSetterParamTypes;
cSetterParamTypes.push_back(fieldType);
cSetterParamTypes.push_back(recordPointerType);
auto cSetterName = getAccessorDeclarationName(Ctx, importedStructDecl,
importedFieldDecl, "setter");
auto cSetterType = Ctx.getFunctionType(Ctx.VoidTy,
cSetterParamTypes,
clang::FunctionProtoType::ExtProtoInfo());
auto cSetterTypeInfo = Ctx.getTrivialTypeSourceInfo(cSetterType);
auto cSetterDecl = clang::FunctionDecl::Create(Ctx,
structDecl->getDeclContext(),
clang::SourceLocation(),
clang::SourceLocation(),
cSetterName,
cSetterType,
cSetterTypeInfo,
clang::SC_Static);
cSetterDecl->setImplicitlyInline();
assert(!cSetterDecl->isExternallyVisible());
auto setterDecl = makeFieldSetterDecl(Impl,
importedStructDecl,
importedFieldDecl,
cSetterDecl);
importedFieldDecl->makeComputed(SourceLoc(),
getterDecl,
setterDecl,
nullptr,
SourceLoc());
// Don't bother synthesizing the body if we've already finished type-checking.
if (Impl.hasFinishedTypeChecking())
return { getterDecl, setterDecl };
// Synthesize the getter body
{
auto cGetterSelfId = nullptr;
auto recordTypeInfo = Ctx.getTrivialTypeSourceInfo(recordType);
auto cGetterSelf = clang::ParmVarDecl::Create(Ctx, cGetterDecl,
clang::SourceLocation(),
clang::SourceLocation(),
cGetterSelfId,
recordType,
recordTypeInfo,
clang::SC_None,
nullptr);
cGetterDecl->setParams(cGetterSelf);
auto cGetterSelfExpr = new (Ctx) clang::DeclRefExpr(cGetterSelf, false,
recordType,
clang::VK_RValue,
clang::SourceLocation());
auto cGetterExpr = new (Ctx) clang::MemberExpr(cGetterSelfExpr,
/*isarrow=*/ false,
clang::SourceLocation(),
fieldDecl,
fieldNameInfo,
fieldType,
clang::VK_RValue,
clang::OK_BitField);
auto cGetterBody = new (Ctx) clang::ReturnStmt(clang::SourceLocation(),
cGetterExpr,
nullptr);
cGetterDecl->setBody(cGetterBody);
Impl.registerExternalDecl(getterDecl);
}
// Synthesize the setter body
{
SmallVector<clang::ParmVarDecl *, 2> cSetterParams;
auto fieldTypeInfo = Ctx.getTrivialTypeSourceInfo(fieldType);
auto cSetterValue = clang::ParmVarDecl::Create(Ctx, cSetterDecl,
clang::SourceLocation(),
clang::SourceLocation(),
/* nameID? */ nullptr,
fieldType,
fieldTypeInfo,
clang::SC_None,
nullptr);
cSetterParams.push_back(cSetterValue);
auto recordPointerTypeInfo = Ctx.getTrivialTypeSourceInfo(recordPointerType);
auto cSetterSelf = clang::ParmVarDecl::Create(Ctx, cSetterDecl,
clang::SourceLocation(),
clang::SourceLocation(),
/* nameID? */ nullptr,
recordPointerType,
recordPointerTypeInfo,
clang::SC_None,
nullptr);
cSetterParams.push_back(cSetterSelf);
cSetterDecl->setParams(cSetterParams);
auto cSetterSelfExpr = new (Ctx) clang::DeclRefExpr(cSetterSelf, false,
recordPointerType,
clang::VK_RValue,
clang::SourceLocation());
auto cSetterMemberExpr = new (Ctx) clang::MemberExpr(cSetterSelfExpr,
/*isarrow=*/ true,
clang::SourceLocation(),
fieldDecl,
fieldNameInfo,
fieldType,
clang::VK_LValue,
clang::OK_BitField);
auto cSetterValueExpr = new (Ctx) clang::DeclRefExpr(cSetterValue, false,
fieldType,
clang::VK_RValue,
clang::SourceLocation());
auto cSetterExpr = new (Ctx) clang::BinaryOperator(cSetterMemberExpr,
cSetterValueExpr,
clang::BO_Assign,
fieldType,
clang::VK_RValue,
clang::OK_Ordinary,
clang::SourceLocation(),
clang::FPOptions());
cSetterDecl->setBody(cSetterExpr);
Impl.registerExternalDecl(setterDecl);
}
return { getterDecl, setterDecl };
}
/// Create a default constructor that initializes a struct to zero.
static ConstructorDecl *
createDefaultConstructor(ClangImporter::Implementation &Impl,
StructDecl *structDecl) {
auto &context = Impl.SwiftContext;
// Create the 'self' declaration.
auto selfDecl = ParamDecl::createSelf(SourceLoc(), structDecl,
/*static*/ false, /*inout*/ true);
// self & param.
auto emptyPL = ParameterList::createEmpty(context);
// Create the constructor.
DeclName name(context, context.Id_init, emptyPL);
auto constructor = new (context) ConstructorDecl(
name, structDecl->getLoc(), OTK_None, /*FailabilityLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(), selfDecl, emptyPL,
/*GenericParams=*/nullptr, structDecl);
// Set the constructor's type.
auto selfType = structDecl->getDeclaredInterfaceType();
auto selfMetatype = MetatypeType::get(selfType);
auto emptyTy = TupleType::getEmpty(context);
auto fnTy = FunctionType::get(emptyTy, selfType);
auto allocFnTy = FunctionType::get(selfMetatype, fnTy);
auto initFnTy = FunctionType::get(selfType, fnTy);
constructor->setInterfaceType(allocFnTy);
constructor->setInitializerInterfaceType(initFnTy);
constructor->setValidationStarted();
constructor->setAccess(AccessLevel::Public);
// Mark the constructor transparent so that we inline it away completely.
constructor->getAttrs().add(new (context) TransparentAttr(/*implicit*/ true));
if (Impl.hasFinishedTypeChecking())
return constructor;
// Use a builtin to produce a zero initializer, and assign it to self.
// Construct the left-hand reference to self.
Expr *lhs = new (context) DeclRefExpr(selfDecl,
DeclNameLoc(), /*Implicit=*/true);
lhs->setType(LValueType::get(selfType));
lhs->propagateLValueAccessKind(AccessKind::Write);
auto emptyTuple = TupleType::getEmpty(context);
// Construct the right-hand call to Builtin.zeroInitializer.
Identifier zeroInitID = context.getIdentifier("zeroInitializer");
auto zeroInitializerFunc = getBuiltinValueDecl(context, zeroInitID);
ConcreteDeclRef concreteDeclRef(context, zeroInitializerFunc,
{ Substitution(selfType, {}) });
auto zeroInitializerRef =
new (context) DeclRefExpr(concreteDeclRef, DeclNameLoc(),
/*implicit*/ true);
zeroInitializerRef->setType(FunctionType::get(emptyTuple, selfType));
auto call = CallExpr::createImplicit(context, zeroInitializerRef, {}, {});
call->setType(selfType);
auto assign = new (context) AssignExpr(lhs, SourceLoc(), call,
/*implicit*/ true);
assign->setType(emptyTuple);
auto result = TupleExpr::createEmpty(context, SourceLoc(), SourceLoc(),
/*Implicit=*/true);
result->setType(emptyTuple);
auto ret = new (context) ReturnStmt(SourceLoc(), result, /*Implicit=*/true);
// Create the function body.
auto body = BraceStmt::create(context, SourceLoc(), {assign, ret},
SourceLoc());
constructor->setBody(body);
constructor->setBodyTypeCheckedIfPresent();
// Add this as an external definition.
Impl.registerExternalDecl(constructor);
// We're done.
return constructor;
}
/// \brief Create a constructor that initializes a struct from its members.
static ConstructorDecl *
createValueConstructor(ClangImporter::Implementation &Impl,
StructDecl *structDecl, ArrayRef<VarDecl *> members,
bool wantCtorParamNames, bool wantBody) {
auto &context = Impl.SwiftContext;
// Create the 'self' declaration.
auto selfDecl = ParamDecl::createSelf(SourceLoc(), structDecl,
/*static*/ false, /*inout*/ true);
// Construct the set of parameters from the list of members.
SmallVector<ParamDecl *, 8> valueParameters;
for (auto var : members) {
bool generateParamName = wantCtorParamNames;
if (var->hasClangNode()) {
// TODO create value constructor with indirect fields instead of the
// generated __Anonymous_field.
if (isa<clang::IndirectFieldDecl>(var->getClangDecl()))
continue;
if (auto clangField = dyn_cast<clang::FieldDecl>(var->getClangDecl()))
if (clangField->isAnonymousStructOrUnion())
generateParamName = false;
}
Identifier argName = generateParamName ? var->getName() : Identifier();
auto param = new (context)
ParamDecl(VarDecl::Specifier::Owned, SourceLoc(), SourceLoc(), argName,
SourceLoc(), var->getName(), var->getType(), structDecl);
param->setInterfaceType(var->getInterfaceType());
param->setValidationStarted();
valueParameters.push_back(param);
}
// self & param.
ParameterList *paramLists[] = {
ParameterList::createWithoutLoc(selfDecl),
ParameterList::create(context, valueParameters)};
// Create the constructor
DeclName name(context, context.Id_init, paramLists[1]);
auto constructor = new (context) ConstructorDecl(
name, structDecl->getLoc(), OTK_None, /*FailabilityLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(), selfDecl, paramLists[1],
/*GenericParams=*/nullptr, structDecl);
// Set the constructor's type.
auto paramTy = paramLists[1]->getType(context);
auto selfType = structDecl->getDeclaredTypeInContext();
auto selfMetatype = MetatypeType::get(selfType);
auto fnTy = FunctionType::get(paramTy, selfType);
auto allocFnTy = FunctionType::get(selfMetatype, fnTy);
auto initFnTy = FunctionType::get(selfType, fnTy);
constructor->setInterfaceType(allocFnTy);
constructor->setInitializerInterfaceType(initFnTy);
constructor->setValidationStarted();
constructor->setAccess(AccessLevel::Public);
// Make the constructor transparent so we inline it away completely.
constructor->getAttrs().add(new (context) TransparentAttr(/*implicit*/ true));
if (wantBody) {
// Assign all of the member variables appropriately.
SmallVector<ASTNode, 4> stmts;
// To keep DI happy, initialize stored properties before computed.
for (unsigned pass = 0; pass < 2; pass++) {
unsigned paramPos = 0;
for (unsigned i = 0, e = members.size(); i < e; i++) {
auto var = members[i];
if (var->hasClangNode() && isa<clang::IndirectFieldDecl>(var->getClangDecl()))
continue;
if (var->hasStorage() == (pass != 0)) {
paramPos++;
continue;
}
// Construct left-hand side.
Expr *lhs = new (context) DeclRefExpr(selfDecl, DeclNameLoc(),
/*Implicit=*/true);
lhs->setType(LValueType::get(selfDecl->getType()->getInOutObjectType()));
auto semantics = (var->hasStorage()
? AccessSemantics::DirectToStorage
: AccessSemantics::Ordinary);
lhs = new (context) MemberRefExpr(lhs, SourceLoc(), var, DeclNameLoc(),
/*Implicit=*/true,
semantics);
lhs->setType(LValueType::get(var->getType()));
lhs->propagateLValueAccessKind(AccessKind::Write);
// Construct right-hand side.
auto rhs = new (context) DeclRefExpr(valueParameters[paramPos],
DeclNameLoc(),
/*Implicit=*/true);
rhs->setType(valueParameters[paramPos]->getType());
// Add assignment.
auto assign = new (context) AssignExpr(lhs, SourceLoc(), rhs,
/*Implicit=*/true);
assign->setType(TupleType::getEmpty(context));
stmts.push_back(assign);
paramPos++;
}
}
auto result = TupleExpr::createEmpty(context, SourceLoc(), SourceLoc(),
/*Implicit=*/true);
result->setType(TupleType::getEmpty(context));
auto ret = new (context) ReturnStmt(SourceLoc(), result, /*Implicit=*/true);
stmts.push_back(ret);
// Create the function body.
auto body = BraceStmt::create(context, SourceLoc(), stmts, SourceLoc());
constructor->setBody(body);
constructor->setBodyTypeCheckedIfPresent();
}
// Add this as an external definition.
Impl.registerExternalDecl(constructor);
// We're done.
return constructor;
}
static void addSynthesizedProtocolAttrs(
ClangImporter::Implementation &Impl,
NominalTypeDecl *nominal,
ArrayRef<KnownProtocolKind> synthesizedProtocolAttrs) {
for (auto kind : synthesizedProtocolAttrs) {
nominal->getAttrs().add(new (Impl.SwiftContext)
SynthesizedProtocolAttr(kind, &Impl));
}
}
/// Add a synthesized typealias to the given nominal type.
static void addSynthesizedTypealias(NominalTypeDecl *nominal, Identifier name,
Type underlyingType) {
auto &ctx = nominal->getASTContext();
auto typealias = new (ctx) TypeAliasDecl(SourceLoc(), SourceLoc(),
name, SourceLoc(),
nullptr, nominal);
typealias->setUnderlyingType(underlyingType);
typealias->setEarlyAttrValidation(true);
typealias->setAccess(AccessLevel::Public);
typealias->setValidationStarted();
typealias->setImplicit();
nominal->addMember(typealias);
}
/// Make a struct declaration into a raw-value-backed struct
///
/// \param structDecl the struct to make a raw value for
/// \param underlyingType the type of the raw value
/// \param synthesizedProtocolAttrs synthesized protocol attributes to add
/// \param setterAccess the access level of the raw value's setter
///
/// This will perform most of the work involved in making a new Swift struct
/// be backed by a raw value. This will populated derived protocols and
/// synthesized protocols, add the new variable and pattern bindings, and
/// create the inits parameterized over a raw value
///
static void makeStructRawValued(
ClangImporter::Implementation &Impl, StructDecl *structDecl,
Type underlyingType, ArrayRef<KnownProtocolKind> synthesizedProtocolAttrs,
MakeStructRawValuedOptions options = getDefaultMakeStructRawValuedOptions(),
AccessLevel setterAccess = AccessLevel::Private) {
auto &ctx = Impl.SwiftContext;
addSynthesizedProtocolAttrs(Impl, structDecl, synthesizedProtocolAttrs);
// Create a variable to store the underlying value.
VarDecl *var;
PatternBindingDecl *patternBinding;
auto specifier = options.contains(MakeStructRawValuedFlags::IsLet)
? VarDecl::Specifier::Let
: VarDecl::Specifier::Var;
std::tie(var, patternBinding) = createVarWithPattern(
ctx, structDecl, ctx.Id_rawValue, underlyingType,
specifier,
options.contains(MakeStructRawValuedFlags::IsImplicit),
AccessLevel::Public,
setterAccess);
// Create the getter for the computed value variable.
auto varGetter = makeStructRawValueGetter(
Impl, structDecl, var, var);
var->addTrivialAccessors(varGetter, nullptr, nullptr);
assert(var->hasStorage());
// Create constructors to initialize that value from a value of the
// underlying type.
if (options.contains(MakeStructRawValuedFlags::MakeUnlabeledValueInit))
structDecl->addMember(
createValueConstructor(Impl, structDecl, var,
/*wantCtorParamNames=*/false,
/*wantBody=*/!Impl.hasFinishedTypeChecking()));
structDecl->addMember(
createValueConstructor(Impl, structDecl, var,
/*wantCtorParamNames=*/true,
/*wantBody=*/!Impl.hasFinishedTypeChecking()));
structDecl->addMember(patternBinding);
structDecl->addMember(var);
structDecl->addMember(varGetter);
addSynthesizedTypealias(structDecl, ctx.Id_RawValue, underlyingType);
}
/// Create a rawValue-ed constructor that bridges to its underlying storage.
static ConstructorDecl *createRawValueBridgingConstructor(
ClangImporter::Implementation &Impl, StructDecl *structDecl,
VarDecl *computedRawValue, VarDecl *storedRawValue, bool wantLabel,
bool wantBody) {
auto &ctx = Impl.SwiftContext;
auto init = createValueConstructor(Impl, structDecl, computedRawValue,
/*wantCtorParamNames=*/wantLabel,
/*wantBody=*/false);
// Insert our custom init body
if (wantBody) {
auto selfDecl = init->getParameterList(0)->get(0);
auto storedType = storedRawValue->getInterfaceType();
// Construct left-hand side.
Expr *lhs = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*Implicit=*/true);
lhs->setType(LValueType::get(selfDecl->getType()->getInOutObjectType()));
lhs = new (ctx) MemberRefExpr(lhs, SourceLoc(), storedRawValue,
DeclNameLoc(), /*Implicit=*/true,
AccessSemantics::DirectToStorage);
lhs->setType(LValueType::get(storedType));
lhs->propagateLValueAccessKind(AccessKind::Write);
// Construct right-hand side.
// FIXME: get the parameter from the init, and plug it in here.
auto *paramDecl = init->getParameterList(1)->get(0);
auto *paramRef = new (ctx) DeclRefExpr(
paramDecl, DeclNameLoc(), /*Implicit=*/true);
paramRef->setType(paramDecl->getType());
Expr *rhs = paramRef;
if (!storedRawValue->getInterfaceType()->isEqual(paramDecl->getType())) {
auto bridge = new (ctx) BridgeToObjCExpr(paramRef, storedType);
bridge->setType(storedType);
auto coerce = new (ctx) CoerceExpr(bridge, SourceLoc(),
{nullptr, storedType});
coerce->setType(storedType);
rhs = coerce;
}
// Add assignment.
auto assign = new (ctx) AssignExpr(lhs, SourceLoc(), rhs,
/*Implicit=*/true);
assign->setType(TupleType::getEmpty(ctx));
auto result = TupleExpr::createEmpty(ctx, SourceLoc(), SourceLoc(),
/*Implicit=*/true);
auto ret = new (ctx) ReturnStmt(SourceLoc(), result, /*Implicit=*/true);
auto body = BraceStmt::create(ctx, SourceLoc(), {assign, ret}, SourceLoc());
init->setBody(body);
init->setBodyTypeCheckedIfPresent();
}
return init;
}
/// Make a struct declaration into a raw-value-backed struct, with
/// bridged computed rawValue property which differs from stored backing
///
/// \param structDecl the struct to make a raw value for
/// \param storedUnderlyingType the type of the stored raw value
/// \param bridgedType the type of the 'rawValue' computed property bridge
/// \param synthesizedProtocolAttrs synthesized protocol attributes to add
///
/// This will perform most of the work involved in making a new Swift struct
/// be backed by a stored raw value and computed raw value of bridged type.
/// This will populated derived protocols and synthesized protocols, add the
/// new variable and pattern bindings, and create the inits parameterized
/// over a bridged type that will cast to the stored type, as appropriate.
///
static void makeStructRawValuedWithBridge(
ClangImporter::Implementation &Impl, StructDecl *structDecl,
Type storedUnderlyingType, Type bridgedType,
ArrayRef<KnownProtocolKind> synthesizedProtocolAttrs,
bool makeUnlabeledValueInit = false) {
auto &ctx = Impl.SwiftContext;
addSynthesizedProtocolAttrs(Impl, structDecl, synthesizedProtocolAttrs);
auto storedVarName = ctx.getIdentifier("_rawValue");
auto computedVarName = ctx.Id_rawValue;
// Create a variable to store the underlying value.
VarDecl *storedVar;
PatternBindingDecl *storedPatternBinding;
std::tie(storedVar, storedPatternBinding) = createVarWithPattern(
ctx, structDecl, storedVarName, storedUnderlyingType,
VarDecl::Specifier::Var, /*isImplicit=*/true,
AccessLevel::Private,
AccessLevel::Private);
// Create a computed value variable.
auto computedVar = new (ctx) VarDecl(
/*IsStatic*/false, VarDecl::Specifier::Var, /*IsCaptureList*/false,
SourceLoc(), computedVarName, bridgedType, structDecl);
computedVar->setInterfaceType(bridgedType);
computedVar->setImplicit();
computedVar->setAccess(AccessLevel::Public);
computedVar->setSetterAccess(AccessLevel::Private);
computedVar->setValidationStarted();
// Create the getter for the computed value variable.
auto computedVarGetter = makeStructRawValueGetter(
Impl, structDecl, computedVar, storedVar);
computedVar->makeComputed(SourceLoc(), computedVarGetter, nullptr, nullptr,
SourceLoc());
// Create a pattern binding to describe the variable.
Pattern *computedVarPattern = createTypedNamedPattern(computedVar);
auto computedPatternBinding = PatternBindingDecl::create(
ctx, SourceLoc(), StaticSpellingKind::None, SourceLoc(),
computedVarPattern, nullptr, structDecl);
// Don't bother synthesizing the body if we've already finished
// type-checking.
bool wantBody = !Impl.hasFinishedTypeChecking();
auto init = createRawValueBridgingConstructor(Impl, structDecl, computedVar,
storedVar,
/*wantLabel*/ true, wantBody);
ConstructorDecl *unlabeledCtor = nullptr;
if (makeUnlabeledValueInit)
unlabeledCtor = createRawValueBridgingConstructor(
Impl, structDecl, computedVar, storedVar,
/*wantLabel*/ false, wantBody);
if (unlabeledCtor)
structDecl->addMember(unlabeledCtor);
structDecl->addMember(init);
structDecl->addMember(storedPatternBinding);
structDecl->addMember(storedVar);
structDecl->addMember(computedPatternBinding);
structDecl->addMember(computedVar);
structDecl->addMember(computedVarGetter);
addSynthesizedTypealias(structDecl, ctx.Id_RawValue, bridgedType);
}
static Type getGenericMethodType(DeclContext *dc, AnyFunctionType *fnType) {
assert(!fnType->hasArchetype());
auto *sig = dc->getGenericSignatureOfContext();
if (!sig)
return fnType;
Type interfaceType = GenericFunctionType::get(
sig, fnType->getParams(), fnType->getResult(), AnyFunctionType::ExtInfo());
return interfaceType;
}
/// Build a declaration for an Objective-C subscript getter.
static FuncDecl *buildSubscriptGetterDecl(ClangImporter::Implementation &Impl,
const FuncDecl *getter,
Type elementTy, DeclContext *dc,
ParamDecl *index) {
auto &C = Impl.SwiftContext;
auto loc = getter->getLoc();
// self & index.
ParameterList *getterArgs[] = {ParameterList::createSelf(SourceLoc(), dc),
ParameterList::create(C, index)};
// Form the type of the getter.
auto getterType =
ParameterList::getFullInterfaceType(elementTy, getterArgs, C);
auto interfaceType =
getGenericMethodType(dc, getterType->castTo<AnyFunctionType>());
// Create the getter thunk.
FuncDecl *thunk = FuncDecl::create(
C, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/loc, /*Name=*/Identifier(), /*NameLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, getterArgs,
TypeLoc::withoutLoc(elementTy), dc, getter->getClangNode());
thunk->setInterfaceType(interfaceType);
thunk->setValidationStarted();
thunk->setGenericEnvironment(dc->getGenericEnvironmentOfContext());
thunk->setAccess(getOverridableAccessLevel(dc));
auto objcAttr = getter->getAttrs().getAttribute<ObjCAttr>();
assert(objcAttr);
thunk->getAttrs().add(objcAttr->clone(C));
// FIXME: Should we record thunks?
return thunk;
}
/// Build a declaration for an Objective-C subscript setter.
static FuncDecl *buildSubscriptSetterDecl(ClangImporter::Implementation &Impl,
const FuncDecl *setter,
Type elementInterfaceTy,
DeclContext *dc, ParamDecl *index) {
auto &C = Impl.SwiftContext;
auto loc = setter->getLoc();
// Objective-C subscript setters are imported with a function type
// such as:
//
// (self) -> (value, index) -> ()
//
// Build a setter thunk with the latter signature that maps to the
// former.
auto valueIndex = setter->getParameterList(1);
// 'self'
auto selfDecl = ParamDecl::createSelf(SourceLoc(), dc);
auto elementTy = dc->mapTypeIntoContext(elementInterfaceTy);
auto paramVarDecl =
new (C) ParamDecl(VarDecl::Specifier::Owned, SourceLoc(), SourceLoc(),
Identifier(), loc, valueIndex->get(0)->getName(),
elementTy, dc);
paramVarDecl->setInterfaceType(elementInterfaceTy);
paramVarDecl->setValidationStarted();
auto valueIndicesPL = ParameterList::create(C, {paramVarDecl, index});
// Form the argument lists.
ParameterList *setterArgs[] = {ParameterList::createWithoutLoc(selfDecl),
valueIndicesPL};
// Form the type of the setter.
Type setterType = ParameterList::getFullInterfaceType(TupleType::getEmpty(C),
setterArgs, C);
auto interfaceType =
getGenericMethodType(dc, setterType->castTo<AnyFunctionType>());
// Create the setter thunk.
FuncDecl *thunk = FuncDecl::create(
C, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/setter->getLoc(),
/*Name=*/Identifier(), /*NameLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, setterArgs,
TypeLoc::withoutLoc(TupleType::getEmpty(C)), dc, setter->getClangNode());
thunk->setInterfaceType(interfaceType);
thunk->setValidationStarted();
thunk->setGenericEnvironment(dc->getGenericEnvironmentOfContext());
thunk->setAccess(getOverridableAccessLevel(dc));
auto objcAttr = setter->getAttrs().getAttribute<ObjCAttr>();
assert(objcAttr);
thunk->getAttrs().add(objcAttr->clone(C));
return thunk;
}
/// Retrieve the element interface type and key param decl of a subscript
/// setter.
static std::pair<Type, ParamDecl *> decomposeSubscriptSetter(FuncDecl *setter) {
auto *PL = setter->getParameterList(1);
if (PL->size() != 2)
return {nullptr, nullptr};
// Setter type is (self) -> (elem_type, key_type) -> ()
Type elementType = setter->getInterfaceType()
->castTo<AnyFunctionType>()
->getResult()
->castTo<AnyFunctionType>()
->getParams().front().getType();
ParamDecl *keyDecl = PL->get(1);
return {elementType, keyDecl};
}
/// Rectify the (possibly different) types determined by the
/// getter and setter for a subscript.
///
/// \param canUpdateType whether the type of subscript can be
/// changed from the getter type to something compatible with both
/// the getter and the setter.
///
/// \returns the type to be used for the subscript, or a null type
/// if the types cannot be rectified.
static Type rectifySubscriptTypes(Type getterType, Type setterType,
bool canUpdateType) {
// If the caller couldn't provide a setter type, there is
// nothing to rectify.
if (!setterType)
return nullptr;
// Trivial case: same type in both cases.
if (getterType->isEqual(setterType))
return getterType;
// The getter/setter types are different. If we cannot update
// the type, we have to fail.
if (!canUpdateType)
return nullptr;
// Unwrap one level of optionality from each.
if (Type getterObjectType = getterType->getAnyOptionalObjectType())
getterType = getterObjectType;
if (Type setterObjectType = setterType->getAnyOptionalObjectType())
setterType = setterObjectType;
// If they are still different, fail.
// FIXME: We could produce the greatest common supertype of the
// two types.
if (!getterType->isEqual(setterType))
return nullptr;
// Create an implicitly-unwrapped optional of the object type,
// which subsumes both behaviors.
return ImplicitlyUnwrappedOptionalType::get(setterType);
}
/// Add an AvailableAttr to the declaration for the given
/// version range.
static void applyAvailableAttribute(Decl *decl, AvailabilityContext &info,
ASTContext &C) {
// If the range is "all", this is the same as not having an available
// attribute.
if (info.isAlwaysAvailable())
return;
clang::VersionTuple noVersion;
auto AvAttr = new (C) AvailableAttr(SourceLoc(), SourceRange(),
targetPlatform(C.LangOpts),
/*Message=*/StringRef(),
/*Rename=*/StringRef(),
info.getOSVersion().getLowerEndpoint(),
/*IntroducedRange*/SourceRange(),
/*Deprecated=*/noVersion,
/*DeprecatedRange*/SourceRange(),
/*Obsoleted=*/noVersion,
/*ObsoletedRange*/SourceRange(),
PlatformAgnosticAvailabilityKind::None,
/*Implicit=*/false);
decl->getAttrs().add(AvAttr);
}
/// Synthesize availability attributes for protocol requirements
/// based on availability of the types mentioned in the requirements.
static void inferProtocolMemberAvailability(ClangImporter::Implementation &impl,
DeclContext *dc, Decl *member) {
// Don't synthesize attributes if there is already an
// availability annotation.
if (member->getAttrs().hasAttribute<AvailableAttr>())
return;
auto *valueDecl = dyn_cast<ValueDecl>(member);
if (!valueDecl)
return;
AvailabilityContext requiredRange =
AvailabilityInference::inferForType(valueDecl->getInterfaceType());
ASTContext &C = impl.SwiftContext;
const Decl *innermostDecl = dc->getInnermostDeclarationDeclContext();
AvailabilityContext containingDeclRange =
AvailabilityInference::availableRange(innermostDecl, C);
requiredRange.intersectWith(containingDeclRange);
applyAvailableAttribute(valueDecl, requiredRange, C);
}
/// Add a domain error member, as required by conformance to
/// _BridgedStoredNSError.
/// \returns true on success, false on failure
static bool addErrorDomain(NominalTypeDecl *swiftDecl,
clang::NamedDecl *errorDomainDecl,
ClangImporter::Implementation &importer) {
auto &C = importer.SwiftContext;
auto swiftValueDecl = dyn_cast_or_null<ValueDecl>(
importer.importDecl(errorDomainDecl, importer.CurrentVersion));
auto stringTy = C.getStringDecl()->getDeclaredType();
assert(stringTy && "no string type available");
if (!swiftValueDecl || !swiftValueDecl->getInterfaceType()->isEqual(stringTy)) {
// Couldn't actually import it as an error enum, fall back to enum
return false;
}
bool isStatic = true;
bool isImplicit = true;
DeclRefExpr *domainDeclRef = new (C)
DeclRefExpr(ConcreteDeclRef(swiftValueDecl), {}, isImplicit);
ParameterList *params[] = {
ParameterList::createWithoutLoc(
ParamDecl::createSelf(SourceLoc(), swiftDecl, isStatic)),
ParameterList::createEmpty(C)};
auto toStringTy = ParameterList::getFullInterfaceType(stringTy, params, C);
FuncDecl *getterDecl =
FuncDecl::create(C, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/SourceLoc(), DeclName(), /*NameLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, params,
TypeLoc::withoutLoc(stringTy), swiftDecl);
getterDecl->setInterfaceType(toStringTy);
getterDecl->setValidationStarted();
// Make the property decl
auto errorDomainPropertyDecl = new (C) VarDecl(
/*IsStatic*/isStatic, VarDecl::Specifier::Var, /*IsCaptureList*/false,
SourceLoc(), C.Id_nsErrorDomain, stringTy, swiftDecl);
errorDomainPropertyDecl->setInterfaceType(stringTy);
errorDomainPropertyDecl->setValidationStarted();
errorDomainPropertyDecl->setAccess(AccessLevel::Public);
swiftDecl->addMember(errorDomainPropertyDecl);
swiftDecl->addMember(getterDecl);
errorDomainPropertyDecl->makeComputed(SourceLoc(), getterDecl,
/*Set=*/nullptr,
/*MaterializeForSet=*/nullptr,
SourceLoc());
getterDecl->setImplicit();
getterDecl->setStatic(isStatic);
getterDecl->setAccess(AccessLevel::Public);
auto ret = new (C) ReturnStmt(SourceLoc(), domainDeclRef);
getterDecl->setBody(
BraceStmt::create(C, SourceLoc(), {ret}, SourceLoc(), isImplicit));
importer.registerExternalDecl(getterDecl);
return true;
}
/// As addErrorDomain above, but performs a lookup
static bool addErrorDomain(NominalTypeDecl *swiftDecl,
StringRef errorDomainName,
ClangImporter::Implementation &importer) {
auto &clangSema = importer.getClangSema();
clang::IdentifierInfo *errorDomainDeclName =
&clangSema.getASTContext().Idents.get(errorDomainName);
clang::LookupResult lookupResult(
clangSema, clang::DeclarationName(errorDomainDeclName),
clang::SourceLocation(), clang::Sema::LookupNameKind::LookupOrdinaryName);
if (!clangSema.LookupName(lookupResult, clangSema.TUScope)) {
// Couldn't actually import it as an error enum, fall back to enum
return false;
}
auto clangNamedDecl = lookupResult.getAsSingle<clang::NamedDecl>();
if (!clangNamedDecl) {
// Couldn't actually import it as an error enum, fall back to enum
return false;
}
return addErrorDomain(swiftDecl, clangNamedDecl, importer);
}
/// Retrieve the property type as determined by the given accessor.
static clang::QualType
getAccessorPropertyType(const clang::FunctionDecl *accessor, bool isSetter,
Optional<unsigned> selfIndex) {
// Simple case: the property type of the getter is in the return
// type.
if (!isSetter) return accessor->getReturnType();
// For the setter, first check that we have the right number of
// parameters.
unsigned numExpectedParams = selfIndex ? 2 : 1;
if (accessor->getNumParams() != numExpectedParams)
return clang::QualType();
// Dig out the parameter for the value.
unsigned valueIdx = selfIndex ? (1 - *selfIndex) : 0;
auto param = accessor->getParamDecl(valueIdx);
return param->getType();
}
/// Whether we should suppress importing the Objective-C generic type params
/// of this class as Swift generic type params.
static bool
shouldSuppressGenericParamsImport(const LangOptions &langOpts,
const clang::ObjCInterfaceDecl *decl) {
if (decl->hasAttr<clang::SwiftImportAsNonGenericAttr>())
return true;
// FIXME: This check is only necessary to keep things working even without
// the SwiftImportAsNonGeneric API note. Once we can guarantee that that
// attribute is present in all contexts, we can remove this check.
auto isFromFoundationModule = [](const clang::Decl *decl) -> bool {
clang::Module *module = getClangSubmoduleForDecl(decl).getValue();
if (!module)
return false;
return module->getTopLevelModuleName() == "Foundation";
};
if (langOpts.isSwiftVersion3() || isFromFoundationModule(decl)) {
// In Swift 3 we used a hardcoded list of declarations, and made all of
// their subclasses drop their generic parameters when imported.
while (decl) {
StringRef name = decl->getName();
if (name == "NSArray" || name == "NSDictionary" || name == "NSSet" ||
name == "NSOrderedSet" || name == "NSEnumerator" ||
name == "NSMeasurement") {
return true;
}
decl = decl->getSuperClass();
}
}
return false;
}
/// Determine if the given Objective-C instance method should also
/// be imported as a class method.
///
/// Objective-C root class instance methods are also reflected as
/// class methods.
static bool shouldAlsoImportAsClassMethod(FuncDecl *method) {
// Only instance methods.
if (!method->isInstanceMember())
return false;
// Must be a method within a class or extension thereof.
auto classDecl =
method->getDeclContext()->getAsClassOrClassExtensionContext();
if (!classDecl)
return false;
// The class must not have a superclass.
if (classDecl->getSuperclass())
return false;
// There must not already be a class method with the same
// selector.
auto objcClass =
cast_or_null<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
if (!objcClass)
return false;
auto objcMethod = cast_or_null<clang::ObjCMethodDecl>(method->getClangDecl());
if (!objcMethod)
return false;
return !objcClass->getClassMethod(objcMethod->getSelector(),
/*AllowHidden=*/true);
}
static bool
classImplementsProtocol(const clang::ObjCInterfaceDecl *constInterface,
const clang::ObjCProtocolDecl *constProto,
bool checkCategories) {
auto interface = const_cast<clang::ObjCInterfaceDecl *>(constInterface);
auto proto = const_cast<clang::ObjCProtocolDecl *>(constProto);
return interface->ClassImplementsProtocol(proto, checkCategories);
}
static void
applyPropertyOwnership(VarDecl *prop,
clang::ObjCPropertyDecl::PropertyAttributeKind attrs) {
Type ty = prop->getInterfaceType();
if (auto innerTy = ty->getAnyOptionalObjectType())
ty = innerTy;
if (!ty->is<GenericTypeParamType>() && !ty->isAnyClassReferenceType())
return;
ASTContext &ctx = prop->getASTContext();
if (attrs & clang::ObjCPropertyDecl::OBJC_PR_copy) {
prop->getAttrs().add(new (ctx) NSCopyingAttr(false));
return;
}
if (attrs & clang::ObjCPropertyDecl::OBJC_PR_weak) {
prop->getAttrs().add(new (ctx) OwnershipAttr(Ownership::Weak));
prop->setType(WeakStorageType::get(prop->getType(), ctx));
prop->setInterfaceType(WeakStorageType::get(
prop->getInterfaceType(), ctx));
return;
}
if ((attrs & clang::ObjCPropertyDecl::OBJC_PR_assign) ||
(attrs & clang::ObjCPropertyDecl::OBJC_PR_unsafe_unretained)) {
prop->getAttrs().add(new (ctx) OwnershipAttr(Ownership::Unmanaged));
prop->setType(UnmanagedStorageType::get(prop->getType(), ctx));
prop->setInterfaceType(UnmanagedStorageType::get(
prop->getInterfaceType(), ctx));
return;
}
}
/// Does this name refer to a method that might shadow Swift.print?
///
/// As a heuristic, methods that have a base name of 'print' but more than
/// one argument are left alone. These can still shadow Swift.print but are
/// less likely to be confused for it, at least.
static bool isPrintLikeMethod(DeclName name, const DeclContext *dc) {
if (!name || name.isSpecial() || name.isSimpleName())
return false;
if (name.getBaseIdentifier().str() != "print")
return false;
if (!dc->isTypeContext())
return false;
if (name.getArgumentNames().size() > 1)
return false;
return true;
}
using MirroredMethodEntry =
std::pair<const clang::ObjCMethodDecl*, ProtocolDecl*>;
namespace {
/// Customized llvm::DenseMapInfo for storing borrowed APSInts.
struct APSIntRefDenseMapInfo {
static inline const llvm::APSInt *getEmptyKey() {
return llvm::DenseMapInfo<const llvm::APSInt *>::getEmptyKey();
}
static inline const llvm::APSInt *getTombstoneKey() {
return llvm::DenseMapInfo<const llvm::APSInt *>::getTombstoneKey();
}
static unsigned getHashValue(const llvm::APSInt *ptrVal) {
assert(ptrVal != getEmptyKey() && ptrVal != getTombstoneKey());
return llvm::hash_value(*ptrVal);
}
static bool isEqual(const llvm::APSInt *lhs, const llvm::APSInt *rhs) {
if (lhs == rhs) return true;
if (lhs == getEmptyKey() || rhs == getEmptyKey()) return false;
if (lhs == getTombstoneKey() || rhs == getTombstoneKey()) return false;
return *lhs == *rhs;
}
};
/// \brief Convert Clang declarations into the corresponding Swift
/// declarations.
class SwiftDeclConverter
: public clang::ConstDeclVisitor<SwiftDeclConverter, Decl *>
{
ClangImporter::Implementation &Impl;
bool forwardDeclaration = false;
ImportNameVersion version;
/// The version that we're being asked to import for. May not be the version
/// the user requested, as we may be forming an alternate for diagnostic
/// purposes.
ImportNameVersion getVersion() const { return version; }
/// The actual language version the user requested we compile for.
ImportNameVersion getActiveSwiftVersion() const {
return Impl.CurrentVersion;
}
/// Whether the names we're importing are from the language version the user
/// requested, or if these are decls from another version
bool isActiveSwiftVersion() const {
return getVersion() == getActiveSwiftVersion();
}
/// Import the name of the given entity.
///
/// This version of importFullName introduces any context-specific
/// name importing options (e.g., if we're importing the Swift 2 version).
///
/// Note: Use this rather than calling Impl.importFullName directly!
ImportedName importFullName(const clang::NamedDecl *D,
Optional<ImportedName> &correctSwiftName) {
ImportNameVersion canonicalVersion = getActiveSwiftVersion();
if (isa<clang::TypeDecl>(D) || isa<clang::ObjCContainerDecl>(D)) {
canonicalVersion = ImportNameVersion::forTypes();
}
correctSwiftName = None;
// First, import based on the Swift name of the canonical declaration:
// the latest version for types and the current version for non-type
// values. If that fails, we won't do anything.
auto canonicalName = Impl.importFullName(D, canonicalVersion);
if (!canonicalName)
return ImportedName();
if (getVersion() == canonicalVersion) {
// Make sure we don't try to import the same type twice as canonical.
if (canonicalVersion != getActiveSwiftVersion()) {
auto activeName = Impl.importFullName(D, getActiveSwiftVersion());
if (activeName &&
activeName.getDeclName() == canonicalName.getDeclName()) {
return ImportedName();
}
}
return canonicalName;
}
// Special handling when we import using the older Swift name.
//
// Import using the alternate Swift name. If that fails, or if it's
// identical to the active Swift name, we won't introduce an alternate
// Swift name stub declaration.
auto alternateName = Impl.importFullName(D, getVersion());
if (!alternateName)
return ImportedName();
if (alternateName.getDeclName() == canonicalName.getDeclName()) {
if (getVersion() == getActiveSwiftVersion()) {
assert(canonicalVersion != getActiveSwiftVersion());
return alternateName;
}
return ImportedName();
}
// Always use the active version as the preferred name, even if the
// canonical name is a different version.
correctSwiftName = Impl.importFullName(D, getActiveSwiftVersion());
assert(correctSwiftName);
return alternateName;
}
/// \brief Create a declaration name for anonymous enums, unions and
/// structs.
///
/// Since Swift does not natively support these features, we fake them by
/// importing them as declarations with generated names. The generated name
/// is derived from the name of the field in the outer type. Since the
/// anonymous type is imported as a nested type of the outer type, this
/// generated name will most likely be unique.
ImportedName getClangDeclName(const clang::TagDecl *decl,
Optional<ImportedName> &correctSwiftName) {
// If we have a name for this declaration, use it.
if (auto name = importFullName(decl, correctSwiftName))
return name;
// If that didn't succeed, check whether this is an anonymous tag declaration
// with a corresponding typedef-name declaration.
if (decl->getDeclName().isEmpty()) {
if (auto *typedefForAnon = decl->getTypedefNameForAnonDecl())
return importFullName(typedefForAnon, correctSwiftName);
}
if (!decl->isRecord())
return ImportedName();
// If the type has no name and no structure name, but is not anonymous,
// generate a name for it. Specifically this is for cases like:
// struct a {
// struct {} z;
// }
// Where the member z is an unnamed struct, but does have a member-name
// and is accessible as a member of struct a.
correctSwiftName = None;
if (auto recordDecl = dyn_cast<clang::RecordDecl>(
decl->getLexicalDeclContext())) {
for (auto field : recordDecl->fields()) {
if (field->getType()->getAsTagDecl() == decl) {
// Create a name for the declaration from the field name.
std::string Id;
llvm::raw_string_ostream IdStream(Id);
const char *kind;
if (decl->isStruct())
kind = "struct";
else if (decl->isUnion())
kind = "union";
else
llvm_unreachable("unknown decl kind");
IdStream << "__Unnamed_" << kind << "_";
if (field->isAnonymousStructOrUnion()) {
IdStream << "__Anonymous_field" << field->getFieldIndex();
} else {
IdStream << field->getName();
}
ImportedName Result;
Result.setDeclName(Impl.SwiftContext.getIdentifier(IdStream.str()));
Result.setEffectiveContext(decl->getDeclContext());
return Result;
}
}
}
return ImportedName();
}
bool isFactoryInit(ImportedName &name) {
return name &&
name.getDeclName().getBaseName() == Impl.SwiftContext.Id_init &&
(name.getInitKind() == CtorInitializerKind::Factory ||
name.getInitKind() == CtorInitializerKind::ConvenienceFactory);
}
public:
explicit SwiftDeclConverter(ClangImporter::Implementation &impl,
ImportNameVersion vers)
: Impl(impl), version(vers) { }
bool hadForwardDeclaration() const {
return forwardDeclaration;
}
Decl *VisitDecl(const clang::Decl *decl) {
return nullptr;
}
Decl *VisitTranslationUnitDecl(const clang::TranslationUnitDecl *decl) {
// Note: translation units are handled specially by importDeclContext.
return nullptr;
}
Decl *VisitNamespaceDecl(const clang::NamespaceDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitUsingDirectiveDecl(const clang::UsingDirectiveDecl *decl) {
// Never imported.
return nullptr;
}
Decl *VisitNamespaceAliasDecl(const clang::NamespaceAliasDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitLabelDecl(const clang::LabelDecl *decl) {
// Labels are function-local, and therefore never imported.
return nullptr;
}
ClassDecl *importCFClassType(const clang::TypedefNameDecl *decl,
Identifier className, CFPointeeInfo info,
EffectiveClangContext effectiveContext);
/// Mark the given declaration as an older Swift version variant of the
/// current name.
void markAsVariant(Decl *decl, ImportedName correctSwiftName) {
// Types always import using the latest version. Make sure all names up
// to that version are considered available.
if (isa<TypeDecl>(decl)) {
cast<TypeAliasDecl>(decl)->markAsCompatibilityAlias();
if (getVersion() >= getActiveSwiftVersion())
return;
}
// TODO: some versions should be deprecated instead of unavailable
ASTContext &ctx = decl->getASTContext();
llvm::SmallString<64> renamed;
{
// Render a swift_name string.
llvm::raw_svector_ostream os(renamed);
// If we're importing a global as a member, we need to provide the
// effective context.
Impl.printSwiftName(
correctSwiftName, getActiveSwiftVersion(),
/*fullyQualified=*/correctSwiftName.importAsMember(), os);
}
DeclAttribute *attr;
if (isActiveSwiftVersion() || getVersion() == ImportNameVersion::raw()) {
// "Raw" is the Objective-C name, which was never available in Swift.
// Variants within the active version are usually declarations that
// have been superseded, like the accessors of a property.
attr = AvailableAttr::createPlatformAgnostic(
ctx, /*Message*/StringRef(), ctx.AllocateCopy(renamed.str()),
PlatformAgnosticAvailabilityKind::UnavailableInSwift);
} else {
unsigned majorVersion = getVersion().majorVersionNumber();
if (getVersion() < getActiveSwiftVersion()) {
// A Swift 2 name, for example, was obsoleted in Swift 3.
attr = AvailableAttr::createPlatformAgnostic(
ctx, /*Message*/StringRef(), ctx.AllocateCopy(renamed.str()),
PlatformAgnosticAvailabilityKind::SwiftVersionSpecific,
clang::VersionTuple(majorVersion + 1));
} else {
// Future names are introduced in their future version.
assert(getVersion() > getActiveSwiftVersion());
attr = new (ctx) AvailableAttr(
SourceLoc(), SourceRange(), PlatformKind::none,
/*Message*/StringRef(), ctx.AllocateCopy(renamed.str()),
/*Introduced*/clang::VersionTuple(majorVersion), SourceRange(),
/*Deprecated*/clang::VersionTuple(), SourceRange(),
/*Obsoleted*/clang::VersionTuple(), SourceRange(),
PlatformAgnosticAvailabilityKind::SwiftVersionSpecific,
/*Implicit*/false);
}
}
decl->getAttrs().add(attr);
decl->setImplicit();
}
/// Create a typealias for the name of a Clang type declaration in an
/// alternate version of Swift.
Decl *importCompatibilityTypeAlias(const clang::NamedDecl *decl,
ImportedName compatibilityName,
ImportedName correctSwiftName);
/// Create a swift_newtype struct corresponding to a typedef. Returns
/// nullptr if unable.
Decl *importSwiftNewtype(const clang::TypedefNameDecl *decl,
clang::SwiftNewtypeAttr *newtypeAttr,
DeclContext *dc, Identifier name);
Decl *VisitTypedefNameDecl(const clang::TypedefNameDecl *Decl) {
Optional<ImportedName> correctSwiftName;
auto importedName = importFullName(Decl, correctSwiftName);
auto Name = importedName.getDeclName().getBaseIdentifier();
if (Name.empty())
return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(Decl, importedName,
*correctSwiftName);
Type SwiftType;
if (Decl->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
bool IsError;
StringRef StdlibTypeName;
MappedTypeNameKind NameMapping;
std::tie(SwiftType, StdlibTypeName) =
getSwiftStdlibType(Decl, Name, Impl, &IsError, NameMapping);
if (IsError)
return nullptr;
// Import 'typedef struct __Blah *BlahRef;' and
// 'typedef const void *FooRef;' as CF types if they have the
// right attributes or match our list of known types.
if (!SwiftType) {
auto DC = Impl.importDeclContextOf(
Decl, importedName.getEffectiveContext());
if (!DC)
return nullptr;
if (auto pointee = CFPointeeInfo::classifyTypedef(Decl)) {
// If the pointee is a record, consider creating a class type.
if (pointee.isRecord()) {
auto swiftClass = importCFClassType(
Decl, Name, pointee, importedName.getEffectiveContext());
if (!swiftClass) return nullptr;
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] =
MappedTypeNameKind::DefineAndUse;
return swiftClass;
}
// If the pointee is another CF typedef, create an extra typealias
// for the name without "Ref", but not a separate type.
if (pointee.isTypedef()) {
auto underlying = cast_or_null<TypeDecl>(Impl.importDecl(
pointee.getTypedef(), getActiveSwiftVersion()));
if (!underlying)
return nullptr;
// Check for a newtype
if (auto newtypeAttr =
getSwiftNewtypeAttr(Decl, getVersion()))
if (auto newtype =
importSwiftNewtype(Decl, newtypeAttr, DC, Name))
return newtype;
// Create a typealias for this CF typedef.
TypeAliasDecl *typealias = nullptr;
typealias = Impl.createDeclWithClangNode<TypeAliasDecl>(
Decl, AccessLevel::Public,
Impl.importSourceLoc(Decl->getLocStart()),
SourceLoc(), Name,
Impl.importSourceLoc(Decl->getLocation()),
/*genericparams*/nullptr, DC);
typealias->setUnderlyingType(
underlying->getDeclaredInterfaceType());
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] =
MappedTypeNameKind::DefineAndUse;
return typealias;
}
// If the pointee is 'void', 'CFTypeRef', bring it
// in specifically as AnyObject.
if (pointee.isVoid()) {
// Create a typealias for this CF typedef.
TypeAliasDecl *typealias = nullptr;
typealias = Impl.createDeclWithClangNode<TypeAliasDecl>(
Decl, AccessLevel::Public,
Impl.importSourceLoc(Decl->getLocStart()),
SourceLoc(), Name,
Impl.importSourceLoc(Decl->getLocation()),
/*genericparams*/nullptr, DC);
typealias->setUnderlyingType(
Impl.SwiftContext.getAnyObjectType());
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] =
MappedTypeNameKind::DefineAndUse;
return typealias;
}
}
}
if (SwiftType) {
// Note that this typedef-name is special.
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] = NameMapping;
if (NameMapping == MappedTypeNameKind::DoNothing) {
// Record the remapping using the name of the Clang declaration.
// This will be useful for type checker diagnostics when
// a user tries to use the Objective-C/C type instead of the
// Swift type.
Impl.SwiftContext.RemappedTypes[Decl->getNameAsString()]
= SwiftType;
// Don't create an extra typealias in the imported module because
// doing so will cause confusion (or even lookup ambiguity) between
// the name in the imported module and the same name in the
// standard library.
if (auto *NAT = dyn_cast<NameAliasType>(SwiftType.getPointer()))
return NAT->getDecl();
auto *NTD = SwiftType->getAnyNominal();
assert(NTD);
return NTD;
}
}
}
auto DC =
Impl.importDeclContextOf(Decl, importedName.getEffectiveContext());
if (!DC)
return nullptr;
// Check for swift_newtype
if (!SwiftType)
if (auto newtypeAttr = getSwiftNewtypeAttr(Decl, getVersion()))
if (auto newtype = importSwiftNewtype(Decl, newtypeAttr, DC, Name))
return newtype;
if (!SwiftType) {
// Import typedefs of blocks as their fully-bridged equivalent Swift
// type. That matches how we want to use them in most cases. All other
// types should be imported in a non-bridged way.
clang::QualType ClangType = Decl->getUnderlyingType();
SwiftType = Impl.importType(ClangType,
ImportTypeKind::Typedef,
isInSystemModule(DC),
getTypedefBridgeability(ClangType),
OTK_Optional);
}
if (!SwiftType)
return nullptr;
auto Loc = Impl.importSourceLoc(Decl->getLocation());
auto Result = Impl.createDeclWithClangNode<TypeAliasDecl>(Decl,
AccessLevel::Public,
Impl.importSourceLoc(Decl->getLocStart()),
SourceLoc(), Name,
Loc,
/*genericparams*/nullptr, DC);
Result->setUnderlyingType(SwiftType);
// Make Objective-C's 'id' unavailable.
if (Impl.SwiftContext.LangOpts.EnableObjCInterop && isObjCId(Decl)) {
auto attr = AvailableAttr::createPlatformAgnostic(
Impl.SwiftContext,
"'id' is not available in Swift; use 'Any'", "",
PlatformAgnosticAvailabilityKind::UnavailableInSwift);
Result->getAttrs().add(attr);
}
return Result;
}
Decl *
VisitUnresolvedUsingTypenameDecl(const
clang::UnresolvedUsingTypenameDecl *decl) {
// Note: only occurs in templates.
return nullptr;
}
/// Import an NS_ENUM constant as a case of a Swift enum.
Decl *importEnumCase(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
EnumDecl *theEnum,
Decl *swift3Decl = nullptr);
/// Import an NS_OPTIONS constant as a static property of a Swift struct.
///
/// This is also used to import enum case aliases.
Decl *importOptionConstant(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
NominalTypeDecl *theStruct);
/// Import \p alias as an alias for the imported constant \p original.
///
/// This builds the getter in a way that's compatible with switch
/// statements. Changing the body here may require changing
/// TypeCheckPattern.cpp as well.
Decl *importEnumCaseAlias(Identifier name,
const clang::EnumConstantDecl *alias,
ValueDecl *original,
const clang::EnumDecl *clangEnum,
NominalTypeDecl *importedEnum,
DeclContext *importIntoDC = nullptr);
NominalTypeDecl *importAsOptionSetType(DeclContext *dc,
Identifier name,
const clang::EnumDecl *decl);
Decl *VisitEnumDecl(const clang::EnumDecl *decl) {
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
Optional<ImportedName> correctSwiftName;
auto importedName = getClangDeclName(decl, correctSwiftName);
if (!importedName)
return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
auto name = importedName.getDeclName().getBaseIdentifier();
// Create the enum declaration and record it.
StructDecl *errorWrapper = nullptr;
NominalTypeDecl *result;
auto enumInfo = Impl.getEnumInfo(decl);
auto enumKind = enumInfo.getKind();
switch (enumKind) {
case EnumKind::Constants: {
// There is no declaration. Rather, the type is mapped to the
// underlying type.
return nullptr;
}
case EnumKind::Unknown: {
// Compute the underlying type of the enumeration.
auto underlyingType = Impl.importType(decl->getIntegerType(),
ImportTypeKind::Enum,
isInSystemModule(dc),
Bridgeability::None);
if (!underlyingType)
return nullptr;
auto Loc = Impl.importSourceLoc(decl->getLocation());
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(decl,
AccessLevel::Public, Loc, name, Loc, None, nullptr, dc);
structDecl->computeType();
structDecl->setCheckedInheritanceClause();
auto options = getDefaultMakeStructRawValuedOptions();
options |= MakeStructRawValuedFlags::MakeUnlabeledValueInit;
options -= MakeStructRawValuedFlags::IsLet;
options -= MakeStructRawValuedFlags::IsImplicit;
makeStructRawValued(Impl, structDecl, underlyingType,
{KnownProtocolKind::RawRepresentable,
KnownProtocolKind::Equatable},
options, /*setterAccess=*/AccessLevel::Public);
result = structDecl;
break;
}
case EnumKind::Enum: {
auto &C = Impl.SwiftContext;
EnumDecl *nativeDecl;
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
if (declaredNative && nativeDecl)
return nativeDecl;
// Compute the underlying type.
auto underlyingType = Impl.importType(
decl->getIntegerType(), ImportTypeKind::Enum, isInSystemModule(dc),
Bridgeability::None);
if (!underlyingType)
return nullptr;
/// Basic information about the enum type we're building.
Identifier enumName = name;
DeclContext *enumDC = dc;
SourceLoc loc = Impl.importSourceLoc(decl->getLocStart());
// If this is an error enum, form the error wrapper type,
// which is a struct containing an NSError instance.
ProtocolDecl *bridgedNSError = nullptr;
ClassDecl *nsErrorDecl = nullptr;
ProtocolDecl *errorCodeProto = nullptr;
if (enumInfo.isErrorEnum() &&
(bridgedNSError =
C.getProtocol(KnownProtocolKind::BridgedStoredNSError)) &&
(nsErrorDecl = C.getNSErrorDecl()) &&
(errorCodeProto =
C.getProtocol(KnownProtocolKind::ErrorCodeProtocol))) {
// Create the wrapper struct.
errorWrapper = new (C) StructDecl(loc, name, loc, None, nullptr, dc);
errorWrapper->computeType();
errorWrapper->setValidationStarted();
errorWrapper->setAccess(AccessLevel::Public);
// Add inheritance clause.
addSynthesizedProtocolAttrs(Impl, errorWrapper,
{KnownProtocolKind::BridgedStoredNSError});
// Create the _nsError member.
// public let _nsError: NSError
auto nsErrorType = nsErrorDecl->getDeclaredInterfaceType();
auto nsErrorProp = new (C) VarDecl(/*IsStatic*/false,
VarDecl::Specifier::Let,
/*IsCaptureList*/false,
loc, C.Id_nsError, nsErrorType,
errorWrapper);
nsErrorProp->setImplicit();
nsErrorProp->setAccess(AccessLevel::Public);
nsErrorProp->setInterfaceType(nsErrorType);
nsErrorProp->setValidationStarted();
// Create a pattern binding to describe the variable.
Pattern *nsErrorPattern = createTypedNamedPattern(nsErrorProp);
auto nsErrorBinding = PatternBindingDecl::create(
C, loc, StaticSpellingKind::None, loc,
nsErrorPattern, nullptr, errorWrapper);
errorWrapper->addMember(nsErrorProp);
errorWrapper->addMember(nsErrorBinding);
// Create the _nsError initializer.
// public init(_nsError error: NSError)
VarDecl *members[1] = { nsErrorProp };
auto nsErrorInit = createValueConstructor(Impl, errorWrapper, members,
/*wantCtorParamNames=*/true,
/*wantBody=*/true);
errorWrapper->addMember(nsErrorInit);
// Add the domain error member.
// public static var _nsErrorDomain: String { return error-domain }
addErrorDomain(errorWrapper, enumInfo.getErrorDomain(), Impl);
// Note: the Code will be added after it's created.
// The enum itself will be nested within the error wrapper,
// and be named Code.
enumDC = errorWrapper;
enumName = C.Id_Code;
}
// Create the enumeration.
auto enumDecl = Impl.createDeclWithClangNode<EnumDecl>(
decl, AccessLevel::Public, loc, enumName,
Impl.importSourceLoc(decl->getLocation()), None, nullptr, enumDC);
enumDecl->computeType();
// Set up the C underlying type as its Swift raw type.
enumDecl->setRawType(underlyingType);
// Add the C name.
addObjCAttribute(enumDecl,
Impl.importIdentifier(decl->getIdentifier()));
// Add protocol declarations to the enum declaration.
SmallVector<TypeLoc, 2> inheritedTypes;
inheritedTypes.push_back(TypeLoc::withoutLoc(underlyingType));
enumDecl->setInherited(C.AllocateCopy(inheritedTypes));
enumDecl->setCheckedInheritanceClause();
if (errorWrapper) {
addSynthesizedProtocolAttrs(Impl, enumDecl,
{KnownProtocolKind::ErrorCodeProtocol,
KnownProtocolKind::RawRepresentable});
} else {
addSynthesizedProtocolAttrs(Impl, enumDecl,
{KnownProtocolKind::RawRepresentable});
}
// Provide custom implementations of the init(rawValue:) and rawValue
// conversions that just do a bitcast. We can't reliably filter a
// C enum without additional knowledge that the type has no
// undeclared values, and won't ever add cases.
auto rawValueConstructor = makeEnumRawValueConstructor(Impl, enumDecl);
auto varName = C.Id_rawValue;
auto rawValue = new (C) VarDecl(/*IsStatic*/false,
VarDecl::Specifier::Var,
/*IsCaptureList*/false,
SourceLoc(), varName, underlyingType,
enumDecl);
rawValue->setImplicit();
rawValue->setAccess(AccessLevel::Public);
rawValue->setSetterAccess(AccessLevel::Private);
rawValue->setInterfaceType(underlyingType);
rawValue->setValidationStarted();
// Create a pattern binding to describe the variable.
Pattern *varPattern = createTypedNamedPattern(rawValue);
auto rawValueBinding = PatternBindingDecl::create(
C, SourceLoc(), StaticSpellingKind::None, SourceLoc(),
varPattern, nullptr, enumDecl);
auto rawValueGetter = makeEnumRawValueGetter(Impl, enumDecl, rawValue);
enumDecl->addMember(rawValueConstructor);
enumDecl->addMember(rawValueGetter);
enumDecl->addMember(rawValue);
enumDecl->addMember(rawValueBinding);
addSynthesizedTypealias(enumDecl, C.Id_RawValue, underlyingType);
// If we have an error wrapper, finish it up now that its
// nested enum has been constructed.
if (errorWrapper) {
// Add the ErrorType alias:
// public typealias ErrorType
auto alias = Impl.createDeclWithClangNode<TypeAliasDecl>(
decl,
AccessLevel::Public, loc, SourceLoc(),
C.Id_ErrorType, loc,
/*genericparams=*/nullptr, enumDecl);
alias->setUnderlyingType(errorWrapper->getDeclaredInterfaceType());
enumDecl->addMember(alias);
// Add the 'Code' enum to the error wrapper.
errorWrapper->addMember(enumDecl);
Impl.addAlternateDecl(enumDecl, errorWrapper);
}
// The enumerators go into this enumeration.
result = enumDecl;
break;
}
case EnumKind::Options: {
result = importAsOptionSetType(dc, name, decl);
if (!result)
return nullptr;
// HACK: Make sure PrintAsObjC always omits the 'enum' tag for
// option set enums.
Impl.DeclsWithSuperfluousTypedefs.insert(decl);
break;
}
}
const clang::EnumDecl *canonicalClangDecl = decl->getCanonicalDecl();
Impl.ImportedDecls[{canonicalClangDecl, getVersion()}] = result;
// Import each of the enumerators.
bool addEnumeratorsAsMembers;
switch (enumKind) {
case EnumKind::Constants:
case EnumKind::Unknown:
addEnumeratorsAsMembers = false;
break;
case EnumKind::Options:
case EnumKind::Enum:
addEnumeratorsAsMembers = true;
break;
}
llvm::SmallDenseMap<const llvm::APSInt *,
PointerUnion<const clang::EnumConstantDecl *,
EnumElementDecl *>, 8,
APSIntRefDenseMapInfo> canonicalEnumConstants;
if (enumKind == EnumKind::Enum) {
for (auto constant : decl->enumerators()) {
if (Impl.isUnavailableInSwift(constant))
continue;
canonicalEnumConstants.insert({&constant->getInitVal(), constant});
}
}
auto contextIsEnum = [&](const ImportedName &name) -> bool {
EffectiveClangContext importContext = name.getEffectiveContext();
switch (importContext.getKind()) {
case EffectiveClangContext::DeclContext:
return importContext.getAsDeclContext() == canonicalClangDecl;
case EffectiveClangContext::TypedefContext: {
auto *typedefName = importContext.getTypedefName();
clang::QualType underlyingTy = typedefName->getUnderlyingType();
return underlyingTy->getAsTagDecl() == canonicalClangDecl;
}
case EffectiveClangContext::UnresolvedContext:
// Assume this is a context other than the enum.
return false;
}
};
for (auto constant : decl->enumerators()) {
Decl *enumeratorDecl = nullptr;
TinyPtrVector<Decl *> variantDecls;
switch (enumKind) {
case EnumKind::Constants:
case EnumKind::Unknown:
Impl.forEachDistinctName(constant,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
Decl *imported = Impl.importDecl(constant, nameVersion);
if (!imported)
return false;
if (nameVersion == getActiveSwiftVersion())
enumeratorDecl = imported;
else
variantDecls.push_back(imported);
return true;
});
break;
case EnumKind::Options:
Impl.forEachDistinctName(constant,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
if (!contextIsEnum(newName))
return true;
SwiftDeclConverter converter(Impl, nameVersion);
Decl *imported =
converter.importOptionConstant(constant, decl, result);
if (!imported)
return false;
if (nameVersion == getActiveSwiftVersion())
enumeratorDecl = imported;
else
variantDecls.push_back(imported);
return true;
});
break;
case EnumKind::Enum: {
auto canonicalCaseIter =
canonicalEnumConstants.find(&constant->getInitVal());
if (canonicalCaseIter == canonicalEnumConstants.end()) {
// Unavailable declarations get no special treatment.
enumeratorDecl =
SwiftDeclConverter(Impl, getActiveSwiftVersion())
.importEnumCase(constant, decl, cast<EnumDecl>(result));
} else {
const clang::EnumConstantDecl *unimported =
canonicalCaseIter->
second.dyn_cast<const clang::EnumConstantDecl *>();
// Import the canonical enumerator for this case first.
if (unimported) {
enumeratorDecl = SwiftDeclConverter(Impl, getActiveSwiftVersion())
.importEnumCase(unimported, decl, cast<EnumDecl>(result));
if (enumeratorDecl) {
canonicalCaseIter->getSecond() =
cast<EnumElementDecl>(enumeratorDecl);
}
} else {
enumeratorDecl =
canonicalCaseIter->second.get<EnumElementDecl *>();
}
if (unimported != constant && enumeratorDecl) {
ImportedName importedName =
Impl.importFullName(constant, getActiveSwiftVersion());
Identifier name = importedName.getDeclName().getBaseIdentifier();
if (name.empty()) {
// Clear the existing declaration so we don't try to process it
// twice later.
enumeratorDecl = nullptr;
} else {
auto original = cast<ValueDecl>(enumeratorDecl);
enumeratorDecl = importEnumCaseAlias(name, constant, original,
decl, result);
}
}
}
Impl.forEachDistinctName(constant,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
if (nameVersion == getActiveSwiftVersion())
return true;
if (!contextIsEnum(newName))
return true;
SwiftDeclConverter converter(Impl, nameVersion);
Decl *imported =
converter.importEnumCase(constant, decl, cast<EnumDecl>(result),
enumeratorDecl);
if (!imported)
return false;
variantDecls.push_back(imported);
return true;
});
break;
}
}
if (!enumeratorDecl)
continue;
if (addEnumeratorsAsMembers) {
// Add a member enumerator to the given nominal type.
auto addDecl = [&](NominalTypeDecl *nominal, Decl *decl) {
if (!decl) return;
nominal->addMember(decl);
if (auto *var = dyn_cast<VarDecl>(decl))
nominal->addMember(var->getGetter());
};
addDecl(result, enumeratorDecl);
for (auto *variant : variantDecls)
addDecl(result, variant);
// If there is an error wrapper, add an alias within the
// wrapper to the corresponding value within the enumerator
// context.
if (errorWrapper) {
auto enumeratorValue = cast<ValueDecl>(enumeratorDecl);
auto name = enumeratorValue->getBaseName().getIdentifier();
auto alias = importEnumCaseAlias(name,
constant,
enumeratorValue,
decl,
result,
errorWrapper);
addDecl(errorWrapper, alias);
}
}
}
// Add the type decl to ExternalDefinitions so that we can type-check
// raw values and SILGen can emit witness tables for derived conformances.
// FIXME: There might be better ways to do this.
Impl.registerExternalDecl(result);
if (errorWrapper)
Impl.registerExternalDecl(errorWrapper);
return result;
}
Decl *VisitRecordDecl(const clang::RecordDecl *decl) {
// Track whether this record contains fields we can't reference in Swift
// as stored properties.
bool hasUnreferenceableStorage = false;
// Track whether this record contains fields that can't be zero-
// initialized.
bool hasZeroInitializableStorage = true;
// Track whether all fields in this record can be referenced in Swift,
// either as stored or computed properties, in which case the record type
// gets a memberwise initializer.
bool hasMemberwiseInitializer = true;
if (decl->isUnion()) {
hasUnreferenceableStorage = true;
// We generate initializers specially for unions below.
hasMemberwiseInitializer = false;
}
// FIXME: Skip Microsoft __interfaces.
if (decl->isInterface())
return nullptr;
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
// Import the name.
Optional<ImportedName> correctSwiftName;
auto importedName = getClangDeclName(decl, correctSwiftName);
if (!importedName)
return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
// Create the struct declaration and record it.
auto name = importedName.getDeclName().getBaseIdentifier();
auto result = Impl.createDeclWithClangNode<StructDecl>(decl,
AccessLevel::Public,
Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
None, nullptr, dc);
result->computeType();
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
// FIXME: Figure out what to do with superclasses in C++. One possible
// solution would be to turn them into members and add conversion
// functions.
// Import each of the members.
SmallVector<VarDecl *, 4> members;
SmallVector<ConstructorDecl *, 4> ctors;
// FIXME: Import anonymous union fields and support field access when
// it is nested in a struct.
for (auto m : decl->decls()) {
auto nd = dyn_cast<clang::NamedDecl>(m);
if (!nd) {
// We couldn't import the member, so we can't reference it in Swift.
hasUnreferenceableStorage = true;
hasMemberwiseInitializer = false;
continue;
}
if (auto field = dyn_cast<clang::FieldDecl>(nd)) {
// Non-nullable pointers can't be zero-initialized.
if (auto nullability = field->getType()
->getNullability(Impl.getClangASTContext())) {
if (*nullability == clang::NullabilityKind::NonNull)
hasZeroInitializableStorage = false;
}
// TODO: If we had the notion of a closed enum with no private
// cases or resilience concerns, then complete NS_ENUMs with
// no case corresponding to zero would also not be zero-
// initializable.
// Unnamed bitfields are just for padding and should not
// inhibit creation of a memberwise initializer.
if (field->isUnnamedBitfield()) {
hasUnreferenceableStorage = true;
continue;
}
}
auto member = Impl.importDecl(nd, getActiveSwiftVersion());
if (!member) {
if (!isa<clang::TypeDecl>(nd)) {
// We don't know what this field is.
// Assume it may be important in C.
hasUnreferenceableStorage = true;
hasMemberwiseInitializer = false;
}
continue;
}
if (isa<TypeDecl>(member)) {
// A struct nested inside another struct will either be logically
// a sibling of the outer struct, or contained inside of it, depending
// on if it has a declaration name or not.
//
// struct foo { struct bar { ... } baz; } // sibling
// struct foo { struct { ... } baz; } // child
//
// In the latter case, we add the imported type as a nested type
// of the parent.
//
// TODO: C++ types have different rules.
if (auto nominalDecl = dyn_cast<NominalTypeDecl>(member->getDeclContext())) {
assert(nominalDecl == result && "interesting nesting of C types?");
nominalDecl->addMember(member);
}
continue;
}
auto VD = cast<VarDecl>(member);
if (isa<clang::IndirectFieldDecl>(nd) || decl->isUnion()) {
// Don't import unavailable fields that have no associated storage.
if (VD->getAttrs().isUnavailable(Impl.SwiftContext)) {
continue;
}
}
members.push_back(VD);
// Bitfields are imported as computed properties with Clang-generated
// accessors.
if (auto field = dyn_cast<clang::FieldDecl>(nd)) {
if (field->isBitField()) {
// We can't represent this struct completely in SIL anymore,
// but we're still able to define a memberwise initializer.
hasUnreferenceableStorage = true;
makeBitFieldAccessors(Impl,
const_cast<clang::RecordDecl *>(decl),
result,
const_cast<clang::FieldDecl *>(field),
VD);
}
}
if (auto ind = dyn_cast<clang::IndirectFieldDecl>(nd)) {
// Indirect fields are created as computed property accessible the
// fields on the anonymous field from which they are injected.
makeIndirectFieldAccessors(Impl, ind, members, result, VD);
} else if (decl->isUnion()) {
// Union fields should only be available indirectly via a computed
// property. Since the union is made of all of the fields at once,
// this is a trivial accessor that casts self to the correct
// field type.
makeUnionFieldAccessors(Impl, result, VD);
// Create labeled initializers for unions that take one of the
// fields, which only initializes the data for that field.
auto valueCtor =
createValueConstructor(Impl, result, VD,
/*want param names*/true,
/*wantBody=*/!Impl.hasFinishedTypeChecking());
ctors.push_back(valueCtor);
}
}
bool hasReferenceableFields = !members.empty();
if (hasZeroInitializableStorage) {
// Add constructors for the struct.
ctors.push_back(createDefaultConstructor(Impl, result));
if (hasReferenceableFields && hasMemberwiseInitializer) {
// The default zero initializer suppresses the implicit value
// constructor that would normally be formed, so we have to add that
// explicitly as well.
//
// If we can completely represent the struct in SIL, leave the body
// implicit, otherwise synthesize one to call property setters.
bool wantBody = (hasUnreferenceableStorage &&
!Impl.hasFinishedTypeChecking());
auto valueCtor = createValueConstructor(Impl, result, members,
/*want param names*/true,
/*want body*/wantBody);
if (!hasUnreferenceableStorage)
valueCtor->setIsMemberwiseInitializer();
ctors.push_back(valueCtor);
}
}
for (auto member : members) {
result->addMember(member);
}
for (auto ctor : ctors) {
result->addMember(ctor);
}
result->setHasUnreferenceableStorage(hasUnreferenceableStorage);
// Add the struct decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.registerExternalDecl(result);
return result;
}
Decl *VisitClassTemplateSpecializationDecl(
const clang::ClassTemplateSpecializationDecl *decl) {
// FIXME: We could import specializations, but perhaps only as unnamed
// structural types.
return nullptr;
}
Decl *VisitClassTemplatePartialSpecializationDecl(
const clang::ClassTemplatePartialSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateTypeParmDecl(const clang::TemplateTypeParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitEnumConstantDecl(const clang::EnumConstantDecl *decl) {
auto clangEnum = cast<clang::EnumDecl>(decl->getDeclContext());
Optional<ImportedName> correctSwiftName;
auto importedName = importFullName(decl, correctSwiftName);
if (!importedName) return nullptr;
auto name = importedName.getDeclName().getBaseIdentifier();
if (name.empty())
return nullptr;
switch (Impl.getEnumKind(clangEnum)) {
case EnumKind::Constants: {
// The enumeration was simply mapped to an integral type. Create a
// constant with that integral type.
// The context where the constant will be introduced.
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
// Enumeration type.
auto &clangContext = Impl.getClangASTContext();
auto type = Impl.importType(clangContext.getTagDeclType(clangEnum),
ImportTypeKind::Value,
isInSystemModule(dc),
Bridgeability::None);
if (!type)
return nullptr;
// FIXME: Importing the type will recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
if (auto Known = Impl.importDeclCached(decl, getVersion()))
return Known;
// Create the global constant.
auto result = Impl.createConstant(name, dc, type,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Coerce,
/*static*/dc->isTypeContext(), decl);
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
case EnumKind::Unknown: {
// The enumeration was mapped to a struct containing the integral
// type. Create a constant with that struct type.
// The context where the constant will be introduced.
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
// Import the enumeration type.
auto enumType = Impl.importType(
Impl.getClangASTContext().getTagDeclType(clangEnum),
ImportTypeKind::Value,
isInSystemModule(dc),
Bridgeability::None);
if (!enumType)
return nullptr;
// FIXME: Importing the type will can recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
if (auto Known = Impl.importDeclCached(decl, getVersion()))
return Known;
// Create the global constant.
auto result = Impl.createConstant(name, dc, enumType,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Construction,
/*static*/ false, decl);
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
case EnumKind::Enum:
case EnumKind::Options: {
// The enumeration was mapped to a high-level Swift type, and its
// elements were created as children of that enum. They aren't available
// independently.
// FIXME: This is gross. We shouldn't have to import
// everything to get at the individual constants.
return nullptr;
}
}
llvm_unreachable("Invalid EnumKind.");
}
Decl *
VisitUnresolvedUsingValueDecl(const clang::UnresolvedUsingValueDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitIndirectFieldDecl(const clang::IndirectFieldDecl *decl) {
Optional<ImportedName> correctSwiftName;
auto importedName = importFullName(decl, correctSwiftName);
if (!importedName) return nullptr;
auto name = importedName.getDeclName().getBaseIdentifier();
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
auto type = Impl.importType(decl->getType(),
ImportTypeKind::Variable,
isInSystemModule(dc),
Bridgeability::None);
if (!type)
return nullptr;
// Map this indirect field to a Swift variable.
auto result = Impl.createDeclWithClangNode<VarDecl>(decl,
AccessLevel::Public,
/*IsStatic*/false,
VarDecl::Specifier::Var,
/*IsCaptureList*/false,
Impl.importSourceLoc(decl->getLocStart()),
name, dc->mapTypeIntoContext(type), dc);
result->setInterfaceType(type);
// If this is a compatibility stub, mark is as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
ParameterList *getNonSelfParamList(
DeclContext *dc, const clang::FunctionDecl *decl,
Optional<unsigned> selfIdx, ArrayRef<Identifier> argNames,
bool allowNSUIntegerAsInt, bool isAccessor) {
if (bool(selfIdx)) {
assert(((decl->getNumParams() == argNames.size() + 1) || isAccessor) &&
(*selfIdx < decl->getNumParams()) && "where's self?");
} else {
assert(decl->getNumParams() == argNames.size() || isAccessor);
}
SmallVector<const clang::ParmVarDecl *, 4> nonSelfParams;
for (unsigned i = 0; i < decl->getNumParams(); ++i) {
if (selfIdx && i == *selfIdx)
continue;
nonSelfParams.push_back(decl->getParamDecl(i));
}
return Impl.importFunctionParameterList(dc, decl, nonSelfParams,
decl->isVariadic(),
allowNSUIntegerAsInt, argNames);
}
Decl *importGlobalAsInitializer(const clang::FunctionDecl *decl,
DeclName name, DeclContext *dc,
CtorInitializerKind initKind,
Optional<ImportedName> correctSwiftName);
Decl *importGlobalAsMethod(const clang::FunctionDecl *decl, DeclName name,
DeclContext *dc, Optional<unsigned> selfIdx,
Optional<ImportedName> correctSwiftName);
/// Create an implicit property given the imported name of one of
/// the accessors.
VarDecl *getImplicitProperty(ImportedName importedName,
const clang::FunctionDecl *accessor);
Decl *VisitFunctionDecl(const clang::FunctionDecl *decl) {
// Import the name of the function.
Optional<ImportedName> correctSwiftName;
auto importedName = importFullName(decl, correctSwiftName);
if (!importedName)
return nullptr;
AbstractStorageDecl *owningStorage;
switch (importedName.getAccessorKind()) {
case ImportedAccessorKind::None:
owningStorage = nullptr;
break;
case ImportedAccessorKind::SubscriptGetter:
case ImportedAccessorKind::SubscriptSetter:
llvm_unreachable("Not possible for a function");
case ImportedAccessorKind::PropertyGetter: {
auto property = getImplicitProperty(importedName, decl);
if (!property) return nullptr;
return property->getGetter();
}
case ImportedAccessorKind::PropertySetter:
auto property = getImplicitProperty(importedName, decl);
if (!property) return nullptr;
return property->getSetter();
}
return importFunctionDecl(decl, importedName, correctSwiftName, nullptr);
}
Decl *importFunctionDecl(const clang::FunctionDecl *decl,
ImportedName importedName,
Optional<ImportedName> correctSwiftName,
AbstractStorageDecl *owningStorage) {
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
DeclName name = owningStorage ? DeclName() : importedName.getDeclName();
if (importedName.importAsMember()) {
// Handle initializers.
if (name.getBaseName() == Impl.SwiftContext.Id_init)
return importGlobalAsInitializer(decl, name, dc,
importedName.getInitKind(),
correctSwiftName);
// Everything else is a method.
return importGlobalAsMethod(decl, name, dc,
importedName.getSelfIndex(),
correctSwiftName);
}
// Import the function type. If we have parameters, make sure their names
// get into the resulting function type.
ParameterList *bodyParams = nullptr;
Type type = Impl.importFunctionType(dc,
decl,
{ decl->param_begin(),
decl->param_size() },
decl->isVariadic(),
isInSystemModule(dc),
name, bodyParams);
if (!type)
return nullptr;
auto resultTy = type->castTo<FunctionType>()->getResult();
auto loc = Impl.importSourceLoc(decl->getLocation());
if (name && name.isSimpleName()) {
assert(importedName.hasCustomName() &&
"imported function with simple name?");
// Just fill in empty argument labels.
name = DeclName(Impl.SwiftContext, name.getBaseName(), bodyParams);
}
// FIXME: Poor location info.
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
auto result = FuncDecl::create(
Impl.SwiftContext, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/loc, name, nameLoc,
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, bodyParams,
TypeLoc::withoutLoc(resultTy), dc, decl);
result->setInterfaceType(type);
result->setValidationStarted();
// Someday, maybe this will need to be 'open' for C++ virtual methods.
result->setAccess(AccessLevel::Public);
finishFuncDecl(decl, result);
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
void finishFuncDecl(const clang::FunctionDecl *decl,
AbstractFunctionDecl *result) {
// Keep track of inline function bodies so that we can generate
// IR from them using Clang's IR generator.
if ((decl->isInlined() || decl->hasAttr<clang::AlwaysInlineAttr>() ||
!decl->isExternallyVisible()) &&
decl->hasBody()) {
Impl.registerExternalDecl(result);
}
// Set availability.
if (decl->isVariadic()) {
Impl.markUnavailable(result, "Variadic function is unavailable");
}
if (decl->hasAttr<clang::ReturnsTwiceAttr>()) {
// The Clang 'returns_twice' attribute is used for functions like
// 'vfork' or 'setjmp'. Because these functions may return control flow
// of a Swift program to an arbitrary point, Swift's guarantees of
// definitive initialization of variables cannot be upheld. As a result,
// functions like these cannot be used in Swift.
Impl.markUnavailable(
result,
"Functions that may return more than one time (annotated with the "
"'returns_twice' attribute) are unavailable in Swift");
}
}
Decl *VisitCXXMethodDecl(const clang::CXXMethodDecl *decl) {
// FIXME: Import C++ member functions as methods.
return nullptr;
}
Decl *VisitFieldDecl(const clang::FieldDecl *decl) {
// Fields are imported as variables.
Optional<ImportedName> correctSwiftName;
ImportedName importedName;
if (!decl->isAnonymousStructOrUnion()) {
importedName = importFullName(decl, correctSwiftName);
if (!importedName) {
return nullptr;
}
} else {
// Generate a field name for anonymous fields, this will be used in
// order to be able to expose the indirect fields injected from there
// as computed properties forwarding the access to the subfield.
std::string Id;
llvm::raw_string_ostream IdStream(Id);
IdStream << "__Anonymous_field" << decl->getFieldIndex();
importedName.setDeclName(Impl.SwiftContext.getIdentifier(IdStream.str()));
importedName.setEffectiveContext(decl->getDeclContext());
}
auto name = importedName.getDeclName().getBaseIdentifier();
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
auto type = Impl.importType(decl->getType(),
ImportTypeKind::RecordField,
isInSystemModule(dc),
Bridgeability::None);
if (!type)
return nullptr;
auto result =
Impl.createDeclWithClangNode<VarDecl>(decl, AccessLevel::Public,
/*IsStatic*/ false,
VarDecl::Specifier::Var,
/*IsCaptureList*/false,
Impl.importSourceLoc(decl->getLocation()),
name, dc->mapTypeIntoContext(type), dc);
result->setInterfaceType(type);
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getAttrs().add(
new (Impl.SwiftContext) IBOutletAttr(/*IsImplicit=*/false));
// FIXME: Handle IBOutletCollection.
// If this is a compatibility stub, handle it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
Decl *VisitObjCIvarDecl(const clang::ObjCIvarDecl *decl) {
// Disallow direct ivar access (and avoid conflicts with property names).
return nullptr;
}
Decl *VisitObjCAtDefsFieldDecl(const clang::ObjCAtDefsFieldDecl *decl) {
// @defs is an anachronism; ignore it.
return nullptr;
}
Decl *VisitVarDecl(const clang::VarDecl *decl) {
// FIXME: Swift does not have static variables in structs/classes yet.
if (decl->getDeclContext()->isRecord())
return nullptr;
// Variables are imported as... variables.
Optional<ImportedName> correctSwiftName;
auto importedName = importFullName(decl, correctSwiftName);
if (!importedName) return nullptr;
auto name = importedName.getDeclName().getBaseIdentifier();
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
// If the declaration is const, consider it audited.
// We can assume that loading a const global variable doesn't
// involve an ownership transfer.
bool isAudited = decl->getType().isConstQualified();
auto declType = decl->getType();
// Special case: NS Notifications
if (isNSNotificationGlobal(decl))
if (auto newtypeDecl = findSwiftNewtype(decl, Impl.getClangSema(),
Impl.CurrentVersion))
declType = Impl.getClangASTContext().getTypedefType(newtypeDecl);
// Note that we deliberately don't bridge most globals because we want to
// preserve pointer identity.
Type type = Impl.importType(declType,
(isAudited ? ImportTypeKind::AuditedVariable
: ImportTypeKind::Variable),
isInSystemModule(dc),
Bridgeability::None);
if (!type)
return nullptr;
// If we've imported this variable as a member, it's a static
// member.
bool isStatic = false;
if (dc->isTypeContext())
isStatic = true;
auto specifier = Impl.shouldImportGlobalAsLet(decl->getType())
? VarDecl::Specifier::Let
: VarDecl::Specifier::Var;
auto result = Impl.createDeclWithClangNode<VarDecl>(decl,
AccessLevel::Public,
/*IsStatic*/isStatic,
specifier,
/*IsCaptureList*/false,
Impl.importSourceLoc(decl->getLocation()),
name, dc->mapTypeIntoContext(type), dc);
result->setInterfaceType(type);
// If imported as member, the member should be final.
if (dc->getAsClassOrClassExtensionContext())
result->getAttrs().add(new (Impl.SwiftContext)
FinalAttr(/*IsImplicit=*/true));
if (!decl->hasExternalStorage())
Impl.registerExternalDecl(result);
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
Decl *VisitImplicitParamDecl(const clang::ImplicitParamDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *VisitParmVarDecl(const clang::ParmVarDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *
VisitNonTypeTemplateParmDecl(const clang::NonTypeTemplateParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateDecl(const clang::TemplateDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitUsingDecl(const clang::UsingDecl *decl) {
// Using declarations are not imported.
return nullptr;
}
Decl *VisitUsingShadowDecl(const clang::UsingShadowDecl *decl) {
// Using shadow declarations are not imported; rather, name lookup just
// looks through them.
return nullptr;
}
/// Add an @objc(name) attribute with the given, optional name expressed as
/// selector.
///
/// The importer should use this rather than adding the attribute directly.
void addObjCAttribute(ValueDecl *decl, Optional<ObjCSelector> name) {
auto &ctx = Impl.SwiftContext;
decl->getAttrs().add(ObjCAttr::create(ctx, name, /*implicitName=*/true));
// If the declaration we attached the 'objc' attribute to is within a
// class, record it in the class.
if (auto contextTy = decl->getDeclContext()->getDeclaredInterfaceType()) {
if (auto classDecl = contextTy->getClassOrBoundGenericClass()) {
if (auto method = dyn_cast<AbstractFunctionDecl>(decl)) {
classDecl->recordObjCMethod(method);
}
}
}
}
/// Add an @objc(name) attribute with the given, optional name expressed as
/// selector.
///
/// The importer should use this rather than adding the attribute directly.
void addObjCAttribute(ValueDecl *decl, Identifier name) {
addObjCAttribute(decl, ObjCSelector(Impl.SwiftContext, 0, name));
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl) {
auto dc = Impl.importDeclContextOf(decl, decl->getDeclContext());
if (!dc)
return nullptr;
// While importing the DeclContext, we might have imported the decl
// itself.
if (auto Known = Impl.importDeclCached(decl, getVersion()))
return Known;
return importObjCMethodDecl(decl, dc);
}
/// Check whether we have already imported a method with the given
/// selector in the given context.
bool methodAlreadyImported(ObjCSelector selector, bool isInstance,
DeclContext *dc) {
// We only need to perform this check for classes.
auto classDecl
= dc->getDeclaredInterfaceType()->getClassOrBoundGenericClass();
if (!classDecl)
return false;
// Make sure we don't search in Clang modules for this method.
++Impl.ActiveSelectors[{selector, isInstance}];
// Look for a matching imported or deserialized member.
bool result = false;
for (auto decl : classDecl->lookupDirect(selector, isInstance)) {
if (decl->getClangDecl()
|| !decl->getDeclContext()->getParentSourceFile()) {
result = true;
break;
}
}
// Restore the previous active count in the active-selector mapping.
auto activeCount = Impl.ActiveSelectors.find({selector, isInstance});
--activeCount->second;
if (activeCount->second == 0)
Impl.ActiveSelectors.erase(activeCount);
return result;
}
Decl *importObjCMethodDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc) {
return importObjCMethodDecl(decl, dc, false);
}
private:
Decl *importObjCMethodDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc,
bool forceClassMethod) {
// If we have an init method, import it as an initializer.
if (isInitMethod(decl)) {
// Cannot force initializers into class methods.
if (forceClassMethod)
return nullptr;
return importConstructor(decl, dc, /*implicit=*/false, None,
/*required=*/false);
}
// Check whether we already imported this method.
if (!forceClassMethod &&
dc == Impl.importDeclContextOf(decl, decl->getDeclContext())) {
// FIXME: Should also be able to do this for forced class
// methods.
auto known = Impl.ImportedDecls.find({decl->getCanonicalDecl(),
getVersion()});
if (known != Impl.ImportedDecls.end())
return known->second;
}
// Check whether another method with the same selector has already been
// imported into this context.
ObjCSelector selector = Impl.importSelector(decl->getSelector());
bool isInstance = decl->isInstanceMethod() && !forceClassMethod;
if (isActiveSwiftVersion() &&
methodAlreadyImported(selector, isInstance, dc))
return nullptr;
ImportedName importedName;
Optional<ImportedName> correctSwiftName;
importedName = importFullName(decl, correctSwiftName);
if (!importedName)
return nullptr;
// Normal case applies when we're importing an older name, or when we're
// not an init
if (!isActiveSwiftVersion() || !isFactoryInit(importedName)) {
auto result = importNonInitObjCMethodDecl(decl, dc, importedName,
selector, forceClassMethod);
if (!isActiveSwiftVersion() && result)
markAsVariant(result, *correctSwiftName);
return result;
}
// We don't want to suppress init formation in Swift 3 names. Instead, we
// want the normal Swift 3 name, and a "raw" name for diagnostics. The
// "raw" name will be imported as unavailable with a more helpful and
// specific message.
++NumFactoryMethodsAsInitializers;
bool redundant = false;
auto result =
importConstructor(decl, dc, false, importedName.getInitKind(),
/*required=*/false, selector, importedName,
{decl->param_begin(), decl->param_size()},
decl->isVariadic(), redundant);
return result;
}
Decl *importNonInitObjCMethodDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc,
ImportedName importedName,
ObjCSelector selector,
bool forceClassMethod) {
assert(dc->isTypeContext() && "Method in non-type context?");
assert(isa<ClangModuleUnit>(dc->getModuleScopeContext()) &&
"Clang method in Swift context?");
// FIXME: We should support returning "Self.Type" for a root class
// instance method mirrored as a class method, but it currently causes
// problems for the type checker.
if (forceClassMethod && decl->hasRelatedResultType())
return nullptr;
// Hack: avoid importing methods named "print" that aren't available in
// the current version of Swift. We'd rather just let the user use
// Swift.print in that case.
if (!isActiveSwiftVersion() &&
isPrintLikeMethod(importedName.getDeclName(), dc)) {
return nullptr;
}
// Add the implicit 'self' parameter patterns.
bool isInstance = decl->isInstanceMethod() && !forceClassMethod;
SmallVector<ParameterList *, 4> bodyParams;
auto selfVar =
ParamDecl::createSelf(SourceLoc(), dc, /*isStatic*/!isInstance);
bodyParams.push_back(ParameterList::createWithoutLoc(selfVar));
Type selfInterfaceType = dc->getSelfInterfaceType();
if (!isInstance) {
selfInterfaceType = MetatypeType::get(selfInterfaceType);
}
SpecialMethodKind kind = SpecialMethodKind::Regular;
if (isNSDictionaryMethod(decl, Impl.objectForKeyedSubscript))
kind = SpecialMethodKind::NSDictionarySubscriptGetter;
// Import the type that this method will have.
Optional<ForeignErrorConvention> errorConvention;
bodyParams.push_back(nullptr);
Type type;
// If we have a property accessor, find the corresponding property
// declaration.
const clang::ObjCPropertyDecl *prop = nullptr;
if (decl->isPropertyAccessor()) {
prop = decl->findPropertyDecl();
if (!prop) return nullptr;
// If we're importing just the accessors (not the property), ignore
// the property.
if (shouldImportPropertyAsAccessors(prop))
prop = nullptr;
}
if (prop) {
// If the matching property is in a superclass, or if the getter and
// setter are redeclared in a potentially incompatible way, bail out.
if (prop->getGetterMethodDecl() != decl &&
prop->getSetterMethodDecl() != decl)
return nullptr;
type = Impl.importAccessorMethodType(dc, prop, decl,
isInSystemModule(dc), importedName,
&bodyParams.back());
} else {
type = Impl.importMethodType(dc, decl, decl->parameters(),
decl->isVariadic(), isInSystemModule(dc),
&bodyParams.back(), importedName,
errorConvention, kind);
}
if (!type)
return nullptr;
// Check whether we recursively imported this method
if (!forceClassMethod &&
dc == Impl.importDeclContextOf(decl, decl->getDeclContext())) {
// FIXME: Should also be able to do this for forced class
// methods.
auto known = Impl.ImportedDecls.find({decl->getCanonicalDecl(),
getVersion()});
if (known != Impl.ImportedDecls.end())
return known->second;
}
auto result = FuncDecl::create(
Impl.SwiftContext, /*StaticLoc=*/SourceLoc(),
StaticSpellingKind::None, /*FuncLoc=*/SourceLoc(),
importedName.getDeclName(), /*NameLoc=*/SourceLoc(),
/*Throws=*/importedName.getErrorInfo().hasValue(),
/*ThrowsLoc=*/SourceLoc(), /*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, bodyParams, TypeLoc(), dc, decl);
result->setAccess(getOverridableAccessLevel(dc));
auto resultTy = type->castTo<FunctionType>()->getResult();
// If the method has a related result type that is representable
// in Swift as DynamicSelf, do so.
if (!prop && decl->hasRelatedResultType()) {
result->setDynamicSelf(true);
resultTy = DynamicSelfType::get(dc->getSelfInterfaceType(),
Impl.SwiftContext);
OptionalTypeKind nullability = OTK_ImplicitlyUnwrappedOptional;
if (auto typeNullability = decl->getReturnType()->getNullability(
Impl.getClangASTContext())) {
// If the return type has nullability, use it.
nullability = translateNullability(*typeNullability);
}
if (nullability != OTK_None && !errorConvention.hasValue()) {
resultTy = OptionalType::get(nullability, resultTy);
}
// Update the method type with the new result type.
auto methodTy = type->castTo<FunctionType>();
type = FunctionType::get(methodTy->getInput(), resultTy,
methodTy->getExtInfo());
}
// Add the 'self' parameter to the function type. NB. a method's formal
// type should be (Type) -> (Args...) -> Ret, not Type -> (Args...) ->
// Ret.
auto parenSelfType = ParenType::get(Impl.SwiftContext, selfInterfaceType);
type = FunctionType::get(parenSelfType, type);
auto interfaceType = getGenericMethodType(dc, type->castTo<AnyFunctionType>());
result->setInterfaceType(interfaceType);
result->setGenericEnvironment(dc->getGenericEnvironmentOfContext());
result->setValidationStarted();
// Optional methods in protocols.
if (decl->getImplementationControl() == clang::ObjCMethodDecl::Optional &&
isa<ProtocolDecl>(dc))
result->getAttrs().add(new (Impl.SwiftContext)
OptionalAttr(/*implicit*/false));
// Mark class methods as static.
if (decl->isClassMethod() || forceClassMethod)
result->setStatic();
if (forceClassMethod)
result->setImplicit();
// Mark this method @objc.
addObjCAttribute(result, selector);
// If this method overrides another method, mark it as such.
recordObjCOverride(result);
// Record the error convention.
if (errorConvention) {
result->setForeignErrorConvention(*errorConvention);
}
// Handle attributes.
if (decl->hasAttr<clang::IBActionAttr>() &&
isa<FuncDecl>(result) &&
cast<FuncDecl>(result)->isPotentialIBActionTarget()) {
result->getAttrs().add(
new (Impl.SwiftContext) IBActionAttr(/*IsImplicit=*/false));
}
// Check whether there's some special method to import.
if (!forceClassMethod) {
if (dc == Impl.importDeclContextOf(decl, decl->getDeclContext()) &&
!Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}])
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}]
= result;
if (importedName.isSubscriptAccessor()) {
// If this was a subscript accessor, try to create a
// corresponding subscript declaration.
(void)importSubscript(result, decl);
} else if (shouldAlsoImportAsClassMethod(result)) {
// If we should import this instance method also as a class
// method, do so and mark the result as an alternate
// declaration.
if (auto imported = importObjCMethodDecl(decl, dc,
/*forceClassMethod=*/true))
Impl.addAlternateDecl(result, cast<ValueDecl>(imported));
}
}
return result;
}
public:
/// Record the function or initializer overridden by the given Swift method.
void recordObjCOverride(AbstractFunctionDecl *decl);
/// \brief Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling object construction syntax, e.g.,
///
/// \code
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
/// NSArray(capacity: 1024)
/// \endcode
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc,
bool implicit,
Optional<CtorInitializerKind> kind,
bool required);
/// Returns the latest "introduced" version on the current platform for
/// \p D.
clang::VersionTuple findLatestIntroduction(const clang::Decl *D);
/// Returns true if importing \p objcMethod will produce a "better"
/// initializer than \p existingCtor.
bool
existingConstructorIsWorse(const ConstructorDecl *existingCtor,
const clang::ObjCMethodDecl *objcMethod,
CtorInitializerKind kind);
/// \brief Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling object construction syntax, e.g.,
///
/// \code
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
/// NSArray(capacity: 1024)
/// \endcode
///
/// This variant of the function is responsible for actually binding the
/// constructor declaration appropriately.
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc,
bool implicit,
Optional<CtorInitializerKind> kindIn,
bool required,
ObjCSelector selector,
ImportedName importedName,
ArrayRef<const clang::ParmVarDecl*> args,
bool variadic,
bool &redundant);
void recordObjCOverride(SubscriptDecl *subscript);
/// \brief Given either the getter or setter for a subscript operation,
/// create the Swift subscript declaration.
SubscriptDecl *importSubscript(Decl *decl,
const clang::ObjCMethodDecl *objcMethod);
/// Import the accessor and its attributes.
FuncDecl *importAccessor(clang::ObjCMethodDecl *clangAccessor,
DeclContext *dc);
public:
/// Recursively add the given protocol and its inherited protocols to the
/// given vector, guarded by the known set of protocols.
void addProtocols(ProtocolDecl *protocol,
SmallVectorImpl<ProtocolDecl *> &protocols,
llvm::SmallPtrSet<ProtocolDecl *, 4> &known);
// Import the given Objective-C protocol list, along with any
// implicitly-provided protocols, and attach them to the given
// declaration.
void importObjCProtocols(Decl *decl,
const clang::ObjCProtocolList &clangProtocols,
SmallVectorImpl<TypeLoc> &inheritedTypes);
/// Add conformances to the given Objective-C protocols to the
/// given declaration.
void addObjCProtocolConformances(Decl *decl,
ArrayRef<ProtocolDecl*> protocols);
// Returns None on error. Returns nullptr if there is no type param list to
// import or we suppress its import, as in the case of NSArray, NSSet, and
// NSDictionary.
Optional<GenericParamList *>
importObjCGenericParams(const clang::ObjCInterfaceDecl *decl,
DeclContext *dc);
/// \brief Import the members of all of the protocols to which the given
/// Objective-C class, category, or extension explicitly conforms into
/// the given list of members, so long as the method was not already
/// declared in the class.
///
/// FIXME: This whole thing is a hack, because name lookup should really
/// just find these members when it looks in the protocol. Unfortunately,
/// that's not something the name lookup code can handle right now, and
/// it may still be necessary when the protocol's instance methods become
/// class methods on a root class (e.g. NSObject-the-protocol's instance
/// methods become class methods on NSObject).
void importMirroredProtocolMembers(const clang::ObjCContainerDecl *decl,
DeclContext *dc,
ArrayRef<ProtocolDecl *> protocols,
SmallVectorImpl<Decl *> &members,
ASTContext &Ctx);
void importNonOverriddenMirroredMethods(DeclContext *dc,
MutableArrayRef<MirroredMethodEntry> entries,
SmallVectorImpl<Decl *> &newMembers);
/// \brief Import constructors from our superclasses (and their
/// categories/extensions), effectively "inheriting" constructors.
void importInheritedConstructors(ClassDecl *classDecl,
SmallVectorImpl<Decl *> &newMembers);
Decl *VisitObjCCategoryDecl(const clang::ObjCCategoryDecl *decl) {
// If the declaration is invalid, fail.
if (decl->isInvalidDecl()) return nullptr;
// Objective-C categories and extensions map to Swift extensions.
if (importer::hasNativeSwiftDecl(decl))
return nullptr;
// Find the Swift class being extended.
auto objcClass = castIgnoringCompatibilityAlias<ClassDecl>(
Impl.importDecl(decl->getClassInterface(), getActiveSwiftVersion()));
if (!objcClass)
return nullptr;
auto dc = Impl.importDeclContextOf(decl, decl->getDeclContext());
if (!dc)
return nullptr;
auto loc = Impl.importSourceLoc(decl->getLocStart());
auto result = ExtensionDecl::create(
Impl.SwiftContext, loc,
TypeLoc::withoutLoc(objcClass->getDeclaredType()),
{ }, dc, nullptr, decl);
// Determine the type and generic args of the extension.
if (objcClass->getGenericParams()) {
// Clone generic parameters.
SmallVector<GenericTypeParamDecl *, 2> toGenericParams;
for (auto fromGP : *objcClass->getGenericParams()) {
// Create the new generic parameter.
auto toGP = new (Impl.SwiftContext) GenericTypeParamDecl(
result, fromGP->getName(), SourceLoc(), fromGP->getDepth(),
fromGP->getIndex());
toGP->setImplicit(true);
toGP->setInherited(
Impl.SwiftContext.AllocateCopy(fromGP->getInherited()));
// Record new generic parameter.
toGenericParams.push_back(toGP);
}
auto genericParams = GenericParamList::create(Impl.SwiftContext,
SourceLoc(), toGenericParams, SourceLoc());
result->setGenericParams(genericParams);
auto *env = Impl.buildGenericEnvironment(genericParams, result);
result->setGenericEnvironment(env);
// Calculate the correct bound-generic extended type.
SmallVector<Type, 2> genericArgs;
for (auto paramTy :
env->getGenericSignature()->getInnermostGenericParams()) {
genericArgs.push_back(env->mapTypeIntoContext(paramTy));
}
Type extendedType =
BoundGenericClassType::get(objcClass, nullptr, genericArgs);
result->getExtendedTypeLoc().setType(extendedType);
}
// Create the extension declaration and record it.
objcClass->addExtension(result);
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
SmallVector<TypeLoc, 4> inheritedTypes;
importObjCProtocols(result, decl->getReferencedProtocols(),
inheritedTypes);
result->setValidationStarted();
result->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
result->setCheckedInheritanceClause();
result->setMemberLoader(&Impl, 0);
return result;
}
template <typename T, typename U>
T *resolveSwiftDeclImpl(const U *decl, Identifier name, ModuleDecl *adapter) {
const auto &languageVersion =
Impl.SwiftContext.LangOpts.EffectiveLanguageVersion;
SmallVector<ValueDecl *, 4> results;
adapter->lookupValue({}, name, NLKind::QualifiedLookup, results);
T *found = nullptr;
for (auto result : results) {
if (auto singleResult = dyn_cast<T>(result)) {
if (auto typeResolver = Impl.getTypeResolver())
typeResolver->resolveDeclSignature(singleResult);
// Skip versioned variants.
const DeclAttributes &attrs = singleResult->getAttrs();
if (attrs.isUnavailableInSwiftVersion(languageVersion))
continue;
if (found)
return nullptr;
found = singleResult;
}
}
if (found)
Impl.ImportedDecls[{decl->getCanonicalDecl(),
getActiveSwiftVersion()}] = found;
return found;
}
template <typename T, typename U>
T *resolveSwiftDecl(const U *decl, Identifier name,
ClangModuleUnit *clangModule) {
if (auto adapter = clangModule->getAdapterModule())
return resolveSwiftDeclImpl<T>(decl, name, adapter);
if (clangModule == Impl.ImportedHeaderUnit) {
// Use an index-based loop because new owners can come in as we're
// iterating.
for (size_t i = 0; i < Impl.ImportedHeaderOwners.size(); ++i) {
ModuleDecl *owner = Impl.ImportedHeaderOwners[i];
if (T *result = resolveSwiftDeclImpl<T>(decl, name, owner))
return result;
}
}
return nullptr;
}
template <typename T, typename U>
bool hasNativeSwiftDecl(const U *decl, Identifier name,
const DeclContext *dc, T *&swiftDecl) {
if (!importer::hasNativeSwiftDecl(decl))
return false;
auto wrapperUnit = cast<ClangModuleUnit>(dc->getModuleScopeContext());
swiftDecl = resolveSwiftDecl<T>(decl, name, wrapperUnit);
return true;
}
void markMissingSwiftDecl(ValueDecl *VD) {
const char *message;
if (isa<ClassDecl>(VD))
message = "cannot find Swift declaration for this class";
else if (isa<ProtocolDecl>(VD))
message = "cannot find Swift declaration for this protocol";
else
llvm_unreachable("unknown bridged decl kind");
auto attr = AvailableAttr::createPlatformAgnostic(Impl.SwiftContext,
message);
VD->getAttrs().add(attr);
}
Decl *VisitObjCProtocolDecl(const clang::ObjCProtocolDecl *decl) {
Optional<ImportedName> correctSwiftName;
auto importedName = importFullName(decl, correctSwiftName);
if (!importedName) return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
Identifier name = importedName.getDeclName().getBaseIdentifier();
// FIXME: Figure out how to deal with incomplete protocols, since that
// notion doesn't exist in Swift.
if (!decl->hasDefinition()) {
// Check if this protocol is implemented in its adapter.
if (auto clangModule = Impl.getClangModuleForDecl(decl, true))
if (auto native = resolveSwiftDecl<ProtocolDecl>(decl, name,
clangModule))
return native;
forwardDeclaration = true;
return nullptr;
}
decl = decl->getDefinition();
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
ProtocolDecl *nativeDecl;
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
if (declaredNative && nativeDecl)
return nativeDecl;
// Create the protocol declaration and record it.
auto result = Impl.createDeclWithClangNode<ProtocolDecl>(
decl, AccessLevel::Public, dc,
Impl.importSourceLoc(decl->getLocStart()),
Impl.importSourceLoc(decl->getLocation()), name, None,
/*TrailingWhere=*/nullptr);
result->computeType();
// FIXME: Kind of awkward that we have to do this here
result->getGenericParams()->getParams()[0]->setDepth(0);
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
if (declaredNative)
markMissingSwiftDecl(result);
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
result->setCircularityCheck(CircularityCheck::Checked);
// Import protocols this protocol conforms to.
SmallVector<TypeLoc, 4> inheritedTypes;
importObjCProtocols(result, decl->getReferencedProtocols(),
inheritedTypes);
result->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
result->setCheckedInheritanceClause();
// Compute the requirement signature.
if (!result->isRequirementSignatureComputed())
result->computeRequirementSignature();
auto *env = Impl.buildGenericEnvironment(result->getGenericParams(), dc);
result->setGenericEnvironment(env);
result->setMemberLoader(&Impl, 0);
// Add the protocol decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.registerExternalDecl(result);
return result;
}
// Add inferred attributes.
void addInferredAttributes(Decl *decl, unsigned attributes) {
using namespace inferred_attributes;
if (attributes & requires_stored_property_inits) {
auto a = new (Impl.SwiftContext)
RequiresStoredPropertyInitsAttr(/*IsImplicit=*/true);
decl->getAttrs().add(a);
cast<ClassDecl>(decl)->setRequiresStoredPropertyInits(true);
}
}
Decl *VisitObjCInterfaceDecl(const clang::ObjCInterfaceDecl *decl) {
auto createRootClass = [=](Identifier name,
DeclContext *dc = nullptr) -> ClassDecl * {
if (!dc) {
dc = Impl.getClangModuleForDecl(decl->getCanonicalDecl(),
/*allowForwardDeclaration=*/true);
}
auto result = Impl.createDeclWithClangNode<ClassDecl>(decl,
AccessLevel::Open,
SourceLoc(), name,
SourceLoc(), None,
nullptr, dc);
result->computeType();
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
result->setCircularityCheck(CircularityCheck::Checked);
result->setSuperclass(Type());
result->setCheckedInheritanceClause();
result->setAddedImplicitInitializers(); // suppress all initializers
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
result->addImplicitDestructor();
return result;
};
// Special case for Protocol, which gets forward-declared as an ObjC
// class which is hidden in modern Objective-C runtimes.
// We treat it as a foreign class (like a CF type) because it doesn't
// have a real public class object.
clang::ASTContext &clangCtx = Impl.getClangASTContext();
if (decl->getCanonicalDecl() ==
clangCtx.getObjCProtocolDecl()->getCanonicalDecl()) {
Type nsObjectTy = Impl.getNSObjectType();
if (!nsObjectTy)
return nullptr;
const ClassDecl *nsObjectDecl =
nsObjectTy->getClassOrBoundGenericClass();
auto result = createRootClass(Impl.SwiftContext.Id_Protocol,
nsObjectDecl->getDeclContext());
result->setForeignClassKind(ClassDecl::ForeignKind::RuntimeOnly);
return result;
}
if (auto *definition = decl->getDefinition())
decl = definition;
Optional<ImportedName> correctSwiftName;
auto importedName = importFullName(decl, correctSwiftName);
if (!importedName) return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
auto name = importedName.getDeclName().getBaseIdentifier();
if (!decl->hasDefinition()) {
// Check if this class is implemented in its adapter.
if (auto clangModule = Impl.getClangModuleForDecl(decl, true)) {
if (auto native = resolveSwiftDecl<ClassDecl>(decl, name,
clangModule)) {
return native;
}
}
if (Impl.ImportForwardDeclarations) {
// Fake it by making an unavailable opaque @objc root class.
auto result = createRootClass(name);
result->setImplicit();
auto attr = AvailableAttr::createPlatformAgnostic(Impl.SwiftContext,
"This Objective-C class has only been forward-declared; "
"import its owning module to use it");
result->getAttrs().add(attr);
return result;
}
forwardDeclaration = true;
return nullptr;
}
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
ClassDecl *nativeDecl;
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
if (declaredNative && nativeDecl)
return nativeDecl;
// Create the class declaration and record it.
auto result = Impl.createDeclWithClangNode<ClassDecl>(decl,
AccessLevel::Open,
Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
None, nullptr, dc);
// Import generic arguments, if any.
if (auto gpImportResult = importObjCGenericParams(decl, dc)) {
auto genericParams = *gpImportResult;
if (genericParams) {
result->setGenericParams(genericParams);
auto *env = Impl.buildGenericEnvironment(genericParams, dc);
result->setGenericEnvironment(env);
}
} else {
return nullptr;
}
result->computeType();
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
result->setCircularityCheck(CircularityCheck::Checked);
result->setAddedImplicitInitializers();
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
if (declaredNative)
markMissingSwiftDecl(result);
if (decl->getAttr<clang::ObjCRuntimeVisibleAttr>()) {
result->setForeignClassKind(ClassDecl::ForeignKind::RuntimeOnly);
}
// If this Objective-C class has a supertype, import it.
SmallVector<TypeLoc, 4> inheritedTypes;
Type superclassType;
if (decl->getSuperClass()) {
clang::QualType clangSuperclassType =
decl->getSuperClassType()->stripObjCKindOfTypeAndQuals(clangCtx);
clangSuperclassType =
clangCtx.getObjCObjectPointerType(clangSuperclassType);
superclassType = Impl.importType(clangSuperclassType,
ImportTypeKind::Abstract,
isInSystemModule(dc),
Bridgeability::None);
if (superclassType) {
assert(superclassType->is<ClassType>() ||
superclassType->is<BoundGenericClassType>());
inheritedTypes.push_back(TypeLoc::withoutLoc(superclassType));
}
}
result->setSuperclass(superclassType);
// Mark the class as runtime-only if it is named 'OS_object', even
// if it doesn't have the runtime-only Clang attribute. This is a
// targeted fix allowing IRGen to emit convenience initializers
// correctly.
//
// FIXME: Remove this once SILGen gets proper support for factory
// initializers.
if (decl->getName() == "OS_object" ||
decl->getName() == "OS_os_log") {
result->setForeignClassKind(ClassDecl::ForeignKind::RuntimeOnly);
}
// If the superclass is runtime-only, our class is also. This only
// matters in the case above.
if (superclassType) {
auto superclassDecl = cast<ClassDecl>(superclassType->getAnyNominal());
auto kind = superclassDecl->getForeignClassKind();
if (kind != ClassDecl::ForeignKind::Normal)
result->setForeignClassKind(kind);
}
// Import protocols this class conforms to.
importObjCProtocols(result, decl->getReferencedProtocols(),
inheritedTypes);
result->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
result->setCheckedInheritanceClause();
// Add inferred attributes.
#define INFERRED_ATTRIBUTES(ModuleName, ClassName, AttributeSet) \
if (name.str().equals(#ClassName) && \
result->getParentModule()->getName().str().equals(#ModuleName)) { \
using namespace inferred_attributes; \
addInferredAttributes(result, AttributeSet); \
}
#include "InferredAttributes.def"
result->setMemberLoader(&Impl, 0);
result->addImplicitDestructor();
return result;
}
Decl *VisitObjCImplDecl(const clang::ObjCImplDecl *decl) {
// Implementations of Objective-C classes and categories are not
// reflected into Swift.
return nullptr;
}
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl) {
auto dc = Impl.importDeclContextOf(decl, decl->getDeclContext());
if (!dc)
return nullptr;
// While importing the DeclContext, we might have imported the decl
// itself.
if (auto Known = Impl.importDeclCached(decl, getVersion()))
return Known;
return importObjCPropertyDecl(decl, dc);
}
/// Hack: Handle the case where a property is declared \c readonly in the
/// main class interface (either explicitly or because of an adopted
/// protocol) and then \c readwrite in a category/extension.
///
/// \see VisitObjCPropertyDecl
void handlePropertyRedeclaration(VarDecl *original,
const clang::ObjCPropertyDecl *redecl) {
// If the property isn't from Clang, we can't safely update it.
if (!original->hasClangNode())
return;
// If the original declaration was implicit, we may want to change that.
if (original->isImplicit() && !redecl->isImplicit() &&
!isa<clang::ObjCProtocolDecl>(redecl->getDeclContext()))
original->setImplicit(false);
if (!original->getAttrs().hasAttribute<OwnershipAttr>() &&
!original->getAttrs().hasAttribute<NSCopyingAttr>()) {
applyPropertyOwnership(original,
redecl->getPropertyAttributesAsWritten());
}
auto clangSetter = redecl->getSetterMethodDecl();
if (!clangSetter)
return;
// The only other transformation we know how to do safely is add a
// setter. If the property is already settable, we're done.
if (original->isSettable(nullptr))
return;
FuncDecl *setter = importAccessor(clangSetter,
original->getDeclContext());
if (!setter)
return;
// Check that the redeclared property's setter uses the same type as the
// original property. Objective-C can get away with the types being
// different (usually in something like nullability), but for Swift it's
// an AST invariant that's assumed and asserted elsewhere. If the type is
// different, just drop the setter, and leave the property as get-only.
assert(setter->getParameterLists().back()->size() == 1);
const ParamDecl *param = setter->getParameterLists().back()->get(0);
if (!param->getInterfaceType()->isEqual(original->getInterfaceType()))
return;
original->setComputedSetter(setter);
}
Decl *importObjCPropertyDecl(const clang::ObjCPropertyDecl *decl,
DeclContext *dc) {
assert(dc);
Optional<ImportedName> correctSwiftName;
auto name = importFullName(decl, correctSwiftName)
.getDeclName()
.getBaseIdentifier();
if (name.empty())
return nullptr;
if (shouldImportPropertyAsAccessors(decl))
return nullptr;
// Check whether there is a function with the same name as this
// property. If so, suppress the property; the user will have to use
// the methods directly, to avoid ambiguities.
Type containerTy = dc->getDeclaredInterfaceType();
Type lookupContextTy = containerTy;
if (auto *classDecl = dyn_cast<ClassDecl>(dc)) {
// If we're importing into the primary @interface for something, as
// opposed to an extension, make sure we don't try to load any
// categories...by just looking into the super type.
lookupContextTy = classDecl->getSuperclass();
}
VarDecl *overridden = nullptr;
if (lookupContextTy) {
SmallVector<ValueDecl *, 2> lookup;
dc->lookupQualified(lookupContextTy, name,
NL_QualifiedDefault | NL_KnownNoDependency,
Impl.getTypeResolver(), lookup);
for (auto result : lookup) {
if (isa<FuncDecl>(result) &&
result->isInstanceMember() == decl->isInstanceProperty() &&
result->getFullName().getArgumentNames().empty())
return nullptr;
if (auto var = dyn_cast<VarDecl>(result)) {
// If the selectors of the getter match in Objective-C, we have an
// override.
if (var->isInstanceMember() == decl->isInstanceProperty() &&
var->getObjCGetterSelector() ==
Impl.importSelector(decl->getGetterName()))
overridden = var;
}
}
}
if (overridden) {
const DeclContext *overrideContext = overridden->getDeclContext();
// It's okay to compare interface types directly because Objective-C
// does not have constrained extensions.
if (overrideContext != dc && overridden->hasClangNode() &&
overrideContext->getDeclaredInterfaceType()->isEqual(containerTy)) {
// We've encountered a redeclaration of the property.
// HACK: Just update the original declaration instead of importing a
// second property.
handlePropertyRedeclaration(overridden, decl);
return nullptr;
}
}
Type type = Impl.importPropertyType(decl, isInSystemModule(dc));
if (!type)
return nullptr;
// Import the getter.
FuncDecl *getter = nullptr;
if (auto clangGetter = decl->getGetterMethodDecl()) {
getter = importAccessor(clangGetter, dc);
if (!getter)
return nullptr;
}
// Import the setter, if there is one.
FuncDecl *setter = nullptr;
if (auto clangSetter = decl->getSetterMethodDecl()) {
setter = importAccessor(clangSetter, dc);
if (!setter)
return nullptr;
}
// Check whether the property already got imported.
if (dc == Impl.importDeclContextOf(decl, decl->getDeclContext())) {
auto known = Impl.ImportedDecls.find({decl->getCanonicalDecl(),
getVersion()});
if (known != Impl.ImportedDecls.end())
return known->second;
}
auto result = Impl.createDeclWithClangNode<VarDecl>(decl,
getOverridableAccessLevel(dc),
/*IsStatic*/decl->isClassProperty(), VarDecl::Specifier::Var,
/*IsCaptureList*/false, Impl.importSourceLoc(decl->getLocation()),
name, dc->mapTypeIntoContext(type), dc);
result->setInterfaceType(type);
// Turn this into a computed property.
// FIXME: Fake locations for '{' and '}'?
result->setIsSetterMutating(false);
result->makeComputed(SourceLoc(), getter, setter, nullptr, SourceLoc());
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
applyPropertyOwnership(result, decl->getPropertyAttributesAsWritten());
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getAttrs().add(
new (Impl.SwiftContext) IBOutletAttr(/*IsImplicit=*/false));
if (decl->getPropertyImplementation() == clang::ObjCPropertyDecl::Optional
&& isa<ProtocolDecl>(dc) &&
!result->getAttrs().hasAttribute<OptionalAttr>())
result->getAttrs().add(new (Impl.SwiftContext)
OptionalAttr(/*implicit*/false));
// FIXME: Handle IBOutletCollection.
if (overridden) {
result->setOverriddenDecl(overridden);
getter->setOverriddenDecl(overridden->getGetter());
if (auto parentSetter = overridden->getSetter())
if (setter)
setter->setOverriddenDecl(parentSetter);
}
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
Decl *
VisitObjCCompatibleAliasDecl(const clang::ObjCCompatibleAliasDecl *decl) {
// Import Objective-C's @compatibility_alias as typealias.
EffectiveClangContext effectiveContext(decl->getDeclContext()->getRedeclContext());
auto dc = Impl.importDeclContextOf(decl, effectiveContext);
if (!dc) return nullptr;
Optional<ImportedName> correctSwiftName;
auto importedName = importFullName(decl, correctSwiftName);
auto name = importedName.getDeclName().getBaseIdentifier();
if (name.empty()) return nullptr;
auto importedDecl =
Impl.importDecl(decl->getClassInterface(), getActiveSwiftVersion());
auto typeDecl = dyn_cast_or_null<TypeDecl>(importedDecl);
if (!typeDecl) return nullptr;
// Create typealias.
TypeAliasDecl *typealias = nullptr;
typealias = Impl.createDeclWithClangNode<TypeAliasDecl>(
decl, AccessLevel::Public,
Impl.importSourceLoc(decl->getLocStart()),
SourceLoc(), name,
Impl.importSourceLoc(decl->getLocation()),
/*genericparams=*/nullptr, dc);
typealias->setUnderlyingType(typeDecl->getDeclaredInterfaceType());
return typealias;
}
Decl *VisitLinkageSpecDecl(const clang::LinkageSpecDecl *decl) {
// Linkage specifications are not imported.
return nullptr;
}
Decl *VisitObjCPropertyImplDecl(const clang::ObjCPropertyImplDecl *decl) {
// @synthesize and @dynamic are not imported, since they are not part
// of the interface to a class.
return nullptr;
}
Decl *VisitFileScopeAsmDecl(const clang::FileScopeAsmDecl *decl) {
return nullptr;
}
Decl *VisitAccessSpecDecl(const clang::AccessSpecDecl *decl) {
return nullptr;
}
Decl *VisitFriendDecl(const clang::FriendDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitFriendTemplateDecl(const clang::FriendTemplateDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitStaticAssertDecl(const clang::StaticAssertDecl *decl) {
// Static assertions are an implementation detail.
return nullptr;
}
Decl *VisitBlockDecl(const clang::BlockDecl *decl) {
// Blocks are not imported (although block types can be imported).
return nullptr;
}
Decl *VisitClassScopeFunctionSpecializationDecl(
const clang::ClassScopeFunctionSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitImportDecl(const clang::ImportDecl *decl) {
// Transitive module imports are not handled at the declaration level.
// Rather, they are understood from the module itself.
return nullptr;
}
};
} // end anonymous namespace
/// Try to strip "Mutable" out of a type name.
static clang::IdentifierInfo *
getImmutableCFSuperclassName(const clang::TypedefNameDecl *decl, clang::ASTContext &ctx) {
StringRef name = decl->getName();
// Split at the first occurrence of "Mutable".
StringRef _mutable = "Mutable";
auto mutableIndex = camel_case::findWord(name, _mutable);
if (mutableIndex == StringRef::npos)
return nullptr;
StringRef namePrefix = name.substr(0, mutableIndex);
StringRef nameSuffix = name.substr(mutableIndex + _mutable.size());
// Abort if "Mutable" appears twice.
if (camel_case::findWord(nameSuffix, _mutable) != StringRef::npos)
return nullptr;
llvm::SmallString<128> buffer;
buffer += namePrefix;
buffer += nameSuffix;
return &ctx.Idents.get(buffer.str());
}
/// Check whether this CF typedef is a Mutable type, and if so,
/// look for a non-Mutable typedef.
///
/// If the "subclass" is:
/// typedef struct __foo *XXXMutableYYY;
/// then we look for a "superclass" that matches:
/// typedef const struct __foo *XXXYYY;
static Type findImmutableCFSuperclass(ClangImporter::Implementation &impl,
const clang::TypedefNameDecl *decl,
CFPointeeInfo subclassInfo) {
// If this type is already immutable, it has no immutable
// superclass.
if (subclassInfo.isConst())
return Type();
// If this typedef name does not contain "Mutable", it has no
// immutable superclass.
auto superclassName =
getImmutableCFSuperclassName(decl, impl.getClangASTContext());
if (!superclassName)
return Type();
// Look for a typedef that successfully classifies as a CF
// typedef with the same underlying record.
auto superclassTypedef = impl.lookupTypedef(superclassName);
if (!superclassTypedef)
return Type();
auto superclassInfo = CFPointeeInfo::classifyTypedef(superclassTypedef);
if (!superclassInfo || !superclassInfo.isRecord() ||
!declaresSameEntity(superclassInfo.getRecord(), subclassInfo.getRecord()))
return Type();
// Try to import the superclass.
Decl *importedSuperclassDecl =
impl.importDeclReal(superclassTypedef, impl.CurrentVersion);
if (!importedSuperclassDecl)
return Type();
auto importedSuperclass =
cast<TypeDecl>(importedSuperclassDecl)->getDeclaredInterfaceType();
assert(importedSuperclass->is<ClassType>() && "must have class type");
return importedSuperclass;
}
/// Attempt to find a superclass for the given CF typedef.
static Type findCFSuperclass(ClangImporter::Implementation &impl,
const clang::TypedefNameDecl *decl,
CFPointeeInfo info) {
if (Type immutable = findImmutableCFSuperclass(impl, decl, info))
return immutable;
// TODO: use NSObject if it exists?
return Type();
}
ClassDecl *
SwiftDeclConverter::importCFClassType(const clang::TypedefNameDecl *decl,
Identifier className, CFPointeeInfo info,
EffectiveClangContext effectiveContext) {
auto dc = Impl.importDeclContextOf(decl, effectiveContext);
if (!dc)
return nullptr;
Type superclass = findCFSuperclass(Impl, decl, info);
// TODO: maybe use NSObject as the superclass if we can find it?
// TODO: try to find a non-mutable type to use as the superclass.
auto theClass = Impl.createDeclWithClangNode<ClassDecl>(
decl, AccessLevel::Public, SourceLoc(), className, SourceLoc(), None,
nullptr, dc);
theClass->computeType();
theClass->setCircularityCheck(CircularityCheck::Checked);
theClass->setSuperclass(superclass);
theClass->setAddedImplicitInitializers(); // suppress all initializers
theClass->setForeignClassKind(ClassDecl::ForeignKind::CFType);
addObjCAttribute(theClass, None);
Impl.registerExternalDecl(theClass);
if (superclass) {
SmallVector<TypeLoc, 4> inheritedTypes;
inheritedTypes.push_back(TypeLoc::withoutLoc(superclass));
theClass->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
theClass->setCheckedInheritanceClause();
}
addSynthesizedProtocolAttrs(Impl, theClass, {KnownProtocolKind::CFObject});
// Look for bridging attributes on the clang record. We can
// just check the most recent redeclaration, which will inherit
// any attributes from earlier declarations.
auto record = info.getRecord()->getMostRecentDecl();
if (info.isConst()) {
if (auto attr = record->getAttr<clang::ObjCBridgeAttr>()) {
// Record the Objective-C class to which this CF type is toll-free
// bridged.
if (ClassDecl *objcClass = dynCastIgnoringCompatibilityAlias<ClassDecl>(
Impl.importDeclByName(attr->getBridgedType()->getName()))) {
theClass->getAttrs().add(new (Impl.SwiftContext)
ObjCBridgedAttr(objcClass));
}
}
} else {
if (auto attr = record->getAttr<clang::ObjCBridgeMutableAttr>()) {
// Record the Objective-C class to which this CF type is toll-free
// bridged.
if (ClassDecl *objcClass = dynCastIgnoringCompatibilityAlias<ClassDecl>(
Impl.importDeclByName(attr->getBridgedType()->getName()))) {
theClass->getAttrs().add(new (Impl.SwiftContext)
ObjCBridgedAttr(objcClass));
}
}
}
theClass->addImplicitDestructor();
return theClass;
}
Decl *SwiftDeclConverter::importCompatibilityTypeAlias(
const clang::NamedDecl *decl,
ImportedName compatibilityName,
ImportedName correctSwiftName) {
// Import the referenced declaration. If it doesn't come in as a type,
// we don't care.
Decl *importedDecl = nullptr;
if (getVersion() >= getActiveSwiftVersion())
importedDecl = Impl.importDecl(decl, ImportNameVersion::forTypes());
if (!importedDecl && getVersion() != getActiveSwiftVersion())
importedDecl = Impl.importDecl(decl, getActiveSwiftVersion());
auto typeDecl = dyn_cast_or_null<TypeDecl>(importedDecl);
if (!typeDecl)
return nullptr;
// Deliberately use an UnboundGenericType to avoid having to translate over
// generic parameters.
Type underlyingType;
if (auto *underlyingAlias = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (underlyingAlias->isGeneric())
underlyingType = underlyingAlias->getUnboundGenericType();
else
underlyingType = underlyingAlias->getDeclaredInterfaceType();
} else {
underlyingType = cast<NominalTypeDecl>(typeDecl)->getDeclaredType();
}
auto dc = Impl.importDeclContextOf(decl,
compatibilityName.getEffectiveContext());
if (!dc)
return nullptr;
// Create the type alias.
auto alias = Impl.createDeclWithClangNode<TypeAliasDecl>(
decl, AccessLevel::Public, Impl.importSourceLoc(decl->getLocStart()),
SourceLoc(), compatibilityName.getDeclName().getBaseIdentifier(),
Impl.importSourceLoc(decl->getLocation()), /*generic params*/nullptr, dc);
alias->setUnderlyingType(underlyingType);
// Record that this is the official version of this declaration.
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = alias;
markAsVariant(alias, correctSwiftName);
return alias;
}
static bool inheritanceListContainsProtocol(ArrayRef<TypeLoc> inherited,
const ProtocolDecl *proto) {
return llvm::any_of(inherited, [proto](TypeLoc type) -> bool {
if (!type.getType()->isExistentialType())
return false;
auto layout = type.getType()->getExistentialLayout();
for (auto protoTy : layout.getProtocols()) {
auto *protoDecl = protoTy->getDecl();
if (protoDecl == proto || protoDecl->inheritsFrom(proto))
return true;
}
return false;
});
}
static bool conformsToProtocolInOriginalModule(NominalTypeDecl *nominal,
const ProtocolDecl *proto,
ModuleDecl *foundationModule,
LazyResolver *resolver) {
auto &ctx = nominal->getASTContext();
if (resolver)
resolver->resolveInheritanceClause(nominal);
if (inheritanceListContainsProtocol(nominal->getInherited(), proto))
return true;
for (auto attr : nominal->getAttrs().getAttributes<SynthesizedProtocolAttr>())
if (auto *otherProto = ctx.getProtocol(attr->getProtocolKind()))
if (otherProto == proto)
return true;
// Only consider extensions from the original module...or from an overlay
// or the Swift half of a mixed-source framework.
const DeclContext *containingFile = nominal->getModuleScopeContext();
ModuleDecl *originalModule = containingFile->getParentModule();
ModuleDecl *adapterModule = nullptr;
if (auto *clangUnit = dyn_cast<ClangModuleUnit>(containingFile))
adapterModule = clangUnit->getAdapterModule();
for (ExtensionDecl *extension : nominal->getExtensions()) {
ModuleDecl *extensionModule = extension->getParentModule();
if (extensionModule != originalModule && extensionModule != adapterModule &&
extensionModule != foundationModule) {
continue;
}
if (resolver)
resolver->resolveInheritanceClause(extension);
if (inheritanceListContainsProtocol(extension->getInherited(), proto))
return true;
}
return false;
}
Decl *
SwiftDeclConverter::importSwiftNewtype(const clang::TypedefNameDecl *decl,
clang::SwiftNewtypeAttr *newtypeAttr,
DeclContext *dc, Identifier name) {
// The only (current) difference between swift_newtype(struct) and
// swift_newtype(enum), until we can get real enum support, is that enums
// have no un-labeled inits(). This is because enums are to be considered
// closed, and if constructed from a rawValue, should be very explicit.
bool unlabeledCtor = false;
switch (newtypeAttr->getNewtypeKind()) {
case clang::SwiftNewtypeAttr::NK_Enum:
unlabeledCtor = false;
// TODO: import as enum instead
break;
case clang::SwiftNewtypeAttr::NK_Struct:
unlabeledCtor = true;
break;
// No other cases yet
}
auto &ctx = Impl.SwiftContext;
auto Loc = Impl.importSourceLoc(decl->getLocation());
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
decl, AccessLevel::Public, Loc, name, Loc, None, nullptr, dc);
structDecl->computeType();
structDecl->setCheckedInheritanceClause();
// Import the type of the underlying storage
auto storedUnderlyingType = Impl.importType(
decl->getUnderlyingType(), ImportTypeKind::Value, isInSystemModule(dc),
Bridgeability::None, OTK_None);
if (!storedUnderlyingType)
return nullptr;
if (auto objTy = storedUnderlyingType->getAnyOptionalObjectType())
storedUnderlyingType = objTy;
// If the type is Unmanaged, that is it is not CF ARC audited,
// we will store the underlying type and leave it up to the use site
// to determine whether to use this new_type, or an Unmanaged<CF...> type.
if (auto genericType = storedUnderlyingType->getAs<BoundGenericType>()) {
if (genericType->getDecl() == Impl.SwiftContext.getUnmanagedDecl()) {
assert(genericType->getGenericArgs().size() == 1 && "other args?");
storedUnderlyingType = genericType->getGenericArgs()[0];
}
}
// Find a bridged type, which may be different
auto computedPropertyUnderlyingType = Impl.importType(
decl->getUnderlyingType(), ImportTypeKind::Property, isInSystemModule(dc),
Bridgeability::Full, OTK_None);
if (auto objTy = computedPropertyUnderlyingType->getAnyOptionalObjectType())
computedPropertyUnderlyingType = objTy;
bool isBridged =
!storedUnderlyingType->isEqual(computedPropertyUnderlyingType);
// Determine the set of protocols to which the synthesized
// type will conform.
SmallVector<KnownProtocolKind, 4> synthesizedProtocols;
// Local function to add a known protocol.
auto addKnown = [&](KnownProtocolKind kind) {
synthesizedProtocols.push_back(kind);
};
// Add conformances that are always available.
addKnown(KnownProtocolKind::RawRepresentable);
addKnown(KnownProtocolKind::SwiftNewtypeWrapper);
// Local function to add a known protocol only when the
// underlying type conforms to it.
auto computedNominal = computedPropertyUnderlyingType->getAnyNominal();
auto transferKnown = [&](KnownProtocolKind kind) {
if (!computedNominal)
return false;
auto proto = ctx.getProtocol(kind);
if (!proto)
return false;
// Break circularity by only looking for declared conformances in the
// original module, or possibly its adapter.
if (conformsToProtocolInOriginalModule(computedNominal, proto,
Impl.tryLoadFoundationModule(),
Impl.getTypeResolver())) {
synthesizedProtocols.push_back(kind);
return true;
}
return false;
};
// Transfer conformances. Each of these needs a forwarding
// implementation in the standard library.
transferKnown(KnownProtocolKind::Equatable);
transferKnown(KnownProtocolKind::Hashable);
bool transferredObjCBridgeable =
transferKnown(KnownProtocolKind::ObjectiveCBridgeable);
if (!isBridged) {
// Simple, our stored type is equivalent to our computed
// type.
auto options = getDefaultMakeStructRawValuedOptions();
if (unlabeledCtor)
options |= MakeStructRawValuedFlags::MakeUnlabeledValueInit;
makeStructRawValued(Impl, structDecl, storedUnderlyingType,
synthesizedProtocols, options);
} else {
// We need to make a stored rawValue or storage type, and a
// computed one of bridged type.
makeStructRawValuedWithBridge(Impl, structDecl, storedUnderlyingType,
computedPropertyUnderlyingType,
synthesizedProtocols,
/*makeUnlabeledValueInit=*/unlabeledCtor);
if (transferredObjCBridgeable)
addSynthesizedTypealias(structDecl, ctx.Id_ObjectiveCType,
storedUnderlyingType);
}
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = structDecl;
Impl.registerExternalDecl(structDecl);
return structDecl;
}
Decl *SwiftDeclConverter::importEnumCase(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
EnumDecl *theEnum,
Decl *correctDecl) {
auto &context = Impl.SwiftContext;
Optional<ImportedName> correctSwiftName;
auto name =
importFullName(decl, correctSwiftName).getDeclName().getBaseIdentifier();
if (name.empty())
return nullptr;
if (correctSwiftName) {
// We're creating a compatibility stub. Treat it as an enum case alias.
auto correctCase = dyn_cast_or_null<EnumElementDecl>(correctDecl);
if (!correctCase)
return nullptr;
// If the correct declaration was unavailable, don't map to it.
// FIXME: This eliminates spurious errors, but affects QoI.
if (correctCase->getAttrs().isUnavailable(Impl.SwiftContext))
return nullptr;
auto compatibilityCase =
importEnumCaseAlias(name, decl, correctCase, clangEnum, theEnum);
if (compatibilityCase)
markAsVariant(compatibilityCase, *correctSwiftName);
return compatibilityCase;
}
// Use the constant's underlying value as its raw value in Swift.
bool negative = false;
llvm::APSInt rawValue = decl->getInitVal();
if (clangEnum->getIntegerType()->isSignedIntegerOrEnumerationType() &&
rawValue.slt(0)) {
rawValue = -rawValue;
negative = true;
}
llvm::SmallString<12> rawValueText;
rawValue.toString(rawValueText, 10, /*signed*/ false);
StringRef rawValueTextC = context.AllocateCopy(StringRef(rawValueText));
auto rawValueExpr =
new (context) IntegerLiteralExpr(rawValueTextC, SourceLoc(),
/*implicit*/ false);
if (negative)
rawValueExpr->setNegative(SourceLoc());
auto element = Impl.createDeclWithClangNode<EnumElementDecl>(
decl, AccessLevel::Public, SourceLoc(), name, TypeLoc(), false,
SourceLoc(), rawValueExpr, theEnum);
// Give the enum element the appropriate type.
element->computeType();
Impl.importAttributes(decl, element);
return element;
}
Decl *
SwiftDeclConverter::importOptionConstant(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
NominalTypeDecl *theStruct) {
Optional<ImportedName> correctSwiftName;
ImportedName nameInfo = importFullName(decl, correctSwiftName);
Identifier name = nameInfo.getDeclName().getBaseIdentifier();
if (name.empty())
return nullptr;
// Create the constant.
auto convertKind = ConstantConvertKind::Construction;
if (isa<EnumDecl>(theStruct))
convertKind = ConstantConvertKind::ConstructionWithUnwrap;
Decl *CD = Impl.createConstant(
name, theStruct, theStruct->getDeclaredTypeInContext(),
clang::APValue(decl->getInitVal()), convertKind, /*isStatic*/ true, decl);
Impl.importAttributes(decl, CD);
// NS_OPTIONS members that have a value of 0 (typically named "None") do
// not operate as a set-like member. Mark them unavailable with a message
// that says that they should be used as [].
if (decl->getInitVal() == 0 && !nameInfo.hasCustomName() &&
!CD->getAttrs().isUnavailable(Impl.SwiftContext)) {
/// Create an AvailableAttr that indicates specific availability
/// for all platforms.
auto attr = AvailableAttr::createPlatformAgnostic(
Impl.SwiftContext, "use [] to construct an empty option set");
CD->getAttrs().add(attr);
}
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(CD, *correctSwiftName);
return CD;
}
Decl *SwiftDeclConverter::importEnumCaseAlias(
Identifier name, const clang::EnumConstantDecl *alias, ValueDecl *original,
const clang::EnumDecl *clangEnum, NominalTypeDecl *importedEnum,
DeclContext *importIntoDC) {
if (name.empty())
return nullptr;
// Default the DeclContext to the enum type.
if (!importIntoDC)
importIntoDC = importedEnum;
// Construct the original constant. Enum constants without payloads look
// like simple values, but actually have type 'MyEnum.Type -> MyEnum'.
auto constantRef =
new (Impl.SwiftContext) DeclRefExpr(original, DeclNameLoc(),
/*implicit*/ true);
Type importedEnumTy = importedEnum->getDeclaredTypeInContext();
auto typeRef = TypeExpr::createImplicit(importedEnumTy, Impl.SwiftContext);
auto instantiate = new (Impl.SwiftContext)
DotSyntaxCallExpr(constantRef, SourceLoc(), typeRef);
instantiate->setType(importedEnumTy);
Decl *CD = Impl.createConstant(name, importIntoDC, importedEnumTy,
instantiate, ConstantConvertKind::None,
/*isStatic*/ true, alias);
Impl.importAttributes(alias, CD);
return CD;
}
NominalTypeDecl *
SwiftDeclConverter::importAsOptionSetType(DeclContext *dc, Identifier name,
const clang::EnumDecl *decl) {
ASTContext &ctx = Impl.SwiftContext;
// Compute the underlying type.
auto underlyingType = Impl.importType(
decl->getIntegerType(), ImportTypeKind::Enum, isInSystemModule(dc),
Bridgeability::None);
if (!underlyingType)
return nullptr;
auto Loc = Impl.importSourceLoc(decl->getLocation());
// Create a struct with the underlying type as a field.
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
decl, AccessLevel::Public, Loc, name, Loc, None, nullptr, dc);
structDecl->computeType();
structDecl->setCheckedInheritanceClause();
makeStructRawValued(Impl, structDecl, underlyingType,
{KnownProtocolKind::OptionSet});
auto selfType = structDecl->getDeclaredInterfaceType();
addSynthesizedTypealias(structDecl, ctx.Id_Element, selfType);
addSynthesizedTypealias(structDecl, ctx.Id_ArrayLiteralElement, selfType);
return structDecl;
}
Decl *SwiftDeclConverter::importGlobalAsInitializer(
const clang::FunctionDecl *decl,
DeclName name,
DeclContext *dc,
CtorInitializerKind initKind,
Optional<ImportedName> correctSwiftName) {
// TODO: Should this be an error? How can this come up?
assert(dc->isTypeContext() && "cannot import as member onto non-type");
// Check for some invalid imports
if (dc->getAsProtocolOrProtocolExtensionContext()) {
// FIXME: clang source location
Impl.SwiftContext.Diags.diagnose({}, diag::swift_name_protocol_static,
/*isInit=*/true);
Impl.SwiftContext.Diags.diagnose({}, diag::note_while_importing,
decl->getName());
return nullptr;
}
bool allowNSUIntegerAsInt =
Impl.shouldAllowNSUIntegerAsInt(isInSystemModule(dc), decl);
ArrayRef<Identifier> argNames = name.getArgumentNames();
ParameterList *parameterList = nullptr;
if (argNames.size() == 1 && decl->getNumParams() == 0) {
// Special case: We need to create an empty first parameter for our
// argument label
auto *paramDecl =
new (Impl.SwiftContext) ParamDecl(
VarDecl::Specifier::Let, SourceLoc(), SourceLoc(), argNames.front(),
SourceLoc(), argNames.front(), Impl.SwiftContext.TheEmptyTupleType,
dc);
paramDecl->setInterfaceType(Impl.SwiftContext.TheEmptyTupleType);
paramDecl->setValidationStarted();
parameterList = ParameterList::createWithoutLoc(paramDecl);
} else {
parameterList = Impl.importFunctionParameterList(
dc, decl, {decl->param_begin(), decl->param_end()}, decl->isVariadic(),
allowNSUIntegerAsInt, argNames);
}
if (!parameterList)
return nullptr;
bool selfIsInOut = !dc->getDeclaredInterfaceType()->hasReferenceSemantics();
auto selfParam = ParamDecl::createSelf(SourceLoc(), dc, /*isStatic=*/false,
/*isInOut=*/selfIsInOut);
OptionalTypeKind initOptionality;
auto resultType = Impl.importFunctionReturnType(dc, decl,
allowNSUIntegerAsInt);
(void)resultType->getAnyOptionalObjectType(initOptionality);
auto result = Impl.createDeclWithClangNode<ConstructorDecl>(
decl, AccessLevel::Public, name, /*NameLoc=*/SourceLoc(),
initOptionality, /*FailabilityLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(), selfParam, parameterList,
/*GenericParams=*/nullptr, dc);
result->setInitKind(initKind);
result->setImportAsStaticMember();
// Set the constructor's type(s).
Type argType = parameterList->getType(Impl.SwiftContext);
Type fnType = FunctionType::get(argType, resultType);
Type selfType = selfParam->getType();
Type initType = FunctionType::get(selfType, fnType);
result->setInitializerInterfaceType(initType);
Type selfMetaType = MetatypeType::get(selfType->getInOutObjectType());
Type allocType = FunctionType::get(selfMetaType, fnType);
result->setInterfaceType(allocType);
finishFuncDecl(decl, result);
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
Decl *SwiftDeclConverter::importGlobalAsMethod(
const clang::FunctionDecl *decl,
DeclName name,
DeclContext *dc,
Optional<unsigned> selfIdx,
Optional<ImportedName> correctSwiftName) {
if (dc->getAsProtocolOrProtocolExtensionContext() && !selfIdx) {
// FIXME: source location...
Impl.SwiftContext.Diags.diagnose({}, diag::swift_name_protocol_static,
/*isInit=*/false);
Impl.SwiftContext.Diags.diagnose({}, diag::note_while_importing,
decl->getName());
return nullptr;
}
if (!decl->hasPrototype()) {
// FIXME: source location...
Impl.SwiftContext.Diags.diagnose({}, diag::swift_name_no_prototype);
Impl.SwiftContext.Diags.diagnose({}, diag::note_while_importing,
decl->getName());
return nullptr;
}
bool allowNSUIntegerAsInt =
Impl.shouldAllowNSUIntegerAsInt(isInSystemModule(dc), decl);
auto &C = Impl.SwiftContext;
SmallVector<ParameterList *, 2> bodyParams;
// There is an inout 'self' when the parameter is a pointer to a non-const
// instance of the type we're importing onto. Importing this as a method means
// that the method should be treated as mutating in this situation.
bool selfIsInOut = false;
if (selfIdx && !dc->getDeclaredInterfaceType()->hasReferenceSemantics()) {
auto selfParam = decl->getParamDecl(*selfIdx);
auto selfParamTy = selfParam->getType();
if ((selfParamTy->isPointerType() || selfParamTy->isReferenceType()) &&
!selfParamTy->getPointeeType().isConstQualified()) {
selfIsInOut = true;
// If there's a swift_newtype, check the levels of indirection: self is
// only inout if this is a pointer to the typedef type (which itself is a
// pointer).
if (auto nominalTypeDecl =
dc->getAsNominalTypeOrNominalTypeExtensionContext()) {
if (auto clangDCTy = dyn_cast_or_null<clang::TypedefNameDecl>(
nominalTypeDecl->getClangDecl()))
if (getSwiftNewtypeAttr(clangDCTy, getVersion()))
if (clangDCTy->getUnderlyingType().getCanonicalType() !=
selfParamTy->getPointeeType().getCanonicalType())
selfIsInOut = false;
}
}
}
bodyParams.push_back(ParameterList::createWithoutLoc(ParamDecl::createSelf(
SourceLoc(), dc, !selfIdx.hasValue(), selfIsInOut)));
bodyParams.push_back(getNonSelfParamList(
dc, decl, selfIdx, name.getArgumentNames(), allowNSUIntegerAsInt, !name));
auto swiftResultTy = Impl.importFunctionReturnType(dc, decl,
allowNSUIntegerAsInt);
auto fnType =
ParameterList::getFullInterfaceType(swiftResultTy, bodyParams, C);
auto loc = Impl.importSourceLoc(decl->getLocation());
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
auto result =
FuncDecl::create(C, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/loc, name, nameLoc,
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, bodyParams,
TypeLoc::withoutLoc(swiftResultTy), dc, decl);
auto interfaceType = getGenericMethodType(dc, fnType->castTo<AnyFunctionType>());
result->setInterfaceType(interfaceType);
result->setGenericEnvironment(dc->getGenericEnvironmentOfContext());
result->setValidationStarted();
result->setAccess(AccessLevel::Public);
if (selfIsInOut)
result->setSelfAccessKind(SelfAccessKind::Mutating);
if (selfIdx) {
result->setSelfIndex(selfIdx.getValue());
} else {
result->setStatic();
result->setImportAsStaticMember();
}
assert(selfIdx ? result->getSelfIndex() == *selfIdx
: result->isImportAsStaticMember());
if (dc->getAsClassOrClassExtensionContext())
// FIXME: only if the class itself is not marked final
result->getAttrs().add(new (C) FinalAttr(/*IsImplicit=*/true));
finishFuncDecl(decl, result);
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
/// Create an implicit property given the imported name of one of
/// the accessors.
VarDecl *
SwiftDeclConverter::getImplicitProperty(ImportedName importedName,
const clang::FunctionDecl *accessor) {
// Check whether we already know about the property.
auto knownProperty = Impl.FunctionsAsProperties.find(accessor);
if (knownProperty != Impl.FunctionsAsProperties.end())
return knownProperty->second;
// Determine whether we have the getter or setter.
const clang::FunctionDecl *getter = nullptr;
ImportedName getterName;
Optional<ImportedName> swift3GetterName;
const clang::FunctionDecl *setter = nullptr;
ImportedName setterName;
Optional<ImportedName> swift3SetterName;
switch (importedName.getAccessorKind()) {
case ImportedAccessorKind::None:
case ImportedAccessorKind::SubscriptGetter:
case ImportedAccessorKind::SubscriptSetter:
llvm_unreachable("Not a property accessor");
case ImportedAccessorKind::PropertyGetter:
getter = accessor;
getterName = importedName;
break;
case ImportedAccessorKind::PropertySetter:
setter = accessor;
setterName = importedName;
break;
}
// Find the other accessor, if it exists.
auto propertyName = importedName.getDeclName().getBaseIdentifier();
auto lookupTable =
Impl.findLookupTable(*getClangSubmoduleForDecl(accessor));
assert(lookupTable && "No lookup table?");
bool foundAccessor = false;
for (auto entry : lookupTable->lookup(SerializedSwiftName(propertyName),
importedName.getEffectiveContext())) {
auto decl = entry.dyn_cast<clang::NamedDecl *>();
if (!decl)
continue;
auto function = dyn_cast<clang::FunctionDecl>(decl);
if (!function)
continue;
if (function->getCanonicalDecl() == accessor->getCanonicalDecl()) {
foundAccessor = true;
continue;
}
if (!getter) {
// Find the self index for the getter.
getterName = importFullName(function, swift3GetterName);
if (!getterName)
continue;
getter = function;
continue;
}
if (!setter) {
// Find the self index for the setter.
setterName = importFullName(function, swift3SetterName);
if (!setterName)
continue;
setter = function;
continue;
}
// We already have both a getter and a setter; something is
// amiss, so bail out.
return nullptr;
}
assert(foundAccessor && "Didn't find the original accessor? "
"Try clearing your module cache");
// If there is no getter, there's nothing we can do.
if (!getter)
return nullptr;
// Retrieve the type of the property that is implied by the getter.
auto propertyType =
getAccessorPropertyType(getter, false, getterName.getSelfIndex());
if (propertyType.isNull())
return nullptr;
// If there is a setter, check that the property it implies
// matches that of the getter.
if (setter) {
auto setterPropertyType =
getAccessorPropertyType(setter, true, setterName.getSelfIndex());
if (setterPropertyType.isNull())
return nullptr;
// If the inferred property types don't match up, we can't
// form a property.
if (!getter->getASTContext().hasSameType(propertyType, setterPropertyType))
return nullptr;
}
// Import the property's context.
auto dc = Impl.importDeclContextOf(getter, getterName.getEffectiveContext());
if (!dc)
return nullptr;
// Is this a static property?
bool isStatic = false;
if (dc->isTypeContext() && !getterName.getSelfIndex())
isStatic = true;
// Compute the property type.
bool isFromSystemModule = isInSystemModule(dc);
Type swiftPropertyType = Impl.importType(
propertyType, ImportTypeKind::Property,
Impl.shouldAllowNSUIntegerAsInt(isFromSystemModule, getter),
Bridgeability::Full, OTK_ImplicitlyUnwrappedOptional);
if (!swiftPropertyType)
return nullptr;
auto property = Impl.createDeclWithClangNode<VarDecl>(
getter, AccessLevel::Public, /*IsStatic*/isStatic,
VarDecl::Specifier::Var, /*IsCaptureList*/false, SourceLoc(),
propertyName, dc->mapTypeIntoContext(swiftPropertyType), dc);
property->setInterfaceType(swiftPropertyType);
// Note that we've formed this property.
Impl.FunctionsAsProperties[getter] = property;
if (setter)
Impl.FunctionsAsProperties[setter] = property;
// If this property is in a class or class extension context,
// add "final".
if (dc->getAsClassOrClassExtensionContext())
property->getAttrs().add(new (Impl.SwiftContext)
FinalAttr(/*IsImplicit=*/true));
// Import the getter.
auto *swiftGetter = dyn_cast_or_null<FuncDecl>(
importFunctionDecl(getter, getterName, None, property));
if (!swiftGetter)
return nullptr;
Impl.importAttributes(getter, swiftGetter);
Impl.ImportedDecls[{getter, getVersion()}] = swiftGetter;
if (swift3GetterName)
markAsVariant(swiftGetter, *swift3GetterName);
// Import the setter.
FuncDecl *swiftSetter = nullptr;
if (setter) {
swiftSetter = dyn_cast_or_null<FuncDecl>(
importFunctionDecl(setter, setterName, None, property));
if (!swiftSetter)
return nullptr;
Impl.importAttributes(setter, swiftSetter);
Impl.ImportedDecls[{setter, getVersion()}] = swiftSetter;
if (swift3SetterName)
markAsVariant(swiftSetter, *swift3SetterName);
}
if (swiftGetter) property->setIsGetterMutating(swiftGetter->isMutating());
if (swiftSetter) property->setIsSetterMutating(swiftSetter->isMutating());
// Make this a computed property.
property->makeComputed(SourceLoc(), swiftGetter, swiftSetter, nullptr,
SourceLoc());
// Make the property the alternate declaration for the getter.
Impl.addAlternateDecl(swiftGetter, property);
return property;
}
ConstructorDecl *SwiftDeclConverter::importConstructor(
const clang::ObjCMethodDecl *objcMethod, DeclContext *dc, bool implicit,
Optional<CtorInitializerKind> kind, bool required) {
// Only methods in the 'init' family can become constructors.
assert(isInitMethod(objcMethod) && "Not a real init method");
// Check whether we've already created the constructor.
auto known =
Impl.Constructors.find(std::make_tuple(objcMethod, dc, getVersion()));
if (known != Impl.Constructors.end())
return known->second;
// Check whether there is already a method with this selector.
auto selector = Impl.importSelector(objcMethod->getSelector());
if (isActiveSwiftVersion() &&
methodAlreadyImported(selector, /*isInstance=*/true, dc))
return nullptr;
// Map the name and complete the import.
ArrayRef<const clang::ParmVarDecl *> params{objcMethod->param_begin(),
objcMethod->param_end()};
bool variadic = objcMethod->isVariadic();
Optional<ImportedName> correctSwiftName;
auto importedName = importFullName(objcMethod, correctSwiftName);
if (!importedName)
return nullptr;
// If we dropped the variadic, handle it now.
if (importedName.droppedVariadic()) {
selector = ObjCSelector(Impl.SwiftContext, selector.getNumArgs() - 1,
selector.getSelectorPieces().drop_back());
params = params.drop_back(1);
variadic = false;
}
bool redundant;
auto result =
importConstructor(objcMethod, dc, implicit, kind, required, selector,
importedName, params, variadic, redundant);
// If this is a compatibility stub, mark it as such.
if (result && correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
/// Returns the latest "introduced" version on the current platform for
/// \p D.
clang::VersionTuple
SwiftDeclConverter::findLatestIntroduction(const clang::Decl *D) {
clang::VersionTuple result;
for (auto *attr : D->specific_attrs<clang::AvailabilityAttr>()) {
if (attr->getPlatform()->getName() == "swift") {
clang::VersionTuple maxVersion{~0U, ~0U, ~0U};
return maxVersion;
}
// Does this availability attribute map to the platform we are
// currently targeting?
if (!Impl.platformAvailability.filter ||
!Impl.platformAvailability.filter(attr->getPlatform()->getName()))
continue;
// Take advantage of the empty version being 0.0.0.0.
result = std::max(result, attr->getIntroduced());
}
return result;
}
/// Returns true if importing \p objcMethod will produce a "better"
/// initializer than \p existingCtor.
bool SwiftDeclConverter::existingConstructorIsWorse(
const ConstructorDecl *existingCtor,
const clang::ObjCMethodDecl *objcMethod, CtorInitializerKind kind) {
CtorInitializerKind existingKind = existingCtor->getInitKind();
// If one constructor is unavailable in Swift and the other is
// not, keep the available one.
bool existingIsUnavailable =
existingCtor->getAttrs().isUnavailable(Impl.SwiftContext);
bool newIsUnavailable = Impl.isUnavailableInSwift(objcMethod);
if (existingIsUnavailable != newIsUnavailable)
return existingIsUnavailable;
// If the new kind is the same as the existing kind, stick with
// the existing constructor.
if (existingKind == kind)
return false;
// Check for cases that are obviously better or obviously worse.
if (kind == CtorInitializerKind::Designated ||
existingKind == CtorInitializerKind::Factory)
return true;
if (kind == CtorInitializerKind::Factory ||
existingKind == CtorInitializerKind::Designated)
return false;
assert(kind == CtorInitializerKind::Convenience ||
kind == CtorInitializerKind::ConvenienceFactory);
assert(existingKind == CtorInitializerKind::Convenience ||
existingKind == CtorInitializerKind::ConvenienceFactory);
// Between different kinds of convenience initializers, keep the one that
// was introduced first.
// FIXME: But if one of them is now deprecated, should we prefer the
// other?
clang::VersionTuple introduced = findLatestIntroduction(objcMethod);
AvailabilityContext existingAvailability =
AvailabilityInference::availableRange(existingCtor, Impl.SwiftContext);
assert(!existingAvailability.isKnownUnreachable());
if (existingAvailability.isAlwaysAvailable()) {
if (!introduced.empty())
return false;
} else {
VersionRange existingIntroduced = existingAvailability.getOSVersion();
if (introduced != existingIntroduced.getLowerEndpoint()) {
return introduced < existingIntroduced.getLowerEndpoint();
}
}
// The "introduced" versions are the same. Prefer Convenience over
// ConvenienceFactory, but otherwise prefer leaving things as they are.
if (kind == CtorInitializerKind::Convenience &&
existingKind == CtorInitializerKind::ConvenienceFactory)
return true;
return false;
}
/// \brief Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling object construction syntax, e.g.,
///
/// \code
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
/// NSArray(capacity: 1024)
/// \endcode
///
/// This variant of the function is responsible for actually binding the
/// constructor declaration appropriately.
ConstructorDecl *SwiftDeclConverter::importConstructor(
const clang::ObjCMethodDecl *objcMethod, DeclContext *dc, bool implicit,
Optional<CtorInitializerKind> kindIn, bool required, ObjCSelector selector,
ImportedName importedName, ArrayRef<const clang::ParmVarDecl *> args,
bool variadic, bool &redundant) {
redundant = false;
// Figure out the type of the container.
auto ownerNominal = dc->getAsNominalTypeOrNominalTypeExtensionContext();
assert(ownerNominal && "Method in non-type context?");
// Find the interface, if we can.
const clang::ObjCInterfaceDecl *interface = nullptr;
if (auto classDecl = dyn_cast<ClassDecl>(ownerNominal)) {
interface =
dyn_cast_or_null<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
}
// If we weren't told what kind of initializer this should be,
// figure it out now.
CtorInitializerKind kind;
if (kindIn) {
kind = *kindIn;
// If we know this is a designated initializer, mark it as such.
if (interface && hasDesignatedInitializers(interface) &&
isDesignatedInitializer(interface, objcMethod))
kind = CtorInitializerKind::Designated;
} else {
// If the owning Objective-C class has designated initializers and this
// is not one of them, treat it as a convenience initializer.
if (interface && hasDesignatedInitializers(interface) &&
!isDesignatedInitializer(interface, objcMethod)) {
kind = CtorInitializerKind::Convenience;
} else {
kind = CtorInitializerKind::Designated;
}
}
// Add the implicit 'self' parameter patterns.
SmallVector<ParameterList *, 4> bodyParams;
auto selfMetaVar = ParamDecl::createSelf(SourceLoc(), dc, /*static*/ true);
auto selfTy = dc->getSelfInterfaceType();
auto selfMetaTy = MetatypeType::get(selfTy);
bodyParams.push_back(ParameterList::createWithoutLoc(selfMetaVar));
// Import the type that this method will have.
Optional<ForeignErrorConvention> errorConvention;
bodyParams.push_back(nullptr);
auto type = Impl.importMethodType(
dc, objcMethod, args, variadic, isInSystemModule(dc),
&bodyParams.back(), importedName, errorConvention,
SpecialMethodKind::Constructor);
if (!type)
return nullptr;
// Determine the failability of this initializer.
auto oldFnType = type->castTo<AnyFunctionType>();
OptionalTypeKind failability;
(void)oldFnType->getResult()->getAnyOptionalObjectType(failability);
// Rebuild the function type with the appropriate result type;
Type resultTy = selfTy;
if (failability)
resultTy = OptionalType::get(failability, resultTy);
type = FunctionType::get(oldFnType->getInput(), resultTy,
oldFnType->getExtInfo());
// Add the 'self' parameter to the function types.
Type allocType = FunctionType::get(selfMetaTy, type);
Type initType = FunctionType::get(selfTy, type);
// Look for other imported constructors that occur in this context with
// the same name.
Type allocParamType = allocType->castTo<AnyFunctionType>()
->getResult()
->castTo<AnyFunctionType>()
->getInput();
bool ignoreNewExtensions = isa<ClassDecl>(dc);
for (auto other : ownerNominal->lookupDirect(importedName.getDeclName(),
ignoreNewExtensions)) {
auto ctor = dyn_cast<ConstructorDecl>(other);
if (!ctor || ctor->isInvalid() ||
ctor->getAttrs().isUnavailable(Impl.SwiftContext) ||
!ctor->getClangDecl())
continue;
// Resolve the type of the constructor.
if (!ctor->hasInterfaceType())
Impl.getTypeResolver()->resolveDeclSignature(ctor);
// If the types don't match, this is a different constructor with
// the same selector. This can happen when an overlay overloads an
// existing selector with a Swift-only signature.
Type ctorParamType = ctor->getInterfaceType()
->castTo<AnyFunctionType>()
->getResult()
->castTo<AnyFunctionType>()
->getInput();
if (!ctorParamType->isEqual(allocParamType)) {
continue;
}
// If the existing constructor has a less-desirable kind, mark
// the existing constructor unavailable.
if (existingConstructorIsWorse(ctor, objcMethod, kind)) {
// Show exactly where this constructor came from.
llvm::SmallString<32> errorStr;
errorStr += "superseded by import of ";
if (objcMethod->isClassMethod())
errorStr += "+[";
else
errorStr += "-[";
auto objcDC = objcMethod->getDeclContext();
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(objcDC)) {
errorStr += objcClass->getName();
errorStr += ' ';
} else if (auto objcCat = dyn_cast<clang::ObjCCategoryDecl>(objcDC)) {
errorStr += objcCat->getClassInterface()->getName();
auto catName = objcCat->getName();
if (!catName.empty()) {
errorStr += '(';
errorStr += catName;
errorStr += ')';
}
errorStr += ' ';
} else if (auto objcProto = dyn_cast<clang::ObjCProtocolDecl>(objcDC)) {
errorStr += objcProto->getName();
errorStr += ' ';
}
errorStr += objcMethod->getSelector().getAsString();
errorStr += ']';
auto attr = AvailableAttr::createPlatformAgnostic(
Impl.SwiftContext, Impl.SwiftContext.AllocateCopy(errorStr.str()));
ctor->getAttrs().add(attr);
continue;
}
// Otherwise, we shouldn't create a new constructor, because
// it will be no better than the existing one.
redundant = true;
return nullptr;
}
// Check whether we've already created the constructor.
auto known =
Impl.Constructors.find(std::make_tuple(objcMethod, dc, getVersion()));
if (known != Impl.Constructors.end())
return known->second;
auto *selfVar = ParamDecl::createSelf(SourceLoc(), dc);
// Create the actual constructor.
auto result = Impl.createDeclWithClangNode<ConstructorDecl>(
objcMethod, AccessLevel::Public, importedName.getDeclName(),
/*NameLoc=*/SourceLoc(), failability, /*FailabilityLoc=*/SourceLoc(),
/*Throws=*/importedName.getErrorInfo().hasValue(),
/*ThrowsLoc=*/SourceLoc(), selfVar, bodyParams.back(),
/*GenericParams=*/nullptr, dc);
// Make the constructor declaration immediately visible in its
// class or protocol type.
ownerNominal->makeMemberVisible(result);
addObjCAttribute(result, selector);
// Calculate the function type of the result.
auto interfaceAllocType =
getGenericMethodType(dc, allocType->castTo<AnyFunctionType>());
auto interfaceInitType =
getGenericMethodType(dc, initType->castTo<AnyFunctionType>());
result->setInitializerInterfaceType(interfaceInitType);
result->setInterfaceType(interfaceAllocType);
result->setGenericEnvironment(dc->getGenericEnvironmentOfContext());
if (implicit)
result->setImplicit();
// Set the kind of initializer.
result->setInitKind(kind);
// Consult API notes to determine whether this initializer is required.
if (!required && isRequiredInitializer(objcMethod))
required = true;
// Check whether this initializer satisfies a requirement in a protocol.
if (!required && !isa<ProtocolDecl>(dc) && objcMethod->isInstanceMethod()) {
auto objcParent =
cast<clang::ObjCContainerDecl>(objcMethod->getDeclContext());
if (isa<clang::ObjCProtocolDecl>(objcParent)) {
// An initializer declared in a protocol is required.
required = true;
} else {
// If the class in which this initializer was declared conforms to a
// protocol that requires this initializer, then this initializer is
// required.
SmallPtrSet<clang::ObjCProtocolDecl *, 8> objcProtocols;
objcParent->getASTContext().CollectInheritedProtocols(objcParent,
objcProtocols);
for (auto objcProto : objcProtocols) {
for (auto decl : objcProto->lookup(objcMethod->getSelector())) {
if (cast<clang::ObjCMethodDecl>(decl)->isInstanceMethod()) {
required = true;
break;
}
}
if (required)
break;
}
}
}
// If this initializer is required, add the appropriate attribute.
if (required) {
result->getAttrs().add(new (Impl.SwiftContext)
RequiredAttr(/*IsImplicit=*/true));
}
// Record the error convention.
if (errorConvention) {
result->setForeignErrorConvention(*errorConvention);
}
// Record the constructor for future re-use.
Impl.Constructors[std::make_tuple(objcMethod, dc, getVersion())] = result;
// If this constructor overrides another constructor, mark it as such.
recordObjCOverride(result);
// Inform the context that we have external definitions.
Impl.registerExternalDecl(result);
return result;
}
void SwiftDeclConverter::recordObjCOverride(AbstractFunctionDecl *decl) {
// Figure out the class in which this method occurs.
auto classTy = decl->getDeclContext()->getDeclaredInterfaceType()
->getAs<ClassType>();
if (!classTy)
return;
auto superTy = classTy->getSuperclass();
if (!superTy)
return;
// Dig out the Objective-C superclass.
auto superDecl = superTy->getAnyNominal();
SmallVector<ValueDecl *, 4> results;
superDecl->lookupQualified(superTy, decl->getFullName(),
NL_QualifiedDefault | NL_KnownNoDependency,
Impl.getTypeResolver(), results);
for (auto member : results) {
if (member->getKind() != decl->getKind() ||
member->isInstanceMember() != decl->isInstanceMember())
continue;
// Set function override.
if (auto func = dyn_cast<FuncDecl>(decl)) {
auto foundFunc = cast<FuncDecl>(member);
// Require a selector match.
if (func->getObjCSelector() != foundFunc->getObjCSelector())
continue;
func->setOverriddenDecl(foundFunc);
return;
}
// Set constructor override.
auto ctor = cast<ConstructorDecl>(decl);
auto memberCtor = cast<ConstructorDecl>(member);
// Require a selector match.
if (ctor->getObjCSelector() != memberCtor->getObjCSelector())
continue;
ctor->setOverriddenDecl(memberCtor);
// Propagate 'required' to subclass initializers.
if (memberCtor->isRequired() &&
!ctor->getAttrs().hasAttribute<RequiredAttr>()) {
ctor->getAttrs().add(new (Impl.SwiftContext)
RequiredAttr(/*IsImplicit=*/true));
}
}
}
void SwiftDeclConverter::recordObjCOverride(SubscriptDecl *subscript) {
// Figure out the class in which this subscript occurs.
auto classTy =
subscript->getDeclContext()->getAsClassOrClassExtensionContext();
if (!classTy)
return;
auto superTy = classTy->getSuperclass();
if (!superTy)
return;
// Determine whether this subscript operation overrides another subscript
// operation.
SmallVector<ValueDecl *, 2> lookup;
subscript->getModuleContext()->lookupQualified(
superTy, subscript->getFullName(),
NL_QualifiedDefault | NL_KnownNoDependency, Impl.getTypeResolver(),
lookup);
Type unlabeledIndices;
for (auto result : lookup) {
auto parentSub = dyn_cast<SubscriptDecl>(result);
if (!parentSub)
continue;
// Compute the type of indices for our own subscript operation, lazily.
if (!unlabeledIndices) {
unlabeledIndices = subscript->getIndices()
->getInterfaceType(Impl.SwiftContext)
->getUnlabeledType(Impl.SwiftContext);
}
// Compute the type of indices for the subscript we found.
auto parentUnlabeledIndices = parentSub->getIndices()
->getInterfaceType(Impl.SwiftContext)
->getUnlabeledType(Impl.SwiftContext);
if (!unlabeledIndices->isEqual(parentUnlabeledIndices))
continue;
// The index types match. This is an override, so mark it as such.
subscript->setOverriddenDecl(parentSub);
auto getterThunk = subscript->getGetter();
getterThunk->setOverriddenDecl(parentSub->getGetter());
if (auto parentSetter = parentSub->getSetter()) {
if (auto setterThunk = subscript->getSetter())
setterThunk->setOverriddenDecl(parentSetter);
}
// FIXME: Eventually, deal with multiple overrides.
break;
}
}
/// \brief Given either the getter or setter for a subscript operation,
/// create the Swift subscript declaration.
SubscriptDecl *
SwiftDeclConverter::importSubscript(Decl *decl,
const clang::ObjCMethodDecl *objcMethod) {
assert(objcMethod->isInstanceMethod() && "Caller must filter");
// If the method we're attempting to import has the
// swift_private attribute, don't import as a subscript.
if (objcMethod->hasAttr<clang::SwiftPrivateAttr>())
return nullptr;
// Figure out where to look for the counterpart.
const clang::ObjCInterfaceDecl *interface = nullptr;
const clang::ObjCProtocolDecl *protocol =
dyn_cast<clang::ObjCProtocolDecl>(objcMethod->getDeclContext());
if (!protocol)
interface = objcMethod->getClassInterface();
auto lookupInstanceMethod = [&](
clang::Selector Sel) -> const clang::ObjCMethodDecl * {
if (interface)
return interface->lookupInstanceMethod(Sel);
return protocol->lookupInstanceMethod(Sel);
};
auto findCounterpart = [&](clang::Selector sel) -> FuncDecl * {
// If the declaration we're starting from is in a class, first
// look for a class member with the appropriate selector.
if (auto classDecl =
decl->getDeclContext()->getAsClassOrClassExtensionContext()) {
auto swiftSel = Impl.importSelector(sel);
for (auto found : classDecl->lookupDirect(swiftSel, true)) {
if (auto foundFunc = dyn_cast<FuncDecl>(found))
return foundFunc;
}
}
// Find based on selector within the current type.
auto counterpart = lookupInstanceMethod(sel);
if (!counterpart)
return nullptr;
return cast_or_null<FuncDecl>(
Impl.importDecl(counterpart, getActiveSwiftVersion()));
};
// Determine the selector of the counterpart.
FuncDecl *getter = nullptr, *setter = nullptr;
clang::Selector counterpartSelector;
if (objcMethod->getSelector() == Impl.objectAtIndexedSubscript) {
getter = cast<FuncDecl>(decl);
counterpartSelector = Impl.setObjectAtIndexedSubscript;
} else if (objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript) {
setter = cast<FuncDecl>(decl);
counterpartSelector = Impl.objectAtIndexedSubscript;
} else if (objcMethod->getSelector() == Impl.objectForKeyedSubscript) {
getter = cast<FuncDecl>(decl);
counterpartSelector = Impl.setObjectForKeyedSubscript;
} else if (objcMethod->getSelector() == Impl.setObjectForKeyedSubscript) {
setter = cast<FuncDecl>(decl);
counterpartSelector = Impl.objectForKeyedSubscript;
} else {
llvm_unreachable("Unknown getter/setter selector");
}
// Find the counterpart.
bool optionalMethods = (objcMethod->getImplementationControl() ==
clang::ObjCMethodDecl::Optional);
if (auto *counterpart = findCounterpart(counterpartSelector)) {
// If the counterpart to the method we're attempting to import has the
// swift_private attribute, don't import as a subscript.
if (auto importedFrom = counterpart->getClangDecl()) {
if (importedFrom->hasAttr<clang::SwiftPrivateAttr>())
return nullptr;
auto counterpartMethod = dyn_cast<clang::ObjCMethodDecl>(importedFrom);
if (optionalMethods)
optionalMethods = (counterpartMethod->getImplementationControl() ==
clang::ObjCMethodDecl::Optional);
}
assert(!counterpart || !counterpart->isStatic());
if (getter)
setter = counterpart;
else
getter = counterpart;
}
// Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
// Check whether we've already created a subscript operation for
// this getter/setter pair.
if (auto subscript = Impl.Subscripts[{getter, setter}]) {
return subscript->getDeclContext() == decl->getDeclContext() ? subscript
: nullptr;
}
// Find the getter indices and make sure they match.
ParamDecl *getterIndex;
{
auto params = getter->getParameterList(1);
if (params->size() != 1)
return nullptr;
getterIndex = params->get(0);
}
// Compute the element type based on the getter, looking through
// the implicit 'self' parameter and the normal function
// parameters.
auto elementTy = getter->getInterfaceType()
->castTo<AnyFunctionType>()
->getResult()
->castTo<AnyFunctionType>()
->getResult();
auto elementContextTy = getter->mapTypeIntoContext(elementTy);
// Local function to mark the setter unavailable.
auto makeSetterUnavailable = [&] {
if (setter && !setter->getAttrs().isUnavailable(Impl.SwiftContext))
Impl.markUnavailable(setter, "use subscripting");
};
// If we have a setter, rectify it with the getter.
ParamDecl *setterIndex;
bool getterAndSetterInSameType = false;
if (setter) {
// Whether there is an existing read-only subscript for which
// we have now found a setter.
SubscriptDecl *existingSubscript = Impl.Subscripts[{getter, nullptr}];
// Are the getter and the setter in the same type.
getterAndSetterInSameType =
(getter->getDeclContext()
->getAsNominalTypeOrNominalTypeExtensionContext() ==
setter->getDeclContext()
->getAsNominalTypeOrNominalTypeExtensionContext());
// Whether we can update the types involved in the subscript
// operation.
bool canUpdateSubscriptType =
!existingSubscript && getterAndSetterInSameType;
// Determine the setter's element type and indices.
Type setterElementTy;
std::tie(setterElementTy, setterIndex) = decomposeSubscriptSetter(setter);
// Rectify the setter element type with the getter's element type.
Type newElementTy = rectifySubscriptTypes(elementTy, setterElementTy,
canUpdateSubscriptType);
if (!newElementTy)
return decl == getter ? existingSubscript : nullptr;
// Update the element type.
elementTy = newElementTy;
// Make sure that the index types are equivalent.
// FIXME: Rectify these the same way we do for element types.
if (!setterIndex->getType()->isEqual(getterIndex->getType())) {
// If there is an existing subscript operation, we're done.
if (existingSubscript)
return decl == getter ? existingSubscript : nullptr;
// Otherwise, just forget we had a setter.
// FIXME: This feels very, very wrong.
setter = nullptr;
setterIndex = nullptr;
}
// If there is an existing subscript within this context, we
// cannot create a new subscript. Update it if possible.
if (setter && existingSubscript && getterAndSetterInSameType) {
// Can we update the subscript by adding the setter?
if (existingSubscript->hasClangNode() &&
!existingSubscript->isSettable()) {
// Create the setter thunk.
auto setterThunk = buildSubscriptSetterDecl(
Impl, setter, elementTy, setter->getDeclContext(), setterIndex);
// Set the computed setter.
existingSubscript->setComputedSetter(setterThunk);
// Mark the setter as unavailable; one should use
// subscripting when it is present.
makeSetterUnavailable();
}
return decl == getter ? existingSubscript : nullptr;
}
}
// The context into which the subscript should go. We prefer wherever the
// getter is declared unless the two accessors are in different types and the
// one we started with is the setter. This happens when:
// - A read-only subscript is made read/write is a subclass.
// - A setter is redeclared in a subclass, but not the getter.
// And not when:
// - A getter is redeclared in a subclass, but not the setter.
// - The getter and setter are part of the same type.
// - There is no setter.
bool associateWithSetter = !getterAndSetterInSameType && setter == decl;
DeclContext *dc =
associateWithSetter ? setter->getDeclContext() : getter->getDeclContext();
// Build the thunks.
FuncDecl *getterThunk =
buildSubscriptGetterDecl(Impl, getter, elementTy, dc, getterIndex);
FuncDecl *setterThunk = nullptr;
if (setter)
setterThunk =
buildSubscriptSetterDecl(Impl, setter, elementTy, dc, setterIndex);
// Build the subscript declaration.
auto &C = Impl.SwiftContext;
auto bodyParams = getterThunk->getParameterList(1)->clone(C);
DeclName name(C, DeclBaseName::createSubscript(), {Identifier()});
auto subscript = Impl.createDeclWithClangNode<SubscriptDecl>(
getter->getClangNode(), getOverridableAccessLevel(dc), name,
decl->getLoc(), bodyParams, decl->getLoc(),
TypeLoc::withoutLoc(elementContextTy), dc,
/*GenericParams=*/nullptr);
/// Record the subscript as an alternative declaration.
Impl.addAlternateDecl(associateWithSetter ? setter : getter, subscript);
subscript->setGenericEnvironment(dc->getGenericEnvironmentOfContext());
subscript->setIsSetterMutating(false);
subscript->makeComputed(SourceLoc(), getterThunk, setterThunk, nullptr,
SourceLoc());
auto indicesType = bodyParams->getType(C);
AnyFunctionType *fnType;
if (auto *sig = dc->getGenericSignatureOfContext())
fnType = GenericFunctionType::get(sig, indicesType, elementTy,
AnyFunctionType::ExtInfo());
else
fnType = FunctionType::get(indicesType, elementTy);
subscript->setInterfaceType(fnType);
addObjCAttribute(subscript, None);
// Optional subscripts in protocols.
if (optionalMethods && isa<ProtocolDecl>(dc))
subscript->getAttrs().add(new (Impl.SwiftContext) OptionalAttr(true));
// Note that we've created this subscript.
Impl.Subscripts[{getter, setter}] = subscript;
if (setter && !Impl.Subscripts[{getter, nullptr}])
Impl.Subscripts[{getter, nullptr}] = subscript;
// Make the getter/setter methods unavailable.
if (!getter->getAttrs().isUnavailable(Impl.SwiftContext))
Impl.markUnavailable(getter, "use subscripting");
makeSetterUnavailable();
// Wire up overrides.
recordObjCOverride(subscript);
return subscript;
}
FuncDecl *
SwiftDeclConverter::importAccessor(clang::ObjCMethodDecl *clangAccessor,
DeclContext *dc) {
SwiftDeclConverter converter(Impl, getActiveSwiftVersion());
auto *accessor =
cast_or_null<FuncDecl>(converter.importObjCMethodDecl(clangAccessor, dc));
if (!accessor) {
return nullptr;
}
Impl.importAttributes(clangAccessor, accessor);
return accessor;
}
void SwiftDeclConverter::addProtocols(
ProtocolDecl *protocol, SmallVectorImpl<ProtocolDecl *> &protocols,
llvm::SmallPtrSet<ProtocolDecl *, 4> &known) {
if (!known.insert(protocol).second)
return;
protocols.push_back(protocol);
for (auto inherited : protocol->getInheritedProtocols())
addProtocols(inherited, protocols, known);
}
void SwiftDeclConverter::importObjCProtocols(
Decl *decl, const clang::ObjCProtocolList &clangProtocols,
SmallVectorImpl<TypeLoc> &inheritedTypes) {
SmallVector<ProtocolDecl *, 4> protocols;
llvm::SmallPtrSet<ProtocolDecl *, 4> knownProtocols;
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
nominal->getImplicitProtocols(protocols);
knownProtocols.insert(protocols.begin(), protocols.end());
}
for (auto cp = clangProtocols.begin(), cpEnd = clangProtocols.end();
cp != cpEnd; ++cp) {
if (auto proto = castIgnoringCompatibilityAlias<ProtocolDecl>(
Impl.importDecl(*cp, getActiveSwiftVersion()))) {
addProtocols(proto, protocols, knownProtocols);
inheritedTypes.push_back(TypeLoc::withoutLoc(proto->getDeclaredType()));
}
}
addObjCProtocolConformances(decl, protocols);
}
void SwiftDeclConverter::addObjCProtocolConformances(
Decl *decl, ArrayRef<ProtocolDecl *> protocols) {
// Nothing to do for protocols.
if (isa<ProtocolDecl>(decl)) return;
Impl.recordImportedProtocols(decl, protocols);
// Synthesize trivial conformances for each of the protocols.
SmallVector<ProtocolConformance *, 4> conformances;
auto dc = decl->getInnermostDeclContext();
auto &ctx = Impl.SwiftContext;
for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
// FIXME: Build a superclass conformance if the superclass
// conforms.
auto conformance = ctx.getConformance(dc->getDeclaredInterfaceType(),
protocols[i], SourceLoc(), dc,
ProtocolConformanceState::Incomplete);
conformance->setLazyLoader(&Impl, /*context*/0);
conformance->setState(ProtocolConformanceState::Complete);
conformances.push_back(conformance);
}
// Set the conformances.
// FIXME: This could be lazier.
unsigned id = Impl.allocateDelayedConformance(std::move(conformances));
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
nominal->setConformanceLoader(&Impl, id);
} else {
auto ext = cast<ExtensionDecl>(decl);
ext->setConformanceLoader(&Impl, id);
}
}
Optional<GenericParamList *> SwiftDeclConverter::importObjCGenericParams(
const clang::ObjCInterfaceDecl *decl, DeclContext *dc) {
auto typeParamList = decl->getTypeParamList();
if (!typeParamList) {
return nullptr;
}
if (shouldSuppressGenericParamsImport(Impl.SwiftContext.LangOpts, decl)) {
return nullptr;
}
assert(typeParamList->size() > 0);
SmallVector<GenericTypeParamDecl *, 4> genericParams;
for (auto *objcGenericParam : *typeParamList) {
auto genericParamDecl = Impl.createDeclWithClangNode<GenericTypeParamDecl>(
objcGenericParam, AccessLevel::Public, dc,
Impl.SwiftContext.getIdentifier(objcGenericParam->getName()),
Impl.importSourceLoc(objcGenericParam->getLocation()),
/*depth*/ 0, /*index*/ genericParams.size());
// NOTE: depth is always 0 for ObjC generic type arguments, since only
// classes may have generic types in ObjC, and ObjC classes cannot be
// nested.
// Import parameter constraints.
SmallVector<TypeLoc, 1> inherited;
if (objcGenericParam->hasExplicitBound()) {
assert(!objcGenericParam->getUnderlyingType().isNull());
auto clangBound = objcGenericParam->getUnderlyingType()
->castAs<clang::ObjCObjectPointerType>();
if (clangBound->getInterfaceDecl()) {
auto unqualifiedClangBound =
clangBound->stripObjCKindOfTypeAndQuals(Impl.getClangASTContext());
Type superclassType =
Impl.importType(clang::QualType(unqualifiedClangBound, 0),
ImportTypeKind::Abstract, false,
Bridgeability::None);
if (!superclassType) {
return None;
}
inherited.push_back(TypeLoc::withoutLoc(superclassType));
}
for (clang::ObjCProtocolDecl *clangProto : clangBound->quals()) {
ProtocolDecl *proto = castIgnoringCompatibilityAlias<ProtocolDecl>(
Impl.importDecl(clangProto, getActiveSwiftVersion()));
if (!proto) {
return None;
}
inherited.push_back(TypeLoc::withoutLoc(proto->getDeclaredType()));
}
}
if (inherited.empty()) {
inherited.push_back(
TypeLoc::withoutLoc(Impl.SwiftContext.getAnyObjectType()));
}
genericParamDecl->setInherited(Impl.SwiftContext.AllocateCopy(inherited));
genericParams.push_back(genericParamDecl);
}
return GenericParamList::create(
Impl.SwiftContext, Impl.importSourceLoc(typeParamList->getLAngleLoc()),
genericParams, Impl.importSourceLoc(typeParamList->getRAngleLoc()));
}
void SwiftDeclConverter::importMirroredProtocolMembers(
const clang::ObjCContainerDecl *decl, DeclContext *dc,
ArrayRef<ProtocolDecl *> protocols, SmallVectorImpl<Decl *> &members,
ASTContext &Ctx) {
assert(dc);
const clang::ObjCInterfaceDecl *interfaceDecl = nullptr;
const ClangModuleUnit *declModule;
const ClangModuleUnit *interfaceModule;
// 'protocols' is, for some reason, the full recursive expansion of
// the protocol hierarchy, so there's no need to recursively descend
// into inherited protocols.
// Try to import only the most specific methods with a particular name.
// We use a MapVector to get deterministic iteration order later.
llvm::MapVector<clang::Selector, std::vector<MirroredMethodEntry>>
methodsByName;
for (auto proto : protocols) {
auto clangProto =
cast_or_null<clang::ObjCProtocolDecl>(proto->getClangDecl());
if (!clangProto)
continue;
if (!interfaceDecl) {
declModule = Impl.getClangModuleForDecl(decl);
if ((interfaceDecl = dyn_cast<clang::ObjCInterfaceDecl>(decl))) {
interfaceModule = declModule;
} else {
auto category = cast<clang::ObjCCategoryDecl>(decl);
interfaceDecl = category->getClassInterface();
interfaceModule = Impl.getClangModuleForDecl(interfaceDecl);
}
}
// Don't import a protocol's members if the superclass already adopts
// the protocol, or (for categories) if the class itself adopts it
// in its main @interface.
if (decl != interfaceDecl)
if (classImplementsProtocol(interfaceDecl, clangProto, false))
continue;
if (auto superInterface = interfaceDecl->getSuperClass())
if (classImplementsProtocol(superInterface, clangProto, true))
continue;
const auto &languageVersion =
Impl.SwiftContext.LangOpts.EffectiveLanguageVersion;
for (auto member : proto->getMembers()) {
// Skip compatibility stubs; there's no reason to mirror them.
if (member->getAttrs().isUnavailableInSwiftVersion(languageVersion))
continue;
if (auto prop = dyn_cast<VarDecl>(member)) {
auto objcProp =
dyn_cast_or_null<clang::ObjCPropertyDecl>(prop->getClangDecl());
if (!objcProp)
continue;
// We can't import a property if there's already a method with this
// name. (This also covers other properties with that same name.)
// FIXME: We should still mirror the setter as a method if it's
// not already there.
clang::Selector sel = objcProp->getGetterName();
if (interfaceDecl->getInstanceMethod(sel))
continue;
bool inNearbyCategory =
std::any_of(interfaceDecl->visible_categories_begin(),
interfaceDecl->visible_categories_end(),
[=](const clang::ObjCCategoryDecl *category) -> bool {
if (category != decl) {
auto *categoryModule =
Impl.getClangModuleForDecl(category);
if (categoryModule != declModule &&
categoryModule != interfaceModule) {
return false;
}
}
return category->getInstanceMethod(sel);
});
if (inNearbyCategory)
continue;
if (auto imported =
Impl.importMirroredDecl(objcProp, dc, getVersion(), proto)) {
members.push_back(imported);
// FIXME: We should mirror properties of the root class onto the
// metatype.
}
continue;
}
auto afd = dyn_cast<AbstractFunctionDecl>(member);
if (!afd)
continue;
if (auto func = dyn_cast<FuncDecl>(afd))
if (func->isAccessor())
continue;
auto objcMethod =
dyn_cast_or_null<clang::ObjCMethodDecl>(member->getClangDecl());
if (!objcMethod)
continue;
// For now, just remember that we saw this method.
methodsByName[objcMethod->getSelector()]
.push_back(MirroredMethodEntry{objcMethod, proto});
}
}
// Process all the methods, now that we've arranged them by selector.
for (auto &mapEntry : methodsByName) {
importNonOverriddenMirroredMethods(dc, mapEntry.second, members);
}
}
enum MirrorImportComparison {
// There's no suppression relationship between the methods.
NoSuppression,
// The first method suppresses the second.
Suppresses,
// The second method suppresses the first.
IsSuppressed,
};
/// Should the mirror import of the first method be suppressed in favor
/// of the second method? The methods are known to have the same selector
/// and (because this is mirror-import) to be declared on protocols.
///
/// The algorithm that uses this assumes that it is transitive.
static bool isMirrorImportSuppressedBy(ClangImporter::Implementation &importer,
const clang::ObjCMethodDecl *first,
const clang::ObjCMethodDecl *second) {
if (first->isInstanceMethod() != second->isInstanceMethod())
return false;
auto firstProto = cast<clang::ObjCProtocolDecl>(first->getDeclContext());
auto secondProto = cast<clang::ObjCProtocolDecl>(second->getDeclContext());
// If the first method's protocol is a super-protocol of the second's,
// then the second method overrides the first and we should suppress.
// Clang provides a function to check that, phrased in terms of whether
// a value of one protocol (the RHS) can be assigned to an l-value of
// the other (the LHS).
auto &ctx = importer.getClangASTContext();
return ctx.ProtocolCompatibleWithProtocol(
const_cast<clang::ObjCProtocolDecl*>(firstProto),
const_cast<clang::ObjCProtocolDecl*>(secondProto));
}
/// Compare two methods for mirror-import purposes.
static MirrorImportComparison
compareMethodsForMirrorImport(ClangImporter::Implementation &importer,
const clang::ObjCMethodDecl *first,
const clang::ObjCMethodDecl *second) {
if (isMirrorImportSuppressedBy(importer, first, second))
return IsSuppressed;
if (isMirrorImportSuppressedBy(importer, second, first))
return Suppresses;
return NoSuppression;
}
/// Mark any methods in the given array that are overridden by this method
/// as suppressed by nulling their entries out.
/// Return true if this method is overridden by any methods in the array.
static bool suppressOverriddenMethods(ClangImporter::Implementation &importer,
const clang::ObjCMethodDecl *method,
MutableArrayRef<MirroredMethodEntry> entries) {
assert(method && "method was already suppressed");
for (auto &entry: entries) {
auto otherMethod = entry.first;
if (!otherMethod) continue;
assert(method != otherMethod && "found same method twice?");
switch (compareMethodsForMirrorImport(importer, method, otherMethod)) {
// If the second method is suppressed, null it out.
case Suppresses:
entry.first = nullptr;
continue;
// If the first method is suppressed, return immediately. We should
// be able to suppress any following methods.
case IsSuppressed:
return true;
case NoSuppression:
continue;
}
llvm_unreachable("bad comparison result");
}
return false;
}
/// Given a set of methods with the same selector, each taken from a
/// different protocol in the protocol hierarchy of a class into which
/// we want to introduce mirror imports, import only the methods which
/// are not overridden by another method in the set.
///
/// It's possible that we'll end up selecting multiple methods to import
/// here, in the cases where there's no hierarchical relationship between
/// two methods. The importer already has code to handle this case.
void SwiftDeclConverter::importNonOverriddenMirroredMethods(DeclContext *dc,
MutableArrayRef<MirroredMethodEntry> entries,
SmallVectorImpl<Decl *> &members) {
for (size_t i = 0, e = entries.size(); i != e; ++i) {
auto objcMethod = entries[i].first;
// If the method was suppressed by a previous method, ignore it.
if (!objcMethod)
continue;
// Compare this method to all the following methods, suppressing any
// that it overrides. If it is overridden by any of them, suppress it
// instead; but there's no need to mark that in the array, just continue
// on to the next method.
if (suppressOverriddenMethods(Impl, objcMethod, entries.slice(i + 1)))
continue;
// Okay, the method wasn't suppressed, import it.
// When mirroring an initializer, make it designated and required.
if (isInitMethod(objcMethod)) {
// Import the constructor.
if (auto imported = importConstructor(objcMethod, dc, /*implicit=*/true,
CtorInitializerKind::Designated,
/*required=*/true)) {
members.push_back(imported);
}
continue;
}
// Import the method.
auto proto = entries[i].second;
if (auto imported =
Impl.importMirroredDecl(objcMethod, dc, getVersion(), proto)) {
members.push_back(imported);
for (auto alternate : Impl.getAlternateDecls(imported))
if (imported->getDeclContext() == alternate->getDeclContext())
members.push_back(alternate);
}
}
}
void SwiftDeclConverter::importInheritedConstructors(
ClassDecl *classDecl, SmallVectorImpl<Decl *> &newMembers) {
if (!classDecl->hasSuperclass())
return;
auto curObjCClass = cast<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
auto inheritConstructors = [&](ArrayRef<ValueDecl *> members,
Optional<CtorInitializerKind> kind) {
const auto &languageVersion =
Impl.SwiftContext.LangOpts.EffectiveLanguageVersion;
for (auto member : members) {
auto ctor = dyn_cast<ConstructorDecl>(member);
if (!ctor)
continue;
// Don't inherit compatibility stubs.
if (ctor->getAttrs().isUnavailableInSwiftVersion(languageVersion))
continue;
// Don't inherit (non-convenience) factory initializers.
// Note that convenience factories return instancetype and can be
// inherited.
switch (ctor->getInitKind()) {
case CtorInitializerKind::Factory:
continue;
case CtorInitializerKind::ConvenienceFactory:
case CtorInitializerKind::Convenience:
case CtorInitializerKind::Designated:
break;
}
auto objcMethod =
dyn_cast_or_null<clang::ObjCMethodDecl>(ctor->getClangDecl());
if (!objcMethod)
continue;
auto &clangSourceMgr = Impl.getClangASTContext().getSourceManager();
clang::PrettyStackTraceDecl trace(objcMethod, clang::SourceLocation(),
clangSourceMgr,
"importing (inherited)");
// If this initializer came from a factory method, inherit
// it as an initializer.
if (objcMethod->isClassMethod()) {
assert(ctor->getInitKind() == CtorInitializerKind::ConvenienceFactory);
Optional<ImportedName> correctSwiftName;
ImportedName importedName =
importFullName(objcMethod, correctSwiftName);
assert(
!correctSwiftName &&
"Import inherited initializers never references correctSwiftName");
importedName.setHasCustomName();
bool redundant;
if (auto newCtor =
importConstructor(objcMethod, classDecl,
/*implicit=*/true, ctor->getInitKind(),
/*required=*/false, ctor->getObjCSelector(),
importedName, objcMethod->parameters(),
objcMethod->isVariadic(), redundant)) {
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(newCtor, *correctSwiftName);
Impl.importAttributes(objcMethod, newCtor, curObjCClass);
newMembers.push_back(newCtor);
}
continue;
}
// Figure out what kind of constructor this will be.
CtorInitializerKind myKind;
bool isRequired = false;
if (ctor->isRequired()) {
// Required initializers are always considered designated.
isRequired = true;
myKind = CtorInitializerKind::Designated;
} else if (kind) {
myKind = *kind;
} else {
myKind = ctor->getInitKind();
}
// Import the constructor into this context.
if (auto newCtor =
importConstructor(objcMethod, classDecl,
/*implicit=*/true, myKind, isRequired)) {
Impl.importAttributes(objcMethod, newCtor, curObjCClass);
newMembers.push_back(newCtor);
}
}
};
// The kind of initializer to import. If this class has designated
// initializers, everything it imports is a convenience initializer.
Optional<CtorInitializerKind> kind;
if (hasDesignatedInitializers(curObjCClass))
kind = CtorInitializerKind::Convenience;
auto superclass =
cast<ClassDecl>(classDecl->getSuperclass()->getAnyNominal());
// If we have a superclass, import from it.
if (auto superclassClangDecl = superclass->getClangDecl()) {
if (isa<clang::ObjCInterfaceDecl>(superclassClangDecl)) {
inheritConstructors(superclass->lookupDirect(Impl.SwiftContext.Id_init),
kind);
}
}
}
Decl *ClangImporter::Implementation::importDeclCached(
const clang::NamedDecl *ClangDecl,
ImportNameVersion version) {
auto Known = ImportedDecls.find({ClangDecl->getCanonicalDecl(), version});
if (Known != ImportedDecls.end())
return Known->second;
return nullptr;
}
/// Checks if we don't need to import the typedef itself. If the typedef
/// should be skipped, returns the underlying declaration that the typedef
/// refers to -- this declaration should be imported instead.
static const clang::TagDecl *
canSkipOverTypedef(ClangImporter::Implementation &Impl,
const clang::NamedDecl *D,
bool &TypedefIsSuperfluous) {
// If we have a typedef that refers to a tag type of the same name,
// skip the typedef and import the tag type directly.
TypedefIsSuperfluous = false;
auto *ClangTypedef = dyn_cast<clang::TypedefNameDecl>(D);
if (!ClangTypedef)
return nullptr;
const clang::DeclContext *RedeclContext =
ClangTypedef->getDeclContext()->getRedeclContext();
if (!RedeclContext->isTranslationUnit())
return nullptr;
clang::QualType UnderlyingType = ClangTypedef->getUnderlyingType();
// A typedef to a typedef should get imported as a typealias.
auto *TypedefT = UnderlyingType->getAs<clang::TypedefType>();
if (TypedefT)
return nullptr;
auto *TT = UnderlyingType->getAs<clang::TagType>();
if (!TT)
return nullptr;
clang::TagDecl *UnderlyingDecl = TT->getDecl();
if (UnderlyingDecl->getDeclContext()->getRedeclContext() != RedeclContext)
return nullptr;
if (UnderlyingDecl->getDeclName().isEmpty())
return UnderlyingDecl;
auto TypedefName = ClangTypedef->getDeclName();
auto TagDeclName = UnderlyingDecl->getDeclName();
if (TypedefName != TagDeclName)
return nullptr;
TypedefIsSuperfluous = true;
return UnderlyingDecl;
}
StringRef ClangImporter::Implementation::
getSwiftNameFromClangName(StringRef replacement) {
auto &clangSema = getClangSema();
clang::IdentifierInfo *identifier =
&clangSema.getASTContext().Idents.get(replacement);
clang::LookupResult lookupResult(clangSema, identifier,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (!clangSema.LookupName(lookupResult, nullptr))
return "";
auto clangDecl = lookupResult.getAsSingle<clang::NamedDecl>();
if (!clangDecl)
return "";
auto importedName = importFullName(clangDecl, CurrentVersion);
if (!importedName)
return "";
llvm::SmallString<64> renamed;
{
// Render a swift_name string.
llvm::raw_svector_ostream os(renamed);
printSwiftName(importedName, CurrentVersion, /*fullyQualified=*/true, os);
}
return SwiftContext.AllocateCopy(StringRef(renamed));
}
/// Import Clang attributes as Swift attributes.
void ClangImporter::Implementation::importAttributes(
const clang::NamedDecl *ClangDecl,
Decl *MappedDecl,
const clang::ObjCContainerDecl *NewContext)
{
ASTContext &C = SwiftContext;
if (auto maybeDefinition = getDefinitionForClangTypeDecl(ClangDecl))
if (maybeDefinition.getValue())
ClangDecl = cast<clang::NamedDecl>(maybeDefinition.getValue());
// Scan through Clang attributes and map them onto Swift
// equivalents.
bool AnyUnavailable = MappedDecl->getAttrs().isUnavailable(C);
for (clang::NamedDecl::attr_iterator AI = ClangDecl->attr_begin(),
AE = ClangDecl->attr_end(); AI != AE; ++AI) {
//
// __attribute__((unavailable))
//
// Mapping: @available(*,unavailable)
//
if (auto unavailable = dyn_cast<clang::UnavailableAttr>(*AI)) {
auto Message = unavailable->getMessage();
auto attr = AvailableAttr::createPlatformAgnostic(C, Message);
MappedDecl->getAttrs().add(attr);
AnyUnavailable = true;
continue;
}
//
// __attribute__((annotate(swift1_unavailable)))
//
// Mapping: @available(*, unavailable)
//
if (auto unavailable_annot = dyn_cast<clang::AnnotateAttr>(*AI))
if (unavailable_annot->getAnnotation() == "swift1_unavailable") {
auto attr = AvailableAttr::createPlatformAgnostic(
C, "", "", PlatformAgnosticAvailabilityKind::UnavailableInSwift);
MappedDecl->getAttrs().add(attr);
AnyUnavailable = true;
continue;
}
//
// __attribute__((deprecated))
//
// Mapping: @available(*,deprecated)
//
if (auto deprecated = dyn_cast<clang::DeprecatedAttr>(*AI)) {
auto Message = deprecated->getMessage();
auto attr = AvailableAttr::createPlatformAgnostic(C, Message, "",
PlatformAgnosticAvailabilityKind::Deprecated);
MappedDecl->getAttrs().add(attr);
continue;
}
// __attribute__((availability))
//
if (auto avail = dyn_cast<clang::AvailabilityAttr>(*AI)) {
StringRef Platform = avail->getPlatform()->getName();
// Is this our special "availability(swift, unavailable)" attribute?
if (Platform == "swift") {
auto replacement = avail->getReplacement();
StringRef swiftReplacement = "";
if (!replacement.empty())
swiftReplacement = getSwiftNameFromClangName(replacement);
auto attr = AvailableAttr::createPlatformAgnostic(
C, avail->getMessage(), swiftReplacement,
PlatformAgnosticAvailabilityKind::UnavailableInSwift);
MappedDecl->getAttrs().add(attr);
AnyUnavailable = true;
continue;
}
// Does this availability attribute map to the platform we are
// currently targeting?
if (!platformAvailability.filter ||
!platformAvailability.filter(Platform))
continue;
auto platformK =
llvm::StringSwitch<Optional<PlatformKind>>(Platform)
.Case("ios", PlatformKind::iOS)
.Case("macos", PlatformKind::OSX)
.Case("tvos", PlatformKind::tvOS)
.Case("watchos", PlatformKind::watchOS)
.Case("ios_app_extension", PlatformKind::iOSApplicationExtension)
.Case("macos_app_extension",
PlatformKind::OSXApplicationExtension)
.Case("tvos_app_extension",
PlatformKind::tvOSApplicationExtension)
.Case("watchos_app_extension",
PlatformKind::watchOSApplicationExtension)
.Default(None);
if (!platformK)
continue;
// Is this declaration marked platform-agnostically unavailable?
auto PlatformAgnostic = PlatformAgnosticAvailabilityKind::None;
if (avail->getUnavailable()) {
PlatformAgnostic = PlatformAgnosticAvailabilityKind::Unavailable;
AnyUnavailable = true;
}
StringRef message = avail->getMessage();
const auto &deprecated = avail->getDeprecated();
if (!deprecated.empty()) {
if (platformAvailability.deprecatedAsUnavailableFilter &&
platformAvailability.deprecatedAsUnavailableFilter(
deprecated.getMajor(), deprecated.getMinor())) {
AnyUnavailable = true;
PlatformAgnostic = PlatformAgnosticAvailabilityKind::Unavailable;
if (message.empty())
message = platformAvailability.deprecatedAsUnavailableMessage;
}
}
const auto &obsoleted = avail->getObsoleted();
const auto &introduced = avail->getIntroduced();
const auto &replacement = avail->getReplacement();
StringRef swiftReplacement = "";
if (!replacement.empty())
swiftReplacement = getSwiftNameFromClangName(replacement);
auto AvAttr = new (C) AvailableAttr(SourceLoc(), SourceRange(),
platformK.getValue(),
message, swiftReplacement,
introduced,
/*IntroducedRange=*/SourceRange(),
deprecated,
/*DeprecatedRange=*/SourceRange(),
obsoleted,
/*ObsoletedRange=*/SourceRange(),
PlatformAgnostic, /*Implicit=*/false);
MappedDecl->getAttrs().add(AvAttr);
// For enum cases introduced in the 2017 SDKs, add
// @_downgrade_exhaustivity_check in Swift 3.
if (C.LangOpts.isSwiftVersion3() && isa<EnumElementDecl>(MappedDecl)) {
bool downgradeExhaustivity = false;
switch (*platformK) {
case PlatformKind::OSX:
case PlatformKind::OSXApplicationExtension:
downgradeExhaustivity = (introduced.getMajor() == 10 &&
introduced.getMinor() &&
*introduced.getMinor() == 13);
break;
case PlatformKind::iOS:
case PlatformKind::iOSApplicationExtension:
case PlatformKind::tvOS:
case PlatformKind::tvOSApplicationExtension:
downgradeExhaustivity = (introduced.getMajor() == 11);
break;
case PlatformKind::watchOS:
case PlatformKind::watchOSApplicationExtension:
downgradeExhaustivity = (introduced.getMajor() == 4);
break;
case PlatformKind::none:
break;
}
if (downgradeExhaustivity) {
auto attr =
new (C) DowngradeExhaustivityCheckAttr(/*isImplicit=*/true);
MappedDecl->getAttrs().add(attr);
}
}
}
}
// If the declaration is unavailable, we're done.
if (AnyUnavailable)
return;
if (auto ID = dyn_cast<clang::ObjCInterfaceDecl>(ClangDecl)) {
// Ban NSInvocation.
if (ID->getName() == "NSInvocation") {
auto attr = AvailableAttr::createPlatformAgnostic(C, "");
MappedDecl->getAttrs().add(attr);
return;
}
// Map Clang's swift_objc_members attribute to @objcMembers. Also handle
// inheritance of @objcMembers by looking at the superclass.
if (ID->hasAttr<clang::SwiftObjCMembersAttr>() ||
(isa<ClassDecl>(MappedDecl) &&
cast<ClassDecl>(MappedDecl)->hasSuperclass() &&
cast<ClassDecl>(MappedDecl)->getSuperclassDecl()
->getAttrs().hasAttribute<ObjCMembersAttr>())) {
if (!MappedDecl->getAttrs().hasAttribute<ObjCMembersAttr>()) {
auto attr = new (C) ObjCMembersAttr(/*IsImplicit=*/true);
MappedDecl->getAttrs().add(attr);
}
}
// Infer @objcMembers on XCTestCase.
if (ID->getName() == "XCTestCase") {
if (!MappedDecl->getAttrs().hasAttribute<ObjCMembersAttr>()) {
auto attr = new (C) ObjCMembersAttr(/*IsImplicit=*/true);
MappedDecl->getAttrs().add(attr);
}
}
}
// Ban CFRelease|CFRetain|CFAutorelease(CFTypeRef) as well as custom ones
// such as CGColorRelease(CGColorRef).
if (auto FD = dyn_cast<clang::FunctionDecl>(ClangDecl)) {
if (FD->getNumParams() == 1 &&
(FD->getName().endswith("Release") ||
FD->getName().endswith("Retain") ||
FD->getName().endswith("Autorelease")))
if (auto t = FD->getParamDecl(0)->getType()->getAs<clang::TypedefType>())
if (isCFTypeDecl(t->getDecl())) {
auto attr = AvailableAttr::createPlatformAgnostic(C,
"Core Foundation objects are automatically memory managed");
MappedDecl->getAttrs().add(attr);
return;
}
}
// Hack: mark any method named "print" with less than two parameters as
// warn_unqualified_access.
if (auto MD = dyn_cast<FuncDecl>(MappedDecl)) {
if (isPrintLikeMethod(MD->getFullName(), MD->getDeclContext())) {
// Use a non-implicit attribute so it shows up in the generated
// interface.
MD->getAttrs().add(new (C) WarnUnqualifiedAccessAttr(/*implicit*/false));
}
}
// Map __attribute__((warn_unused_result)).
if (!ClangDecl->hasAttr<clang::WarnUnusedResultAttr>()) {
if (auto MD = dyn_cast<FuncDecl>(MappedDecl)) {
if (!MD->getResultInterfaceType()->isVoid()) {
MD->getAttrs().add(new (C) DiscardableResultAttr(/*implicit*/true));
}
}
}
// Map __attribute__((const)).
if (ClangDecl->hasAttr<clang::ConstAttr>()) {
MappedDecl->getAttrs().add(new (C) EffectsAttr(EffectsKind::ReadNone));
}
// Map __attribute__((pure)).
if (ClangDecl->hasAttr<clang::PureAttr>()) {
MappedDecl->getAttrs().add(new (C) EffectsAttr(EffectsKind::ReadOnly));
}
}
Decl *
ClangImporter::Implementation::importDeclImpl(const clang::NamedDecl *ClangDecl,
ImportNameVersion version,
bool &TypedefIsSuperfluous,
bool &HadForwardDeclaration) {
assert(ClangDecl);
bool SkippedOverTypedef = false;
Decl *Result = nullptr;
if (auto *UnderlyingDecl = canSkipOverTypedef(*this, ClangDecl,
TypedefIsSuperfluous)) {
Result = importDecl(UnderlyingDecl, version);
SkippedOverTypedef = true;
}
if (!Result) {
SwiftDeclConverter converter(*this, version);
Result = converter.Visit(ClangDecl);
HadForwardDeclaration = converter.hadForwardDeclaration();
}
if (!Result && version == CurrentVersion) {
// If we couldn't import this Objective-C entity, determine
// whether it was a required member of a protocol, or a designated
// initializer of a class.
bool hasMissingRequiredMember = false;
if (auto clangProto
= dyn_cast<clang::ObjCProtocolDecl>(ClangDecl->getDeclContext())) {
if (auto method = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
if (method->getImplementationControl()
== clang::ObjCMethodDecl::Required)
hasMissingRequiredMember = true;
} else if (auto prop = dyn_cast<clang::ObjCPropertyDecl>(ClangDecl)) {
if (prop->getPropertyImplementation()
== clang::ObjCPropertyDecl::Required)
hasMissingRequiredMember = true;
}
if (hasMissingRequiredMember) {
// Mark the protocol as having missing requirements.
if (auto proto = castIgnoringCompatibilityAlias<ProtocolDecl>(
importDecl(clangProto, CurrentVersion))) {
proto->setHasMissingRequirements(true);
}
}
}
if (auto method = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
if (!SwiftContext.LangOpts.isSwiftVersion3() &&
method->isDesignatedInitializerForTheInterface()) {
const clang::ObjCInterfaceDecl *theClass = method->getClassInterface();
assert(theClass && "cannot be a protocol method here");
// Only allow this to affect declarations in the same top-level module
// as the original class.
if (getClangModuleForDecl(theClass) == getClangModuleForDecl(method)) {
if (auto swiftClass = castIgnoringCompatibilityAlias<ClassDecl>(
importDecl(theClass, CurrentVersion))) {
swiftClass->setHasMissingDesignatedInitializers();
}
}
}
}
return nullptr;
}
// Finalize the imported declaration.
auto finalizeDecl = [&](Decl *result) {
importAttributes(ClangDecl, result);
// Hack to deal with Objective-C protocols without availability annotation.
// If the protocol comes from clang and is not annotated and the protocol
// requirement itself is not annotated, then infer availability of the
// requirement based on its types. This makes it possible for a type to
// conform to an Objective-C protocol that is missing annotations but whose
// requirements use types that are less available than the conforming type.
auto dc = result->getDeclContext();
auto *proto = dyn_cast<ProtocolDecl>(dc);
if (!proto || proto->getAttrs().hasAttribute<AvailableAttr>())
return;
inferProtocolMemberAvailability(*this, dc, result);
};
if (Result) {
finalizeDecl(Result);
for (auto alternate : getAlternateDecls(Result))
finalizeDecl(alternate);
}
#ifndef NDEBUG
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
// Note that the decl was imported from Clang. Don't mark Swift decls as
// imported.
if (Result &&
(!Result->getDeclContext()->isModuleScopeContext() ||
isa<ClangModuleUnit>(Result->getDeclContext()))) {
// Either the Swift declaration was from stdlib,
// or we imported the underlying decl of the typedef,
// or we imported the decl itself.
bool ImportedCorrectly =
!Result->getClangDecl() || SkippedOverTypedef ||
Result->getClangDecl()->getCanonicalDecl() == Canon;
// Or the other type is a typedef,
if (!ImportedCorrectly &&
isa<clang::TypedefNameDecl>(Result->getClangDecl())) {
// both types are ValueDecls:
if (isa<clang::ValueDecl>(Result->getClangDecl())) {
ImportedCorrectly =
getClangASTContext().hasSameType(
cast<clang::ValueDecl>(Result->getClangDecl())->getType(),
cast<clang::ValueDecl>(Canon)->getType());
} else if (isa<clang::TypeDecl>(Result->getClangDecl())) {
// both types are TypeDecls:
ImportedCorrectly =
getClangASTContext().hasSameUnqualifiedType(
getClangASTContext().getTypeDeclType(
cast<clang::TypeDecl>(Result->getClangDecl())),
getClangASTContext().getTypeDeclType(
cast<clang::TypeDecl>(Canon)));
}
assert(ImportedCorrectly);
}
assert(Result->hasClangNode());
}
#else
(void)SkippedOverTypedef;
#endif
return Result;
}
void ClangImporter::Implementation::startedImportingEntity() {
++NumCurrentImportingEntities;
++NumTotalImportedEntities;
// FIXME: (transitional) increment the redundant "always-on" counter.
if (SwiftContext.Stats)
SwiftContext.Stats->getFrontendCounters().NumTotalClangImportedEntities++;
}
void ClangImporter::Implementation::finishedImportingEntity() {
assert(NumCurrentImportingEntities &&
"finishedImportingEntity not paired with startedImportingEntity");
if (NumCurrentImportingEntities == 1) {
// We decrease NumCurrentImportingEntities only after pending actions
// are finished, to avoid recursively re-calling finishPendingActions().
finishPendingActions();
}
--NumCurrentImportingEntities;
}
void ClangImporter::Implementation::finishPendingActions() {
if (RegisteredExternalDecls.empty())
return;
if (!hasFinishedTypeChecking()) {
for (auto *D : RegisteredExternalDecls)
SwiftContext.addExternalDecl(D);
}
RegisteredExternalDecls.clear();
}
/// Look up associated type requirements in the conforming type.
static void finishTypeWitnesses(
NormalProtocolConformance *conformance) {
auto *dc = conformance->getDeclContext();
auto *module = dc->getParentModule();
auto &ctx = module->getASTContext();
auto *proto = conformance->getProtocol();
auto selfType = conformance->getType();
for (auto *req : proto->getMembers()) {
if (auto *assocType = dyn_cast<AssociatedTypeDecl>(req)) {
// FIXME: This should not happen?
if (conformance->hasTypeWitness(assocType)) continue;
bool satisfied = false;
SmallVector<ValueDecl *, 4> lookupResults;
NLOptions options = (NL_QualifiedDefault |
NL_OnlyTypes |
NL_ProtocolMembers);
dc->lookupQualified(selfType, assocType->getFullName(), options,
ctx.getLazyResolver(), lookupResults);
for (auto member : lookupResults) {
auto typeDecl = cast<TypeDecl>(member);
if (isa<AssociatedTypeDecl>(typeDecl)) continue;
auto memberType = typeDecl->getDeclaredInterfaceType();
auto subMap = selfType->getContextSubstitutionMap(
module, typeDecl->getDeclContext());
memberType = memberType.subst(subMap);
conformance->setTypeWitness(assocType, memberType, typeDecl);
satisfied = true;
break;
}
if (!satisfied) {
llvm::errs() << ("Cannot look up associated type for "
"imported conformance:\n");
conformance->getType().dump(llvm::errs());
assocType->dump(llvm::errs());
abort();
}
}
}
}
/// Make sure any inherited conformances also get completed, if necessary.
static void finishInheritedConformances(
NormalProtocolConformance *conformance) {
auto *proto = conformance->getProtocol();
SmallVector<ProtocolDecl *, 2> inheritedProtos;
for (auto *inherited : proto->getInheritedProtocols())
inheritedProtos.push_back(inherited);
// Sort for deterministic import.
ProtocolType::canonicalizeProtocols(inheritedProtos);
// Schedule any that aren't complete.
for (auto *inherited : inheritedProtos) {
ModuleDecl *M = conformance->getDeclContext()->getParentModule();
auto inheritedConformance = M->lookupConformance(conformance->getType(),
inherited);
assert(inheritedConformance && inheritedConformance->isConcrete() &&
"inherited conformance not found");
}
}
/// Collect conformances for the requirement signature.
static void finishSignatureConformances(
NormalProtocolConformance *conformance) {
auto *proto = conformance->getProtocol();
SmallVector<ProtocolConformanceRef, 4> reqConformances;
for (const auto &req : proto->getRequirementSignature()) {
if (req.getKind() != RequirementKind::Conformance)
continue;
Type substTy;
auto origTy = req.getFirstType();
if (origTy->isEqual(proto->getSelfInterfaceType())) {
substTy = conformance->getType();
} else {
auto *depMemTy = origTy->castTo<DependentMemberType>();
assert(depMemTy->getBase()->isEqual(proto->getSelfInterfaceType()));
substTy = conformance->getTypeWitness(depMemTy->getAssocType(),
/*resolver=*/nullptr);
}
auto reqProto = req.getSecondType()->castTo<ProtocolType>()->getDecl();
ModuleDecl *M = conformance->getDeclContext()->getParentModule();
auto reqConformance = M->lookupConformance(substTy, reqProto);
assert(reqConformance && reqConformance->isConcrete() &&
"required conformance not found");
reqConformances.push_back(*reqConformance);
}
conformance->setSignatureConformances(reqConformances);
}
/// Create witnesses for requirements not already met.
static void finishMissingOptionalWitnesses(
NormalProtocolConformance *conformance) {
auto *proto = conformance->getProtocol();
for (auto req : proto->getMembers()) {
auto valueReq = dyn_cast<ValueDecl>(req);
if (!valueReq)
continue;
if (!conformance->hasWitness(valueReq)) {
if (auto func = dyn_cast<AbstractFunctionDecl>(valueReq)){
// For an optional requirement, record an empty witness:
// we'll end up querying this at runtime.
auto Attrs = func->getAttrs();
if (Attrs.hasAttribute<OptionalAttr>()) {
conformance->setWitness(valueReq, Witness());
continue;
}
}
conformance->setWitness(valueReq, valueReq);
} else {
// An initializer that conforms to a requirement is required.
auto witness = conformance->getWitness(valueReq, nullptr).getDecl();
if (auto ctor = dyn_cast_or_null<ConstructorDecl>(witness)) {
if (!ctor->getAttrs().hasAttribute<RequiredAttr>()) {
auto &ctx = proto->getASTContext();
ctor->getAttrs().add(new (ctx) RequiredAttr(/*IsImplicit=*/true));
}
}
}
}
}
void ClangImporter::Implementation::finishNormalConformance(
NormalProtocolConformance *conformance,
uint64_t unused) {
(void)unused;
auto *proto = conformance->getProtocol();
PrettyStackTraceType trace(SwiftContext, "completing conformance for",
conformance->getType());
PrettyStackTraceDecl traceTo("... to", proto);
if (!proto->isRequirementSignatureComputed())
proto->computeRequirementSignature();
finishTypeWitnesses(conformance);
finishInheritedConformances(conformance);
finishSignatureConformances(conformance);
// Imported conformances to @objc protocols also require additional
// initialization to complete the requirement to witness mapping.
if (!proto->isObjC())
return;
assert(conformance->isComplete());
conformance->setState(ProtocolConformanceState::Incomplete);
finishMissingOptionalWitnesses(conformance);
conformance->setState(ProtocolConformanceState::Complete);
}
Decl *ClangImporter::Implementation::importDeclAndCacheImpl(
const clang::NamedDecl *ClangDecl,
ImportNameVersion version,
bool SuperfluousTypedefsAreTransparent) {
if (!ClangDecl)
return nullptr;
clang::PrettyStackTraceDecl trace(ClangDecl, clang::SourceLocation(),
Instance->getSourceManager(), "importing");
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
if (auto Known = importDeclCached(Canon, version)) {
if (!SuperfluousTypedefsAreTransparent &&
SuperfluousTypedefs.count(Canon))
return nullptr;
return Known;
}
bool TypedefIsSuperfluous = false;
bool HadForwardDeclaration = false;
ImportingEntityRAII ImportingEntity(*this);
Decl *Result = importDeclImpl(ClangDecl, version, TypedefIsSuperfluous,
HadForwardDeclaration);
if (!Result)
return nullptr;
if (TypedefIsSuperfluous) {
SuperfluousTypedefs.insert(Canon);
if (auto tagDecl = dyn_cast_or_null<clang::TagDecl>(Result->getClangDecl()))
DeclsWithSuperfluousTypedefs.insert(tagDecl);
}
if (!HadForwardDeclaration)
ImportedDecls[{Canon, version}] = Result;
if (!SuperfluousTypedefsAreTransparent && TypedefIsSuperfluous)
return nullptr;
return Result;
}
Decl *
ClangImporter::Implementation::importMirroredDecl(const clang::NamedDecl *decl,
DeclContext *dc,
ImportNameVersion version,
ProtocolDecl *proto) {
assert(dc);
if (!decl)
return nullptr;
clang::PrettyStackTraceDecl trace(decl, clang::SourceLocation(),
Instance->getSourceManager(),
"importing (mirrored)");
auto canon = decl->getCanonicalDecl();
auto known = ImportedProtocolDecls.find(std::make_tuple(canon, dc, version));
if (known != ImportedProtocolDecls.end())
return known->second;
SwiftDeclConverter converter(*this, version);
Decl *result;
if (auto method = dyn_cast<clang::ObjCMethodDecl>(decl)) {
result = converter.importObjCMethodDecl(method, dc);
} else if (auto prop = dyn_cast<clang::ObjCPropertyDecl>(decl)) {
result = converter.importObjCPropertyDecl(prop, dc);
} else {
llvm_unreachable("unexpected mirrored decl");
}
if (result) {
assert(result->getClangDecl() && result->getClangDecl() == canon);
auto updateMirroredDecl = [&](Decl *result) {
result->setImplicit();
// Map the Clang attributes onto Swift attributes.
importAttributes(decl, result);
if (proto->getAttrs().hasAttribute<AvailableAttr>()) {
if (!result->getAttrs().hasAttribute<AvailableAttr>()) {
AvailabilityContext protoRange =
AvailabilityInference::availableRange(proto, SwiftContext);
applyAvailableAttribute(result, protoRange, SwiftContext);
}
} else {
// Infer the same availability for the mirrored declaration as
// we would for the protocol member it is mirroring.
inferProtocolMemberAvailability(*this, dc, result);
}
};
updateMirroredDecl(result);
// Update the alternate declaration as well.
for (auto alternate : getAlternateDecls(result))
updateMirroredDecl(alternate);
}
if (result || !converter.hadForwardDeclaration())
ImportedProtocolDecls[std::make_tuple(canon, dc, version)] = result;
return result;
}
DeclContext *ClangImporter::Implementation::importDeclContextImpl(
const clang::DeclContext *dc) {
// Every declaration should come from a module, so we should not see the
// TranslationUnit DeclContext here.
assert(!dc->isTranslationUnit());
auto decl = dyn_cast<clang::NamedDecl>(dc);
if (!decl)
return nullptr;
auto swiftDecl = importDecl(decl, CurrentVersion);
if (!swiftDecl)
return nullptr;
if (auto nominal = dynCastIgnoringCompatibilityAlias<NominalTypeDecl>(swiftDecl))
return nominal;
if (auto extension = dyn_cast<ExtensionDecl>(swiftDecl))
return extension;
if (auto constructor = dyn_cast<ConstructorDecl>(swiftDecl))
return constructor;
if (auto destructor = dyn_cast<DestructorDecl>(swiftDecl))
return destructor;
return nullptr;
}
GenericSignature *ClangImporter::Implementation::buildGenericSignature(
GenericParamList *genericParams, DeclContext *dc) {
GenericSignatureBuilder builder(SwiftContext);
SmallVector<GenericTypeParamType *, 4> allGenericParams;
for (auto param : *genericParams) {
builder.addGenericParameter(param);
allGenericParams.push_back(
param->getDeclaredInterfaceType()->castTo<GenericTypeParamType>());
}
for (auto param : *genericParams) {
bool result = builder.addGenericParameterRequirements(param);
assert(!result);
(void) result;
}
return std::move(builder).computeGenericSignature(SourceLoc());
}
// Calculate the generic environment from an imported generic param list.
GenericEnvironment *ClangImporter::Implementation::buildGenericEnvironment(
GenericParamList *genericParams, DeclContext *dc) {
return buildGenericSignature(genericParams, dc)->createGenericEnvironment();
}
DeclContext *
ClangImporter::Implementation::importDeclContextOf(
const clang::Decl *decl,
EffectiveClangContext context)
{
DeclContext *importedDC = nullptr;
switch (context.getKind()) {
case EffectiveClangContext::DeclContext: {
auto dc = context.getAsDeclContext();
if (dc->isTranslationUnit()) {
if (auto *module = getClangModuleForDecl(decl))
return module;
else
return nullptr;
}
// Import the DeclContext.
importedDC = importDeclContextImpl(dc);
break;
}
case EffectiveClangContext::TypedefContext: {
// Import the typedef-name as a declaration.
auto importedDecl = importDecl(context.getTypedefName(), CurrentVersion);
if (!importedDecl) return nullptr;
// Dig out the imported DeclContext.
importedDC = dynCastIgnoringCompatibilityAlias<NominalTypeDecl>(importedDecl);
break;
}
case EffectiveClangContext::UnresolvedContext: {
// FIXME: Resolve through name lookup. This is brittle.
auto submodule =
getClangSubmoduleForDecl(decl, /*allowForwardDeclaration=*/false);
if (!submodule) return nullptr;
if (auto lookupTable = findLookupTable(*submodule)) {
if (auto clangDecl
= lookupTable->resolveContext(context.getUnresolvedName())) {
// Import the Clang declaration.
auto decl = importDecl(clangDecl, CurrentVersion);
if (!decl) return nullptr;
// Look through typealiases.
if (auto typealias = dyn_cast<TypeAliasDecl>(decl))
importedDC = typealias->getDeclaredInterfaceType()->getAnyNominal();
else // Map to a nominal type declaration.
importedDC = dyn_cast<NominalTypeDecl>(decl);
break;
}
}
}
}
// If we didn't manage to import the declaration context, we're done.
if (!importedDC) return nullptr;
// If the declaration was not global to start with, we're done.
bool isGlobal =
decl->getDeclContext()->getRedeclContext()->isTranslationUnit();
if (!isGlobal) return importedDC;
// If the resulting declaration context is not a nominal type,
// we're done.
auto nominal = dyn_cast<NominalTypeDecl>(importedDC);
if (!nominal) return importedDC;
// Look for the extension for the given nominal type within the
// Clang submodule of the declaration.
const clang::Module *declSubmodule = *getClangSubmoduleForDecl(decl);
auto extensionKey = std::make_pair(nominal, declSubmodule);
auto knownExtension = extensionPoints.find(extensionKey);
if (knownExtension != extensionPoints.end())
return knownExtension->second;
// Create a new extension for this nominal type/Clang submodule pair.
auto swiftTyLoc = TypeLoc::withoutLoc(nominal->getDeclaredType());
auto ext = ExtensionDecl::create(SwiftContext, SourceLoc(), swiftTyLoc, {},
getClangModuleForDecl(decl), nullptr);
ext->setValidationStarted();
ext->setCheckedInheritanceClause();
ext->setMemberLoader(this, reinterpret_cast<uintptr_t>(declSubmodule));
if (auto protoDecl = ext->getAsProtocolExtensionContext()) {
ext->setGenericParams(protoDecl->createGenericParams(ext));
auto *env = buildGenericEnvironment(ext->getGenericParams(), ext);
ext->setGenericEnvironment(env);
}
// Add the extension to the nominal type.
nominal->addExtension(ext);
// Record this extension so we can find it later.
extensionPoints[extensionKey] = ext;
return ext;
}
ValueDecl *
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
Type type,
const clang::APValue &value,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN) {
auto &context = SwiftContext;
// Create the integer literal value.
Expr *expr = nullptr;
switch (value.getKind()) {
case clang::APValue::AddrLabelDiff:
case clang::APValue::Array:
case clang::APValue::ComplexFloat:
case clang::APValue::ComplexInt:
case clang::APValue::LValue:
case clang::APValue::MemberPointer:
case clang::APValue::Struct:
case clang::APValue::Uninitialized:
case clang::APValue::Union:
case clang::APValue::Vector:
llvm_unreachable("Unhandled APValue kind");
case clang::APValue::Float:
case clang::APValue::Int: {
// Print the value.
llvm::SmallString<16> printedValueBuf;
if (value.getKind() == clang::APValue::Int) {
value.getInt().toString(printedValueBuf);
} else {
assert(value.getFloat().isFinite() && "can't handle infinities or NaNs");
value.getFloat().toString(printedValueBuf);
}
StringRef printedValue = printedValueBuf.str();
// If this was a negative number, record that and strip off the '-'.
bool isNegative = printedValue.front() == '-';
if (isNegative)
printedValue = printedValue.drop_front();
// Create the expression node.
StringRef printedValueCopy(context.AllocateCopy(printedValue));
if (value.getKind() == clang::APValue::Int) {
if (type->getCanonicalType()->isBool()) {
expr = new (context) BooleanLiteralExpr(value.getInt().getBoolValue(),
SourceLoc(),
/**Implicit=*/true);
} else {
expr = new (context) IntegerLiteralExpr(printedValueCopy, SourceLoc(),
/*Implicit=*/true);
}
} else {
expr = new (context) FloatLiteralExpr(printedValueCopy, SourceLoc(),
/*Implicit=*/true);
}
if (isNegative)
cast<NumberLiteralExpr>(expr)->setNegative(SourceLoc());
break;
}
}
assert(expr);
return createConstant(name, dc, type, expr, convertKind, isStatic, ClangN);
}
ValueDecl *
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
Type type, StringRef value,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN) {
auto expr = new (SwiftContext) StringLiteralExpr(value, SourceRange());
return createConstant(name, dc, type, expr, convertKind, isStatic, ClangN);
}
ValueDecl *
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
Type type, Expr *valueExpr,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN) {
auto &C = SwiftContext;
VarDecl *var = nullptr;
if (ClangN) {
var = createDeclWithClangNode<VarDecl>(ClangN, AccessLevel::Public,
/*IsStatic*/isStatic, VarDecl::Specifier::Var,
/*IsCaptureList*/false, SourceLoc(),
name, dc->mapTypeIntoContext(type), dc);
} else {
var = new (SwiftContext)
VarDecl(/*IsStatic*/isStatic, VarDecl::Specifier::Var, /*IsCaptureList*/false,
SourceLoc(), name, dc->mapTypeIntoContext(type), dc);
var->setValidationStarted();
}
var->setInterfaceType(type);
// Form the argument patterns.
SmallVector<ParameterList*, 3> getterArgs;
// 'self'
if (dc->isTypeContext()) {
auto *selfDecl = ParamDecl::createSelf(SourceLoc(), dc, isStatic);
getterArgs.push_back(ParameterList::createWithoutLoc(selfDecl));
}
// empty tuple
getterArgs.push_back(ParameterList::createEmpty(C));
// Form the type of the getter.
auto getterType = ParameterList::getFullInterfaceType(type, getterArgs, C);
// Create the getter function declaration.
auto func =
FuncDecl::create(C, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None,
/*FuncLoc=*/SourceLoc(),
/*Name=*/Identifier(), /*NameLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
/*GenericParams=*/nullptr, getterArgs,
TypeLoc::withoutLoc(type), dc);
func->setStatic(isStatic);
func->setInterfaceType(getterType);
func->setAccess(getOverridableAccessLevel(dc));
func->setValidationStarted();
func->setImplicit();
// If we're not done type checking, build the getter body.
if (!hasFinishedTypeChecking()) {
auto expr = valueExpr;
// If we need a conversion, add one now.
switch (convertKind) {
case ConstantConvertKind::None:
break;
case ConstantConvertKind::Construction:
case ConstantConvertKind::ConstructionWithUnwrap: {
auto typeRef = TypeExpr::createImplicit(type, C);
expr = CallExpr::createImplicit(C, typeRef, { expr }, { C.Id_rawValue });
if (convertKind == ConstantConvertKind::ConstructionWithUnwrap)
expr = new (C) ForceValueExpr(expr, SourceLoc());
break;
}
case ConstantConvertKind::Coerce:
break;
case ConstantConvertKind::Downcast: {
expr = new (C) ForcedCheckedCastExpr(expr, SourceLoc(), SourceLoc(),
TypeLoc::withoutLoc(type));
expr->setImplicit();
break;
}
}
// Create the return statement.
auto ret = new (C) ReturnStmt(SourceLoc(), expr);
// Finally, set the body.
func->setBody(BraceStmt::create(C, SourceLoc(),
ASTNode(ret),
SourceLoc()));
}
// Mark the function transparent so that we inline it away completely.
func->getAttrs().add(new (C) TransparentAttr(/*implicit*/ true));
// Set the function up as the getter.
var->makeComputed(SourceLoc(), func, nullptr, nullptr, SourceLoc());
// Register this thunk as an external definition.
registerExternalDecl(func);
return var;
}
/// \brief Create a decl with error type and an "unavailable" attribute on it
/// with the specified message.
void ClangImporter::Implementation::
markUnavailable(ValueDecl *decl, StringRef unavailabilityMsgRef) {
unavailabilityMsgRef = SwiftContext.AllocateCopy(unavailabilityMsgRef);
auto ua = AvailableAttr::createPlatformAgnostic(SwiftContext,
unavailabilityMsgRef);
decl->getAttrs().add(ua);
}
/// \brief Create a decl with error type and an "unavailable" attribute on it
/// with the specified message.
ValueDecl *ClangImporter::Implementation::
createUnavailableDecl(Identifier name, DeclContext *dc, Type type,
StringRef UnavailableMessage, bool isStatic,
ClangNode ClangN) {
// Create a new VarDecl with dummy type.
auto var = createDeclWithClangNode<VarDecl>(ClangN, AccessLevel::Public,
/*IsStatic*/isStatic,
VarDecl::Specifier::Var,
/*IsCaptureList*/false,
SourceLoc(), name, type, dc);
var->setInterfaceType(type);
markUnavailable(var, UnavailableMessage);
return var;
}
void
ClangImporter::Implementation::loadAllMembers(Decl *D, uint64_t extra) {
RecursiveSharedTimer::Guard guard;
if (auto s = D->getASTContext().Stats) {
guard = s->getFrontendRecursiveSharedTimers()
.ClangImporter__Implementation__loadAllMembers.getGuard();
}
assert(D);
// Check whether we're importing an Objective-C container of some sort.
auto objcContainer =
dyn_cast_or_null<clang::ObjCContainerDecl>(D->getClangDecl());
// If not, we're importing globals-as-members into an extension.
if (objcContainer) {
loadAllMembersOfObjcContainer(D, objcContainer);
return;
}
loadAllMembersIntoExtension(D, extra);
}
void ClangImporter::Implementation::loadAllMembersIntoExtension(
Decl *D, uint64_t extra) {
// We have extension.
auto ext = cast<ExtensionDecl>(D);
auto nominal = ext->getExtendedType()->getAnyNominal();
// The submodule of the extension is encoded in the extra data.
clang::Module *submodule =
reinterpret_cast<clang::Module *>(static_cast<uintptr_t>(extra));
// Find the lookup table.
auto topLevelModule = submodule;
if (topLevelModule)
topLevelModule = topLevelModule->getTopLevelModule();
auto table = findLookupTable(topLevelModule);
if (!table)
return;
PrettyStackTraceStringAction trace(
"loading import-as-members from",
topLevelModule ? topLevelModule->getTopLevelModuleName()
: "(bridging header)");
PrettyStackTraceDecl trace2("...for", nominal);
// Dig out the effective Clang context for this nominal type.
auto effectiveClangContext = getEffectiveClangContext(nominal);
if (!effectiveClangContext)
return;
// Get ready to actually load the members.
ImportingEntityRAII Importing(*this);
// Load the members.
for (auto entry : table->lookupGlobalsAsMembers(effectiveClangContext)) {
auto decl = entry.get<clang::NamedDecl *>();
// Only include members in the same submodule as this extension.
if (getClangSubmoduleForDecl(decl) != submodule)
continue;
forEachDistinctName(
decl, [&](ImportedName newName, ImportNameVersion nameVersion) -> bool {
return addMemberAndAlternatesToExtension(decl, newName, nameVersion, ext);
});
}
}
static Decl *findMemberThatWillLandInAnExtensionContext(Decl *member) {
Decl *result = member;
while (!isa<ExtensionDecl>(result->getDeclContext())) {
auto nominal = dyn_cast<NominalTypeDecl>(result->getDeclContext());
if (!nominal)
return nullptr;
result = nominal;
if (result->hasClangNode())
return nullptr;
}
return result;
}
bool ClangImporter::Implementation::addMemberAndAlternatesToExtension(
clang::NamedDecl *decl, ImportedName newName, ImportNameVersion nameVersion,
ExtensionDecl *ext) {
// Quickly check the context and bail out if it obviously doesn't
// belong here.
if (auto *importDC = newName.getEffectiveContext().getAsDeclContext())
if (importDC->isTranslationUnit())
return true;
// Then try to import the decl under the specified name.
auto *member = importDecl(decl, nameVersion);
if (!member)
return false;
member = findMemberThatWillLandInAnExtensionContext(member);
if (!member || member->getDeclContext() != ext)
return true;
ext->addMember(member);
for (auto alternate : getAlternateDecls(member)) {
if (alternate->getDeclContext() == ext)
ext->addMember(alternate);
}
return true;
}
static ExtensionDecl *
figureOutTheDeclarationContextToImportInto(Decl *D, DeclContext *&DC,
IterableDeclContext *&IDC) {
if (auto *nominal = dyn_cast<NominalTypeDecl>(D)) {
DC = nominal;
IDC = nominal;
return nullptr;
}
ExtensionDecl *ext = cast<ExtensionDecl>(D);
DC = ext;
IDC = ext;
return ext;
}
static void loadMembersOfBaseImportedFromClang(ExtensionDecl *ext) {
const NominalTypeDecl *base = ext->getExtendedType()->getAnyNominal();
auto *clangBase = base->getClangDecl();
if (!clangBase)
return;
base->loadAllMembers();
// Sanity check: make sure we don't jump over to a category /while/
// loading the original class's members. Right now we only check if this
// happens on the first member.
if (auto *clangContainer = dyn_cast<clang::ObjCContainerDecl>(clangBase))
assert((clangContainer->decls_empty() || !base->getMembers().empty()) &&
"can't load extension members before base has finished");
}
void ClangImporter::Implementation::loadAllMembersOfObjcContainer(
Decl *D, const clang::ObjCContainerDecl *objcContainer) {
clang::PrettyStackTraceDecl trace(objcContainer, clang::SourceLocation(),
Instance->getSourceManager(),
"loading members for");
DeclContext *DC;
IterableDeclContext *IDC;
if (ExtensionDecl *ext =
figureOutTheDeclarationContextToImportInto(D, DC, IDC)) {
// If the base is also imported from Clang, load its members first.
loadMembersOfBaseImportedFromClang(ext);
}
ImportingEntityRAII Importing(*this);
SmallVector<Decl *, 16> members;
collectMembersToAdd(objcContainer, D, DC, members);
// Add the members now, before ~ImportingEntityRAII does work that might
// involve them.
for (auto member : members) {
IDC->addMember(member);
}
}
void ClangImporter::Implementation::insertMembersAndAlternates(
const clang::NamedDecl *nd, SmallVectorImpl<Decl *> &members) {
llvm::SmallPtrSet<Decl *, 4> knownAlternateMembers;
forEachDistinctName(
nd, [&](ImportedName name, ImportNameVersion nameVersion) -> bool {
auto member = importDecl(nd, nameVersion);
if (!member)
return false;
// If there are alternate declarations for this member, add them.
for (auto alternate : getAlternateDecls(member)) {
if (alternate->getDeclContext() == member->getDeclContext() &&
knownAlternateMembers.insert(alternate).second) {
members.push_back(alternate);
}
}
// If this declaration shouldn't be visible, don't add it to
// the list.
if (shouldSuppressDeclImport(nd))
return true;
members.push_back(member);
return true;
});
}
void ClangImporter::Implementation::collectMembersToAdd(
const clang::ObjCContainerDecl *objcContainer, Decl *D, DeclContext *DC,
SmallVectorImpl<Decl *> &members) {
for (const clang::Decl *m : objcContainer->decls()) {
auto nd = dyn_cast<clang::NamedDecl>(m);
if (nd && nd == nd->getCanonicalDecl() &&
nd->getDeclContext() == objcContainer)
insertMembersAndAlternates(nd, members);
}
SwiftDeclConverter converter(*this, CurrentVersion);
SmallVector<ProtocolDecl *, 4> protos = takeImportedProtocols(D);
if (auto clangClass = dyn_cast<clang::ObjCInterfaceDecl>(objcContainer)) {
auto swiftClass = cast<ClassDecl>(D);
objcContainer = clangClass = clangClass->getDefinition();
// Imported inherited initializers.
if (clangClass->getName() != "Protocol") {
converter.importInheritedConstructors(const_cast<ClassDecl *>(swiftClass),
members);
}
} else if (auto clangProto
= dyn_cast<clang::ObjCProtocolDecl>(objcContainer)) {
objcContainer = clangProto->getDefinition();
}
// Import mirrored declarations for protocols to which this category
// or extension conforms.
// FIXME: This is supposed to be a short-term hack.
converter.importMirroredProtocolMembers(objcContainer, DC,
protos, members, SwiftContext);
}
void ClangImporter::Implementation::loadAllConformances(
const Decl *D, uint64_t contextData,
SmallVectorImpl<ProtocolConformance *> &Conformances) {
Conformances = takeDelayedConformance(contextData);
}
Optional<MappedTypeNameKind>
ClangImporter::Implementation::getSpecialTypedefKind(clang::TypedefNameDecl *decl) {
auto iter = SpecialTypedefNames.find(decl->getCanonicalDecl());
if (iter == SpecialTypedefNames.end())
return None;
return iter->second;
}
Identifier
ClangImporter::getEnumConstantName(const clang::EnumConstantDecl *enumConstant){
return Impl.importFullName(enumConstant, Impl.CurrentVersion)
.getDeclName()
.getBaseIdentifier();
}