Files
swift-mirror/lib/ClangImporter/ImporterImpl.h
Doug Gregor 8c05278ef3 [Clang importer] Lazily load all named members with a matching base name.
When loading the named members for a given name, we want to load all
of the members with that base name... not only the ones that match the
full name, because the lookup table is indexed by base name and
filtering too early drops candidates.

Fixes rdar://problem/36085994.
2017-12-15 23:54:36 -08:00

1357 lines
52 KiB
C++

//===--- ImporterImpl.h - Import Clang Modules: Implementation --*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides the implementation class definitions for the Clang
// module loader.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_CLANG_IMPORTER_IMPL_H
#define SWIFT_CLANG_IMPORTER_IMPL_H
#include "ClangAdapter.h"
#include "ImportEnumInfo.h"
#include "ImportName.h"
#include "SwiftLookupTable.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/Type.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Strings.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Serialization/ModuleFileExtension.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/Path.h"
#include <set>
namespace llvm {
class SmallBitVector;
}
namespace clang {
class APValue;
class Decl;
class DeclarationName;
class EnumDecl;
class MacroInfo;
class MangleContext;
class NamedDecl;
class ObjCInterfaceDecl;
class ObjCMethodDecl;
class ObjCPropertyDecl;
class ParmVarDecl;
class Parser;
class QualType;
class TypedefNameDecl;
}
namespace swift {
class ASTContext;
class ClassDecl;
class ConstructorDecl;
class Decl;
class DeclContext;
class Expr;
class ExtensionDecl;
class FuncDecl;
class Identifier;
class Pattern;
class SubscriptDecl;
class ValueDecl;
/// \brief Describes the kind of conversion to apply to a constant value.
enum class ConstantConvertKind {
/// \brief No conversion required.
None,
/// \brief Coerce the constant to the given type.
Coerce,
/// \brief Construct the given type from the constant value.
Construction,
/// \brief Construct the given type from the constant value, using an
/// optional initializer.
ConstructionWithUnwrap,
/// \brief Perform an unchecked downcast to the given type.
Downcast
};
/// \brief Describes the kind of type import we're performing.
enum class ImportTypeKind {
/// \brief Import a type in its most abstract form, without any adjustment.
Abstract,
/// \brief Import the underlying type of a typedef.
Typedef,
/// \brief Import the type of a literal value.
Value,
/// \brief Import the type of a literal value that can be bridged.
BridgedValue,
/// \brief Import the declared type of a variable.
Variable,
/// \brief Import the declared type of an audited variable.
///
/// This is exactly like ImportTypeKind::Variable, except it
/// disables wrapping CF class types in Unmanaged.
AuditedVariable,
/// \brief Import the declared type of a struct or union field.
RecordField,
/// \brief Import the result type of a function.
///
/// This provides special treatment for 'void', among other things, and
/// enables the conversion of bridged types.
Result,
/// \brief Import the result type of an audited function.
///
/// This is exactly like ImportTypeKind::Result, except it
/// disables wrapping CF class types in Unmanaged.
AuditedResult,
/// \brief Import the type of a function parameter.
///
/// This provides special treatment for C++ references (which become
/// [inout] parameters) and C pointers (which become magic [inout]-able types),
/// among other things, and enables the conversion of bridged types.
/// Parameters are always considered CF-audited.
Parameter,
/// \brief Import the type of a parameter declared with
/// \c CF_RETURNS_RETAINED.
///
/// This ensures that the parameter is not marked as Unmanaged.
CFRetainedOutParameter,
/// \brief Import the type of a parameter declared with
/// \c CF_RETURNS_NON_RETAINED.
///
/// This ensures that the parameter is not marked as Unmanaged.
CFUnretainedOutParameter,
/// \brief Import the type pointed to by a pointer or reference.
///
/// This provides special treatment for pointer-to-ObjC-pointer
/// types, which get imported as pointers to *checked* optional,
/// *Pointer<NSFoo?>, instead of implicitly unwrapped optional as usual.
Pointee,
/// \brief Import the type of an ObjC property.
///
/// This enables the conversion of bridged types. Properties are always
/// considered CF-audited.
Property,
/// \brief Import the type of an ObjC property accessor marked 'weak',
/// 'assign', or 'unsafe_unretained'.
///
/// Like Property, but doesn't allow bridging to a value type, since that
/// would discard the ownership.
PropertyWithReferenceSemantics,
/// \brief Import the underlying type of an enum.
///
/// This provides special treatment for 'NSUInteger'.
Enum
};
enum class Bridgeability {
/// This context does not permit bridging at all. For example, the
/// target of a C pointer.
None,
/// This context permits all kinds of bridging. For example, the
/// imported result of a method declaration.
Full
};
/// Controls whether a typedef for \p type should name the fully-bridged Swift
/// type or the original Clang type.
///
/// In either case we end up losing sugar at some uses sites, so this is more
/// about what the right default is.
static inline Bridgeability getTypedefBridgeability(clang::QualType type) {
return type->isBlockPointerType() ? Bridgeability::Full : Bridgeability::None;
}
/// \brief Describes the kind of the C type that can be mapped to a stdlib
/// swift type.
enum class MappedCTypeKind {
UnsignedInt,
SignedInt,
UnsignedWord,
SignedWord,
FloatIEEEsingle,
FloatIEEEdouble,
FloatX87DoubleExtended,
VaList,
ObjCBool,
ObjCSel,
ObjCId,
ObjCClass,
CGFloat,
Block,
};
/// \brief Describes what to do with the C name of a type that can be mapped to
/// a Swift standard library type.
enum class MappedTypeNameKind {
DoNothing,
DefineOnly,
DefineAndUse
};
/// \brief Describes certain kinds of methods that need to be specially
/// handled by the importer.
enum class SpecialMethodKind {
Regular,
Constructor,
NSDictionarySubscriptGetter
};
#define SWIFT_NATIVE_ANNOTATION_STRING "__swift native"
#define SWIFT_PROTOCOL_SUFFIX "Protocol"
#define SWIFT_CFTYPE_SUFFIX "Ref"
/// Describes whether to classify a factory method as an initializer.
enum class FactoryAsInitKind {
/// Infer based on name and type (the default).
Infer,
/// Treat as a class method.
AsClassMethod,
/// Treat as an initializer.
AsInitializer
};
namespace importer {
struct PlatformAvailability {
/// A predicate that indicates if the given platform should be
/// considered for availability.
std::function<bool(StringRef PlatformName)> filter;
/// A predicate that indicates if the given platform version should
/// should be included in the cutoff of deprecated APIs marked unavailable.
std::function<bool(unsigned major, llvm::Optional<unsigned> minor)>
deprecatedAsUnavailableFilter;
/// The message to embed for implicitly unavailability if a deprecated
/// API is now unavailable.
std::string deprecatedAsUnavailableMessage;
PlatformAvailability(LangOptions &opts);
private:
PlatformAvailability(const PlatformAvailability&) = delete;
PlatformAvailability &operator=(const PlatformAvailability &) = delete;
};
}
using LookupTableMap = llvm::StringMap<std::unique_ptr<SwiftLookupTable>>;
/// \brief Implementation of the Clang importer.
class LLVM_LIBRARY_VISIBILITY ClangImporter::Implementation
: public LazyMemberLoader,
public LazyConformanceLoader
{
friend class ClangImporter;
using Version = importer::ImportNameVersion;
public:
Implementation(ASTContext &ctx, const ClangImporterOptions &opts);
~Implementation();
/// \brief Swift AST context.
ASTContext &SwiftContext;
const bool ImportForwardDeclarations;
const bool InferImportAsMember;
const bool DisableSwiftBridgeAttr;
const bool BridgingHeaderExplicitlyRequested;
const bool DisableAdapterModules;
bool IsReadingBridgingPCH;
llvm::SmallVector<clang::serialization::SubmoduleID, 2> PCHImportedSubmodules;
llvm::SmallVector<const clang::Module*, 2> DeferredHeaderImports;
const Version CurrentVersion;
constexpr static const char * const moduleImportBufferName =
"<swift-imported-modules>";
constexpr static const char * const bridgingHeaderBufferName =
"<bridging-header-import>";
private:
/// The Swift lookup table for the bridging header.
std::unique_ptr<SwiftLookupTable> BridgingHeaderLookupTable;
/// The Swift lookup tables, per module.
///
/// Annoyingly, we list this table early so that it gets torn down after
/// the underlying Clang instances that reference it
/// (through the Swift name lookup module file extension).
LookupTableMap LookupTables;
/// \brief The fake buffer used to import modules.
///
/// FIXME: Horrible hack for loadModule().
clang::FileID DummyImportBuffer;
/// \brief A count of the number of load module operations.
///
/// FIXME: Horrible, horrible hack for \c loadModule().
unsigned ImportCounter = 0;
/// \brief Used to avoid running the AST verifier over the same declarations.
size_t VerifiedDeclsCounter = 0;
/// \brief Clang compiler invocation.
std::shared_ptr<clang::CompilerInvocation> Invocation;
/// \brief Clang compiler instance, which is used to actually load Clang
/// modules.
std::unique_ptr<clang::CompilerInstance> Instance;
/// \brief Clang compiler action, which is used to actually run the
/// parser.
std::unique_ptr<clang::FrontendAction> Action;
/// \brief Clang parser, which is used to load textual headers.
std::unique_ptr<clang::Parser> Parser;
/// \brief Clang parser, which is used to load textual headers.
std::unique_ptr<clang::MangleContext> Mangler;
/// The active type checker, or null if there is no active type checker.
///
/// The flag is \c true if there has ever been a type resolver assigned, i.e.
/// if type checking has begun.
llvm::PointerIntPair<LazyResolver *, 1, bool> typeResolver;
public:
/// \brief Mapping of already-imported declarations.
llvm::DenseMap<std::pair<const clang::Decl *, Version>, Decl *> ImportedDecls;
/// \brief The set of "special" typedef-name declarations, which are
/// mapped to specific Swift types.
///
/// Normal typedef-name declarations imported into Swift will maintain
/// equality between the imported declaration's underlying type and the
/// import of the underlying type. A typedef-name declaration is special
/// when this is not the case, e.g., Objective-C's "BOOL" has an underlying
/// type of "signed char", but is mapped to a special Swift struct type
/// ObjCBool.
llvm::SmallDenseMap<const clang::TypedefNameDecl *, MappedTypeNameKind, 16>
SpecialTypedefNames;
/// \brief Provide a single extension point for any given type per clang
/// submodule
llvm::DenseMap<std::pair<NominalTypeDecl *, const clang::Module *>,
ExtensionDecl *> extensionPoints;
/// \brief Typedefs that we should not be importing. We should be importing
/// underlying decls instead.
llvm::DenseSet<const clang::Decl *> SuperfluousTypedefs;
/// Tag decls whose typedefs were imported instead.
///
/// \sa SuperfluousTypedefs
llvm::DenseSet<const clang::Decl *> DeclsWithSuperfluousTypedefs;
/// \brief Mapping of already-imported declarations from protocols, which
/// can (and do) get replicated into classes.
llvm::DenseMap<std::tuple<const clang::Decl *, DeclContext *, Version>,
Decl *> ImportedProtocolDecls;
/// Mapping from identifiers to the set of macros that have that name along
/// with their corresponding Swift declaration.
///
/// Multiple macro definitions can map to the same declaration if the
/// macros are identically defined.
llvm::DenseMap<Identifier,
SmallVector<std::pair<const clang::MacroInfo *, ValueDecl *>,
2>>
ImportedMacros;
// Mapping from macro to value for macros that expand to constant values.
llvm::DenseMap<const clang::MacroInfo *, std::pair<clang::APValue, Type>>
ImportedMacroConstants;
/// Keeps track of active selector-based lookups, so that we don't infinitely
/// recurse when checking whether a method with a given selector has already
/// been imported.
llvm::DenseMap<std::pair<ObjCSelector, char>, unsigned>
ActiveSelectors;
clang::CompilerInstance *getClangInstance() {
return Instance.get();
}
private:
/// \brief Generation number that is used for crude versioning.
///
/// This value is incremented every time a new module is imported.
unsigned Generation = 1;
void bumpGeneration() {
++Generation;
SwiftContext.bumpGeneration();
}
public:
/// \brief Keep track of subscript declarations based on getter/setter
/// pairs.
llvm::DenseMap<std::pair<FuncDecl *, FuncDecl *>, SubscriptDecl *> Subscripts;
/// Keeps track of the Clang functions that have been turned into
/// properties.
llvm::DenseMap<const clang::FunctionDecl *, VarDecl *> FunctionsAsProperties;
importer::EnumInfo getEnumInfo(const clang::EnumDecl *decl) {
return getNameImporter().getEnumInfo(decl);
}
importer::EnumKind getEnumKind(const clang::EnumDecl *decl) {
return getNameImporter().getEnumKind(decl);
}
// TODO: drop this accessor as soon as we further de-couple the swift name
// lookup tables from the Impl.
LookupTableMap &getLookupTables() { return LookupTables; }
private:
/// A mapping from imported declarations to their "alternate" declarations,
/// for cases where a single Clang declaration is imported to two
/// different Swift declarations.
llvm::DenseMap<Decl *, TinyPtrVector<ValueDecl *>> AlternateDecls;
public:
/// \brief Keep track of initializer declarations that correspond to
/// imported methods.
llvm::DenseMap<
std::tuple<const clang::ObjCMethodDecl *, DeclContext *, Version>,
ConstructorDecl *> Constructors;
/// Retrieve the alternative declaration for the given imported
/// Swift declaration.
ArrayRef<ValueDecl *> getAlternateDecls(Decl *decl) {
auto known = AlternateDecls.find(decl);
if (known == AlternateDecls.end()) return {};
return known->second;
}
/// Add an alternative decl
void addAlternateDecl(Decl *forDecl, ValueDecl *altDecl) {
auto &vec = AlternateDecls[forDecl];
for (auto alt : vec)
if (alt == altDecl)
return;
vec.push_back(altDecl);
}
private:
/// \brief NSObject, imported into Swift.
Type NSObjectTy;
/// A pair containing a ClangModuleUnit,
/// and whether the adapters of its re-exported modules have all been forced
/// to load already.
using ModuleInitPair = llvm::PointerIntPair<ClangModuleUnit *, 1, bool>;
public:
/// A map from Clang modules to their Swift wrapper modules.
llvm::SmallDenseMap<const clang::Module *, ModuleInitPair, 16> ModuleWrappers;
/// The module unit that contains declarations from imported headers.
ClangModuleUnit *ImportedHeaderUnit = nullptr;
/// The modules re-exported by imported headers.
llvm::SmallVector<ModuleDecl::ImportedModule, 8> ImportedHeaderExports;
/// The modules that requested imported headers.
///
/// These are used to look up Swift classes forward-declared with \@class.
TinyPtrVector<ModuleDecl *> ImportedHeaderOwners;
/// \brief Clang's objectAtIndexedSubscript: selector.
clang::Selector objectAtIndexedSubscript;
/// \brief Clang's setObjectAt:indexedSubscript: selector.
clang::Selector setObjectAtIndexedSubscript;
/// \brief Clang's objectForKeyedSubscript: selector.
clang::Selector objectForKeyedSubscript;
/// \brief Clang's setObject:forKeyedSubscript: selector.
clang::Selector setObjectForKeyedSubscript;
private:
/// Records those modules that we have looked up.
llvm::DenseMap<Identifier, ModuleDecl *> checkedModules;
/// External Decls that we have imported but not passed to the ASTContext yet.
SmallVector<Decl *, 4> RegisteredExternalDecls;
unsigned NumCurrentImportingEntities = 0;
/// Mapping from delayed conformance IDs to the set of delayed
/// protocol conformances.
llvm::DenseMap<unsigned, SmallVector<ProtocolConformance *, 4>>
DelayedConformances;
/// The next delayed conformance ID to use with \c DelayedConformances.
unsigned NextDelayedConformanceID = 0;
/// The set of imported protocols for a declaration, used only to
/// load all members of the declaration.
llvm::DenseMap<const Decl *, SmallVector<ProtocolDecl *, 4>>
ImportedProtocols;
void startedImportingEntity();
void finishedImportingEntity();
void finishPendingActions();
struct ImportingEntityRAII {
Implementation &Impl;
ImportingEntityRAII(Implementation &Impl) : Impl(Impl) {
Impl.startedImportingEntity();
}
~ImportingEntityRAII() {
Impl.finishedImportingEntity();
}
};
public:
importer::PlatformAvailability platformAvailability;
private:
/// For importing names. This is initialized by the ClangImporter::create()
/// after having set up a suitable Clang instance.
std::unique_ptr<importer::NameImporter> nameImporter = nullptr;
/// If there is a single .PCH file imported into the __ObjC module, this
/// is the filename of that PCH. When other files are imported, this should
/// be llvm::None.
Optional<std::string> SinglePCHImport = None;
public:
importer::NameImporter &getNameImporter() {
assert(nameImporter && "haven't finished initialization");
return *nameImporter;
}
/// Tracks top level decls from the bridging header.
std::vector<clang::Decl *> BridgeHeaderTopLevelDecls;
std::vector<llvm::PointerUnion<clang::ImportDecl *, ImportDecl *>>
BridgeHeaderTopLevelImports;
/// Tracks macro definitions from the bridging header.
std::vector<clang::IdentifierInfo *> BridgeHeaderMacros;
/// Tracks included headers from the bridging header.
llvm::DenseSet<const clang::FileEntry *> BridgeHeaderFiles;
void addBridgeHeaderTopLevelDecls(clang::Decl *D);
bool shouldIgnoreBridgeHeaderTopLevelDecl(clang::Decl *D);
public:
void registerExternalDecl(Decl *D) {
RegisteredExternalDecls.push_back(D);
}
/// \brief Retrieve the Clang AST context.
clang::ASTContext &getClangASTContext() const {
return Instance->getASTContext();
}
/// \brief Retrieve the Clang Sema object.
clang::Sema &getClangSema() const {
return Instance->getSema();
}
/// \brief Retrieve the Clang AST context.
clang::Preprocessor &getClangPreprocessor() const {
return Instance->getPreprocessor();
}
clang::CodeGenOptions &getClangCodeGenOpts() const {
return Instance->getCodeGenOpts();
}
/// Imports the given header contents into the Clang context.
bool importHeader(ModuleDecl *adapter, StringRef headerName,
SourceLoc diagLoc, bool trackParsedSymbols,
std::unique_ptr<llvm::MemoryBuffer> contents,
bool implicitImport);
/// \brief Retrieve the imported module that should contain the given
/// Clang decl.
ClangModuleUnit *getClangModuleForDecl(const clang::Decl *D,
bool allowForwardDeclaration = false);
/// Returns the module \p MI comes from, or \c None if \p MI does not have
/// a valid associated module.
///
/// The returned module may be null (but not \c None) if \p MI comes from
/// an imported header.
const clang::Module *getClangOwningModule(ClangNode Node) const;
/// Whether NSUInteger can be imported as Int in certain contexts. If false,
/// should always be imported as UInt.
static bool shouldAllowNSUIntegerAsInt(bool isFromSystemModule,
const clang::NamedDecl *decl);
/// \brief Converts the given Swift identifier for Clang.
clang::DeclarationName exportName(Identifier name);
/// Imports the full name of the given Clang declaration into Swift.
///
/// Note that this may result in a name very different from the Clang name,
/// so it should not be used when referencing Clang symbols.
///
/// \param D The Clang declaration whose name should be imported.
importer::ImportedName importFullName(const clang::NamedDecl *D,
Version version,
clang::DeclarationName givenName =
clang::DeclarationName()) {
return getNameImporter().importName(D, version, givenName);
}
/// Print an imported name as a string suitable for the swift_name attribute,
/// or the 'Rename' field of AvailableAttr.
void printSwiftName(importer::ImportedName name,
importer::ImportNameVersion version,
bool fullyQualified,
llvm::raw_ostream &os);
/// \brief Import the given Clang identifier into Swift.
///
/// \param identifier The Clang identifier to map into Swift.
///
/// \param removePrefix The prefix to remove from the Clang name to produce
/// the Swift name. If the Clang name does not start with this prefix,
/// nothing is removed.
Identifier importIdentifier(const clang::IdentifierInfo *identifier,
StringRef removePrefix = "");
/// Import an Objective-C selector.
ObjCSelector importSelector(clang::Selector selector);
/// Import a Swift name as a Clang selector.
clang::Selector exportSelector(DeclName name, bool allowSimpleName = true);
/// Export a Swift Objective-C selector as a Clang Objective-C selector.
clang::Selector exportSelector(ObjCSelector selector);
/// \brief Import the given Swift source location into Clang.
clang::SourceLocation exportSourceLoc(SourceLoc loc);
/// \brief Import the given Clang source location into Swift.
SourceLoc importSourceLoc(clang::SourceLocation loc);
/// \brief Import the given Clang source range into Swift.
SourceRange importSourceRange(clang::SourceRange loc);
/// \brief Import the given Clang preprocessor macro as a Swift value decl.
///
/// \p macroNode must be a MacroInfo or a ModuleMacro.
///
/// \returns The imported declaration, or null if the macro could not be
/// translated into Swift.
ValueDecl *importMacro(Identifier name, ClangNode macroNode);
/// Map a Clang identifier name to its imported Swift equivalent.
StringRef getSwiftNameFromClangName(StringRef name);
/// Import attributes from the given Clang declaration to its Swift
/// equivalent.
///
/// \param ClangDecl The decl being imported.
/// \param MappedDecl The decl to attach attributes to.
/// \param NewContext If present, the Clang node for the context the decl is
/// being imported into, which may affect info from API notes.
void importAttributes(const clang::NamedDecl *ClangDecl, Decl *MappedDecl,
const clang::ObjCContainerDecl *NewContext = nullptr);
/// If we already imported a given decl, return the corresponding Swift decl.
/// Otherwise, return nullptr.
Decl *importDeclCached(const clang::NamedDecl *ClangDecl, Version version);
Decl *importDeclImpl(const clang::NamedDecl *ClangDecl, Version version,
bool &TypedefIsSuperfluous, bool &HadForwardDeclaration);
Decl *importDeclAndCacheImpl(const clang::NamedDecl *ClangDecl,
Version version,
bool SuperfluousTypedefsAreTransparent);
/// \brief Same as \c importDeclReal, but for use inside importer
/// implementation.
///
/// Unlike \c importDeclReal, this function for convenience transparently
/// looks through superfluous typedefs and returns the imported underlying
/// decl in that case.
Decl *importDecl(const clang::NamedDecl *ClangDecl, Version version) {
return importDeclAndCacheImpl(ClangDecl, version,
/*SuperfluousTypedefsAreTransparent=*/true);
}
/// \brief Import the given Clang declaration into Swift. Use this function
/// outside of the importer implementation, when importing a decl requested by
/// Swift code.
///
/// \returns The imported declaration, or null if this declaration could
/// not be represented in Swift.
Decl *importDeclReal(const clang::NamedDecl *ClangDecl, Version version) {
return importDeclAndCacheImpl(ClangDecl, version,
/*SuperfluousTypedefsAreTransparent=*/false);
}
/// \brief Import a cloned version of the given declaration, which is part of
/// an Objective-C protocol and currently must be a method or property, into
/// the given declaration context.
///
/// \returns The imported declaration, or null if this declaration could not
/// be represented in Swift.
Decl *importMirroredDecl(const clang::NamedDecl *decl, DeclContext *dc,
Version version, ProtocolDecl *proto);
/// \brief Utility function for building simple generic signatures.
GenericSignature *buildGenericSignature(GenericParamList *genericParams,
DeclContext *dc);
/// \brief Utility function for building simple generic environments.
GenericEnvironment *buildGenericEnvironment(GenericParamList *genericParams,
DeclContext *dc);
/// \brief Import the given Clang declaration context into Swift.
///
/// Usually one will use \c importDeclContextOf instead.
///
/// \returns The imported declaration context, or null if it could not
/// be converted.
DeclContext *importDeclContextImpl(const clang::DeclContext *dc);
/// \brief Import the declaration context of a given Clang declaration into
/// Swift.
///
/// \param context The effective context as determined by importFullName.
///
/// \returns The imported declaration context, or null if it could not
/// be converted.
DeclContext *importDeclContextOf(const clang::Decl *D,
EffectiveClangContext context);
/// \brief Create a new named constant with the given value.
///
/// \param name The name of the constant.
/// \param dc The declaration context into which the name will be introduced.
/// \param type The type of the named constant.
/// \param value The value of the named constant.
/// \param convertKind How to convert the constant to the given type.
/// \param isStatic Whether the constant should be a static member of \p dc.
ValueDecl *createConstant(Identifier name, DeclContext *dc,
Type type, const clang::APValue &value,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN);
/// \brief Create a new named constant with the given value.
///
/// \param name The name of the constant.
/// \param dc The declaration context into which the name will be introduced.
/// \param type The type of the named constant.
/// \param value The value of the named constant.
/// \param convertKind How to convert the constant to the given type.
/// \param isStatic Whether the constant should be a static member of \p dc.
ValueDecl *createConstant(Identifier name, DeclContext *dc,
Type type, StringRef value,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN);
/// \brief Create a new named constant using the given expression.
///
/// \param name The name of the constant.
/// \param dc The declaration context into which the name will be introduced.
/// \param type The type of the named constant.
/// \param valueExpr An expression to use as the value of the constant.
/// \param convertKind How to convert the constant to the given type.
/// \param isStatic Whether the constant should be a static member of \p dc.
ValueDecl *createConstant(Identifier name, DeclContext *dc,
Type type, Expr *valueExpr,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN);
/// Determine whether the given declaration is considered
/// 'unavailable' in Swift.
bool isUnavailableInSwift(const clang::Decl *decl) {
return importer::isUnavailableInSwift(
decl, platformAvailability, SwiftContext.LangOpts.EnableObjCInterop);
}
/// \brief Add "Unavailable" annotation to the swift declaration.
void markUnavailable(ValueDecl *decl, StringRef unavailabilityMsg);
/// \brief Create a decl with error type and an "unavailable" attribute on it
/// with the specified message.
ValueDecl *createUnavailableDecl(Identifier name, DeclContext *dc,
Type type, StringRef UnavailableMessage,
bool isStatic, ClangNode ClangN);
/// \brief Retrieve the standard library module.
ModuleDecl *getStdlibModule();
/// \brief Retrieve the named module.
///
/// \param name The name of the module.
///
/// \returns The named module, or null if the module has not been imported.
ModuleDecl *getNamedModule(StringRef name);
/// \brief Returns the "Foundation" module, if it can be loaded.
///
/// After this has been called, the Foundation module will or won't be loaded
/// into the ASTContext.
ModuleDecl *tryLoadFoundationModule();
/// \brief Returns the "SIMD" module, if it can be loaded.
///
/// After this has been called, the SIMD module will or won't be loaded
/// into the ASTContext.
ModuleDecl *tryLoadSIMDModule();
/// \brief Retrieves the Swift wrapper for the given Clang module, creating
/// it if necessary.
ClangModuleUnit *getWrapperForModule(const clang::Module *underlying);
/// \brief Constructs a Swift module for the given Clang module.
ModuleDecl *finishLoadingClangModule(const clang::Module *clangModule,
bool preferAdapter);
/// \brief Call finishLoadingClangModule on each deferred import collected
/// while scanning a bridging header or PCH.
void handleDeferredImports();
/// \brief Retrieve the named Swift type, e.g., Int32.
///
/// \param moduleName The name of the module in which the type should occur.
///
/// \param name The name of the type to find.
///
/// \returns The named type, or null if the type could not be found.
Type getNamedSwiftType(StringRef moduleName, StringRef name);
/// \brief Retrieve the named Swift type, e.g., Int32.
///
/// \param module The module in which the type should occur.
///
/// \param name The name of the type to find.
///
/// \returns The named type, or null if the type could not be found.
Type getNamedSwiftType(ModuleDecl *module, StringRef name);
/// \brief Retrieve a specialization of the named Swift type, e.g.,
/// UnsafeMutablePointer<T>.
///
/// \param module The name of the module in which the type should occur.
///
/// \param name The name of the type to find.
///
/// \param args The arguments to use in the specialization.
///
/// \returns The named type, or null if the type could not be found.
Type getNamedSwiftTypeSpecialization(ModuleDecl *module, StringRef name,
ArrayRef<Type> args);
/// \brief Retrieve the NSObject type.
Type getNSObjectType();
/// \brief Retrieve the NSObject protocol type.
Type getNSObjectProtocolType();
/// \brief Retrieve the NSCopying protocol type.
Type getNSCopyingType();
/// \brief Determines whether the given type matches an implicit type
/// bound of "Hashable", which is used to validate NSDictionary/NSSet.
bool matchesHashableBound(Type type);
/// \brief Look up and attempt to import a Clang declaration with
/// the given name.
Decl *importDeclByName(StringRef name);
/// \brief Import the given Clang type into Swift.
///
/// \param type The Clang type to import.
///
/// \param kind A classification of the immediate context in which this type
/// will be used. Different contexts result in the type being imported
/// differently; for example, CF types are normally considered Unmanaged,
/// but in parameter position they are known to always be passed at +0.
/// See also the \p topLevelBridgeability parameter.
///
/// \param allowNSUIntegerAsInt If true, NSUInteger will be imported as Int
/// in certain contexts. If false, it will always be imported as UInt.
///
/// \param topLevelBridgeability A classification of the top-level context in
/// which this type will be used. This and \p kind are used together to
/// determine whether a type can be imported in a more Swifty way than
/// a naive translation of its C type. Full bridgeability requires that SIL
/// can get back to the original Clang type if it needs to, which implies
/// that this type is part of a top-level declaration where we do bridging.
/// Without full bridgeability, we can still do some Swifty importing (e.g.
/// mapping NSString to String) if we're in an immediate context \p kind
/// that allows bridging, but only in cases where Swift's default mapping
/// "back" to C is the correct one. If the original type has something
/// funny going on, we either have to use a less lossy version of the type
/// (ObjCBool rather than Bool) or refuse to import it at all (a block with
/// the \c ns_returns_retained attribute).
///
/// \param optional If the imported type was a pointer-like type in C, this
/// optionality is applied to the resulting Swift type.
///
/// \param resugarNSErrorPointer If true, Objective-C's `NSError **` is
/// imported as Foundation.NSErrorPointer rather than
/// AutoreleasingUnsafeMutablePointer<...>. This is usually desirable
/// behavior, but isn't necessary when we use Swift's \c throws anyway.
/// Strictly speaking, though, this is a hack used to break cyclic
/// dependencies.
///
/// \returns The imported type, or null if this type could
/// not be represented in Swift.
Type importType(clang::QualType type,
ImportTypeKind kind,
bool allowNSUIntegerAsInt,
Bridgeability topLevelBridgeability,
OptionalTypeKind optional = OTK_ImplicitlyUnwrappedOptional,
bool resugarNSErrorPointer = true);
/// \brief Import the given function type.
///
/// This routine should be preferred when importing function types for
/// which we have actual function parameters, e.g., when dealing with a
/// function declaration, because it produces a function type whose input
/// tuple has argument names.
///
/// \param dc The context the function is being imported into.
/// \param clangDecl The underlying declaration, if any; should only be
/// considered for any attributes it might carry.
/// \param params The parameter types to the function.
/// \param isVariadic Whether the function is variadic.
/// \param isFromSystemModule Whether to apply special rules that only apply
/// to system APIs.
/// \param name The name of the function.
/// \param[out] parameterList The parameters visible inside the function body.
///
/// \returns the imported function type, or null if the type cannot be
/// imported.
Type importFunctionType(DeclContext *dc,
const clang::FunctionDecl *clangDecl,
ArrayRef<const clang::ParmVarDecl *> params,
bool isVariadic,
bool isFromSystemModule,
DeclName name,
ParameterList *&parameterList);
/// \brief Import the given function return type.
///
/// \param dc The context the function is being imported into.
/// \param clangDecl The underlying declaration, if any; should only be
/// considered for any attributes it might carry.
/// \param allowNSUIntegerAsInt If true, NSUInteger will be imported as Int
/// in certain contexts. If false, it will always be imported as UInt.
///
/// \returns the imported function return type, or null if the type cannot be
/// imported.
Type importFunctionReturnType(DeclContext *dc,
const clang::FunctionDecl *clangDecl,
bool allowNSUIntegerAsInt);
/// \brief Import the parameter list for a function
///
/// \param clangDecl The underlying declaration, if any; should only be
/// considered for any attributes it might carry.
/// \param params The parameter types to the function.
/// \param isVariadic Whether the function is variadic.
/// \param allowNSUIntegerAsInt If true, NSUInteger will be imported as Int
/// in certain contexts. If false, it will always be imported as UInt.
/// \param argNames The argument names
///
/// \returns The imported parameter list on success, or null on failure
ParameterList *
importFunctionParameterList(DeclContext *dc,
const clang::FunctionDecl *clangDecl,
ArrayRef<const clang::ParmVarDecl *> params,
bool isVariadic, bool allowNSUIntegerAsInt,
ArrayRef<Identifier> argNames);
Type importPropertyType(const clang::ObjCPropertyDecl *clangDecl,
bool isFromSystemModule);
/// Attempt to infer a default argument for a parameter with the
/// given Clang \c type, \c baseName, and optionality.
static DefaultArgumentKind
inferDefaultArgument(clang::QualType type, OptionalTypeKind clangOptionality,
Identifier baseName, unsigned numParams,
StringRef argumentLabel, bool isFirstParameter,
bool isLastParameter, importer::NameImporter &);
/// Import the type of an Objective-C method.
///
/// Note that this is not appropriate to use for property accessor methods.
/// Use #importAccessorMethodType instead.
///
/// \param dc The context the method is being imported into.
/// \param clangDecl The underlying declaration.
/// \param params The parameter types to the function. Note that this may not
/// include all parameters defined on the ObjCMethodDecl.
/// \param isVariadic Whether the function is variadic.
/// \param isFromSystemModule Whether to apply special rules that only apply
/// to system APIs.
/// \param[out] bodyParams The patterns visible inside the function body.
/// \param importedName How to import the name of the method.
/// \param[out] errorConvention Whether and how the method throws NSErrors.
/// \param kind Controls whether we're building a type for a method that
/// needs special handling.
///
/// \returns the imported function type, or null if the type cannot be
/// imported.
Type importMethodType(const DeclContext *dc,
const clang::ObjCMethodDecl *clangDecl,
ArrayRef<const clang::ParmVarDecl *> params,
bool isVariadic,
bool isFromSystemModule,
ParameterList **bodyParams,
importer::ImportedName importedName,
Optional<ForeignErrorConvention> &errorConvention,
SpecialMethodKind kind);
/// Import the type of an Objective-C method that will be imported as an
/// accessor for \p property.
///
/// \param dc The context the method is being imported into.
/// \param property The property the method will be an accessor for.
/// \param clangDecl The underlying declaration.
/// \param isFromSystemModule Whether to apply special rules that only apply
/// to system APIs.
/// \param importedName How to import the name of the method. This is still
/// important to satisfy the AST verifier, even though the method is an
/// accessor.
/// \param[out] params The patterns visible inside the function body.
///
/// \returns the imported function type, or null if the type cannot be
/// imported.
Type importAccessorMethodType(const DeclContext *dc,
const clang::ObjCPropertyDecl *property,
const clang::ObjCMethodDecl *clangDecl,
bool isFromSystemModule,
importer::ImportedName importedName,
ParameterList **params);
/// \brief Determine whether the given typedef-name is "special", meaning
/// that it has performed some non-trivial mapping of its underlying type
/// based on the name of the typedef.
Optional<MappedTypeNameKind>
getSpecialTypedefKind(clang::TypedefNameDecl *decl);
/// \brief Look up a name, accepting only typedef results.
const clang::TypedefNameDecl *lookupTypedef(clang::DeclarationName);
/// \brief Return whether a global of the given type should be imported as a
/// 'let' declaration as opposed to 'var'.
bool shouldImportGlobalAsLet(clang::QualType type);
LazyResolver *getTypeResolver() const {
return typeResolver.getPointer();
}
void setTypeResolver(LazyResolver *newResolver) {
assert((!typeResolver.getPointer() || !newResolver) &&
"already have a type resolver");
typeResolver.setPointerAndInt(newResolver, true);
}
bool hasBegunTypeChecking() const { return typeResolver.getInt(); }
bool hasFinishedTypeChecking() const {
return hasBegunTypeChecking() && !getTypeResolver();
}
/// Allocate a new delayed conformance ID with the given set of
/// conformances.
unsigned allocateDelayedConformance(
SmallVector<ProtocolConformance *, 4> &&conformances) {
unsigned id = NextDelayedConformanceID++;
DelayedConformances[id] = std::move(conformances);
return id;
}
/// Take the delayed conformances associated with the given id.
SmallVector<ProtocolConformance *, 4> takeDelayedConformance(unsigned id) {
auto conformances = DelayedConformances.find(id);
SmallVector<ProtocolConformance *, 4> result
= std::move(conformances->second);
DelayedConformances.erase(conformances);
return result;
}
/// Record the set of imported protocols for the given declaration,
/// to be used by member loading.
///
/// FIXME: This is all a hack; we should have lazier deserialization
/// of protocols separate from their conformances.
void recordImportedProtocols(const Decl *decl,
ArrayRef<ProtocolDecl *> protocols) {
if (protocols.empty())
return;
auto &recorded = ImportedProtocols[decl];
recorded.insert(recorded.end(), protocols.begin(), protocols.end());
}
/// Retrieve the imported protocols for the given declaration.
SmallVector<ProtocolDecl *, 4> takeImportedProtocols(const Decl *decl) {
SmallVector<ProtocolDecl *, 4> result;
auto known = ImportedProtocols.find(decl);
if (known != ImportedProtocols.end()) {
result = std::move(known->second);
ImportedProtocols.erase(known);
}
return result;
}
virtual void
loadAllMembers(Decl *D, uint64_t unused) override;
virtual Optional<TinyPtrVector<ValueDecl *>>
loadNamedMembers(const IterableDeclContext *IDC, DeclBaseName N,
uint64_t contextData) override;
private:
void
loadAllMembersOfObjcContainer(Decl *D,
const clang::ObjCContainerDecl *objcContainer);
void collectMembersToAdd(const clang::ObjCContainerDecl *objcContainer,
Decl *D, DeclContext *DC,
SmallVectorImpl<Decl *> &members);
void insertMembersAndAlternates(const clang::NamedDecl *nd,
SmallVectorImpl<Decl *> &members);
void loadAllMembersIntoExtension(Decl *D, uint64_t extra);
/// Imports \p decl under \p nameVersion with the name \p newName, and adds
/// it and its alternates to \p ext.
///
/// \returns true if \p decl was successfully imported, whether or not it was
/// ultimately added to \p ext. This matches the behavior of
/// forEachDistinctName's callback.
bool addMemberAndAlternatesToExtension(
clang::NamedDecl *decl, importer::ImportedName newName,
importer::ImportNameVersion nameVersion, ExtensionDecl *ext);
public:
void
loadAllConformances(
const Decl *D, uint64_t contextData,
SmallVectorImpl<ProtocolConformance *> &Conformances) override;
void finishNormalConformance(NormalProtocolConformance *conformance,
uint64_t unused) override;
/// Returns the default definition type for \p ATD.
TypeLoc loadAssociatedTypeDefault(const AssociatedTypeDecl *ATD,
uint64_t contextData) override {
llvm_unreachable("unimplemented for ClangImporter");
}
/// Returns the generic environment.
virtual GenericEnvironment *loadGenericEnvironment(const DeclContext *decl,
uint64_t contextData) override {
llvm_unreachable("unimplemented for ClangImporter");
}
template <typename DeclTy, typename ...Targs>
DeclTy *createDeclWithClangNode(ClangNode ClangN, AccessLevel access,
Targs &&... Args) {
assert(ClangN);
void *DeclPtr = allocateMemoryForDecl<DeclTy>(SwiftContext, sizeof(DeclTy),
true);
auto D = ::new (DeclPtr) DeclTy(std::forward<Targs>(Args)...);
D->setClangNode(ClangN);
D->setEarlyAttrValidation(true);
D->setAccess(access);
if (auto ASD = dyn_cast<AbstractStorageDecl>(D))
ASD->setSetterAccess(access);
// All imported decls are constructed fully validated.
D->setValidationStarted();
if (auto AFD = dyn_cast<AbstractFunctionDecl>(static_cast<Decl *>(D)))
AFD->setNeedsNewVTableEntry(false);
return D;
}
/// Find the lookup table that corresponds to the given Clang module.
///
/// \param clangModule The module, or null to indicate that we're talking
/// about the directly-parsed headers.
SwiftLookupTable *findLookupTable(const clang::Module *clangModule);
/// Visit each of the lookup tables in some deterministic order.
///
/// \param fn Invoke the given visitor for each table. If the
/// visitor returns true, stop early.
///
/// \returns \c true if the \c visitor ever returns \c true, \c
/// false otherwise.
bool forEachLookupTable(llvm::function_ref<bool(SwiftLookupTable &table)> fn);
/// Look for namespace-scope values with the given name in the given
/// Swift lookup table.
void lookupValue(SwiftLookupTable &table, DeclName name,
VisibleDeclConsumer &consumer);
/// Look for namespace-scope values in the given Swift lookup table.
void lookupVisibleDecls(SwiftLookupTable &table,
VisibleDeclConsumer &consumer);
/// Look for Objective-C members with the given name in the given
/// Swift lookup table.
void lookupObjCMembers(SwiftLookupTable &table, DeclName name,
VisibleDeclConsumer &consumer);
/// Look for all Objective-C members in the given Swift lookup table.
void lookupAllObjCMembers(SwiftLookupTable &table,
VisibleDeclConsumer &consumer);
/// Determine the effective Clang context for the given Swift nominal type.
EffectiveClangContext
getEffectiveClangContext(const NominalTypeDecl *nominal);
/// Attempts to import the name of \p decl with each possible
/// ImportNameVersion. \p action will be called with each unique name.
///
/// In this case, "unique" means either the full name is distinct or the
/// effective context is distinct. This method does not attempt to handle
/// "unresolved" contexts in any special way---if one name references a
/// particular Clang declaration and the other has an unresolved context that
/// will eventually reference that declaration, the contexts will still be
/// considered distinct.
///
/// If \p action returns false, the current name will \e not be added to the
/// set of seen names.
///
/// The active name is always first, followed by the other names in the order
/// of ImportNameVersion::forEachOtherImportNameVersion.
void forEachDistinctName(
const clang::NamedDecl *decl,
llvm::function_ref<bool(importer::ImportedName,
importer::ImportNameVersion)> action);
/// Dump the Swift-specific name lookup tables we generate.
void dumpSwiftLookupTables();
void setSinglePCHImport(Optional<std::string> PCHFilename) {
if (PCHFilename.hasValue()) {
assert(llvm::sys::path::extension(PCHFilename.getValue())
.endswith(PCH_EXTENSION) &&
"Single PCH imported filename doesn't have .pch extension!");
}
SinglePCHImport = PCHFilename;
}
/// If there was is a single .pch bridging header without other imported
/// files, we can provide the PCH filename for declaration caching,
/// especially in code completion.
StringRef getSinglePCHImport() const {
if (SinglePCHImport.hasValue())
return *SinglePCHImport;
return StringRef();
}
};
namespace importer {
/// Whether we should suppress the import of the given Clang declaration.
bool shouldSuppressDeclImport(const clang::Decl *decl);
/// Finds a particular kind of nominal by looking through typealiases.
template <typename T>
static T *dynCastIgnoringCompatibilityAlias(Decl *D) {
static_assert(std::is_base_of<NominalTypeDecl, T>::value,
"only meant for use with NominalTypeDecl and subclasses");
if (auto *alias = dyn_cast_or_null<TypeAliasDecl>(D)) {
if (!alias->isCompatibilityAlias())
return nullptr;
D = alias->getDeclaredInterfaceType()->getAnyNominal();
}
return dyn_cast_or_null<T>(D);
}
/// Finds a particular kind of nominal by looking through typealiases.
template <typename T>
static T *castIgnoringCompatibilityAlias(Decl *D) {
static_assert(std::is_base_of<NominalTypeDecl, T>::value,
"only meant for use with NominalTypeDecl and subclasses");
if (auto *alias = dyn_cast_or_null<TypeAliasDecl>(D)) {
assert(alias->isCompatibilityAlias() &&
"non-compatible typealias found where nominal was expected");
D = alias->getDeclaredInterfaceType()->getAnyNominal();
}
return cast_or_null<T>(D);
}
class SwiftNameLookupExtension : public clang::ModuleFileExtension {
std::unique_ptr<SwiftLookupTable> &pchLookupTable;
LookupTableMap &lookupTables;
ASTContext &swiftCtx;
const PlatformAvailability &availability;
const bool inferImportAsMember;
public:
SwiftNameLookupExtension(std::unique_ptr<SwiftLookupTable> &pchLookupTable,
LookupTableMap &tables, ASTContext &ctx,
const PlatformAvailability &avail, bool inferIAM)
: pchLookupTable(pchLookupTable), lookupTables(tables), swiftCtx(ctx),
availability(avail), inferImportAsMember(inferIAM) {}
clang::ModuleFileExtensionMetadata getExtensionMetadata() const override;
llvm::hash_code hashExtension(llvm::hash_code code) const override;
std::unique_ptr<clang::ModuleFileExtensionWriter>
createExtensionWriter(clang::ASTWriter &writer) override;
std::unique_ptr<clang::ModuleFileExtensionReader>
createExtensionReader(const clang::ModuleFileExtensionMetadata &metadata,
clang::ASTReader &reader,
clang::serialization::ModuleFile &mod,
const llvm::BitstreamCursor &stream) override;
};
}
}
#endif