Files
swift-mirror/lib/AST/ModuleNameLookup.cpp
Jordan Rose be12d86ddd Turn ClangModule into ClangModuleUnit.
Part of the FileUnit restructuring. A Clang module (whether from a framework
or a simple collection of headers) is now imported as a TranslationUnit
containing a single ClangModuleUnit.

One wrinkle in all this is that Swift very much wants to do searches on a
per-module basis, but Clang can only do lookups across the entire
TranslationUnit. Unless and until we get a better way to deal with this,
we're stuck with an inefficiency here. Previously, we used to hack around
this by ignoring the "per-module" bit and only performing one lookup into
all Clang modules, but that's not actually correct with respect to visibility.

Now, we're just taking the filtering hit for looking up a particular name,
and caching the results when we look up everything (for code completion).
This isn't ideal, but it doesn't seem to be costing too much in performance,
at least not right now, and it means we can get visibility correct.

In the future, it might make sense to include a ClangModuleUnit alongside a
SerializedASTFile for adapter modules, rather than having two separate
modules with the same name. I haven't really thought through this yet, though.

Swift SVN r10834
2013-12-05 01:51:11 +00:00

273 lines
10 KiB
C++

//===--- ModuleNameLookup.cpp - Name lookup within a module ----*- c++ -*--===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ModuleNameLookup.h"
#include "swift/AST/AST.h"
#include "swift/AST/LazyResolver.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace namelookup;
namespace {
using ModuleLookupCache = llvm::SmallDenseMap<Module::ImportedModule,
TinyPtrVector<ValueDecl *>,
32>;
class SortCanType {
public:
bool operator()(CanType lhs, CanType rhs) const {
return std::less<TypeBase *>()(lhs.getPointer(), rhs.getPointer());
}
};
using CanTypeSet = llvm::SmallSet<CanType, 4, SortCanType>;
using NamedCanTypeSet =
llvm::DenseMap<Identifier, std::pair<ResolutionKind, CanTypeSet>>;
static_assert(ResolutionKind() == ResolutionKind::Overloadable,
"Entries in NamedCanTypeSet should be overloadable initially");
} // end anonymous namespace
/// Returns true if this particular ValueDecl is overloadable.
static bool isOverloadable(const ValueDecl *VD) {
return isa<FuncDecl>(VD) ||
isa<ConstructorDecl>(VD) ||
isa<SubscriptDecl>(VD);
}
static bool isValidOverload(CanTypeSet &overloads, const ValueDecl *VD) {
if (!isOverloadable(VD))
return overloads.empty();
if (overloads.count(VD->getType()->getCanonicalType()))
return false;
return true;
}
static bool isValidOverload(NamedCanTypeSet &overloads, const ValueDecl *VD) {
auto &entry = overloads[VD->getName()];
if (entry.first != ResolutionKind::Overloadable)
return false;
return isValidOverload(entry.second, VD);
}
/// Updates \p overloads with the types of the given decls.
///
/// \returns true if all of the given decls are overloadable, false if not.
static bool updateOverloadSet(CanTypeSet &overloads,
ArrayRef<ValueDecl *> decls) {
for (auto result : decls) {
if (!isOverloadable(result))
return false;
if (!result->hasType())
continue;
overloads.insert(result->getType()->getCanonicalType());
}
return true;
}
/// Updates \p overloads with the types of the given decls.
///
/// \returns true, since there can always be more overloadable decls.
static bool updateOverloadSet(NamedCanTypeSet &overloads,
ArrayRef<ValueDecl *> decls) {
for (auto result : decls) {
auto &entry = overloads[result->getName()];
if (!isOverloadable(result))
entry.first = ResolutionKind::Exact;
else if (!result->hasType())
continue;
else
entry.second.insert(result->getType()->getCanonicalType());
}
return true;
}
/// After finding decls by name lookup, filter based on the given
/// resolution kind and existing overload set and add them to \p results.
template <typename OverloadSetTy>
static ResolutionKind recordImportDecls(LazyResolver *typeResolver,
SmallVectorImpl<ValueDecl *> &results,
ArrayRef<ValueDecl *> newDecls,
OverloadSetTy &overloads,
ResolutionKind resolutionKind) {
switch (resolutionKind) {
case ResolutionKind::Overloadable: {
// Add new decls if they provide a new overload. Note that the new decls
// may be ambiguous with respect to each other, just not any existing decls.
std::copy_if(newDecls.begin(), newDecls.end(), std::back_inserter(results),
[&](ValueDecl *result) -> bool {
if (!result->hasType()) {
if (typeResolver)
typeResolver->resolveDeclSignature(result);
else
return true;
}
return isValidOverload(overloads, result);
});
// Update the overload set.
bool stillOverloadable = updateOverloadSet(overloads, newDecls);
return stillOverloadable ? ResolutionKind::Overloadable
: ResolutionKind::Exact;
}
case ResolutionKind::Exact:
// Add all decls. If they're ambiguous, they're ambiguous.
results.append(newDecls.begin(), newDecls.end());
return ResolutionKind::Exact;
case ResolutionKind::TypesOnly:
// Add type decls only. If they're ambiguous, they're ambiguous.
std::copy_if(newDecls.begin(), newDecls.end(), std::back_inserter(results),
[](const ValueDecl *VD) { return isa<TypeDecl>(VD); });
return ResolutionKind::TypesOnly;
}
}
/// Performs a qualified lookup into the given module and, if necessary, its
/// reexports, observing proper shadowing rules.
template <typename OverloadSetTy, typename CallbackTy>
static void lookupInModule(Module *module, Module::AccessPathTy accessPath,
SmallVectorImpl<ValueDecl *> &decls,
ResolutionKind resolutionKind, bool canReturnEarly,
LazyResolver *typeResolver,
ModuleLookupCache &cache,
ArrayRef<Module::ImportedModule> extraImports,
CallbackTy callback) {
ModuleLookupCache::iterator iter;
bool isNew;
std::tie(iter, isNew) = cache.insert({{accessPath, module}, {}});
if (!isNew) {
decls.append(iter->second.begin(), iter->second.end());
return;
}
size_t initialCount = decls.size();
SmallVector<ValueDecl *, 4> localDecls;
callback(module, accessPath, localDecls);
OverloadSetTy overloads;
// FIXME: Pass TypeResolver down instead of getting it from the AST.
resolutionKind = recordImportDecls(typeResolver, decls, localDecls,
overloads, resolutionKind);
bool foundDecls = decls.size() > initialCount;
if (!foundDecls || !canReturnEarly ||
resolutionKind == ResolutionKind::Overloadable) {
SmallVector<Module::ImportedModule, 8> reexports;
module->getImportedModules(reexports, false);
reexports.append(extraImports.begin(), extraImports.end());
// Prefer scoped imports (import func swift.max) to whole-module imports.
SmallVector<ValueDecl *, 8> unscopedValues;
SmallVector<ValueDecl *, 8> scopedValues;
for (auto next : reexports) {
// Filter any whole-module imports, and skip specific-decl imports if the
// import path doesn't match exactly.
Module::AccessPathTy combinedAccessPath;
if (accessPath.empty()) {
combinedAccessPath = next.first;
} else if (!next.first.empty() &&
!Module::isSameAccessPath(next.first, accessPath)) {
// If we ever allow importing non-top-level decls, it's possible the
// rule above isn't what we want.
assert(next.first.size() == 1 && "import of non-top-level decl");
continue;
} else {
combinedAccessPath = accessPath;
}
auto &resultSet = next.first.empty() ? unscopedValues : scopedValues;
lookupInModule<OverloadSetTy>(next.second, combinedAccessPath,
resultSet, resolutionKind, canReturnEarly,
typeResolver, cache, {}, callback);
}
// Add the results from scoped imports.
resolutionKind = recordImportDecls(typeResolver, decls, scopedValues,
overloads, resolutionKind);
// Add the results from unscoped imports.
foundDecls = decls.size() > initialCount;
if (!foundDecls || !canReturnEarly ||
resolutionKind == ResolutionKind::Overloadable) {
resolutionKind = recordImportDecls(typeResolver, decls, unscopedValues,
overloads, resolutionKind);
}
}
std::sort(decls.begin() + initialCount, decls.end());
auto afterUnique = std::unique(decls.begin() + initialCount, decls.end());
decls.erase(afterUnique, decls.end());
auto &cachedValues = cache[{accessPath, module}];
cachedValues.insert(cachedValues.end(),
decls.begin() + initialCount,
decls.end());
}
void namelookup::lookupInModule(Module *startModule,
Module::AccessPathTy topAccessPath,
Identifier name,
SmallVectorImpl<ValueDecl *> &decls,
NLKind lookupKind,
ResolutionKind resolutionKind,
LazyResolver *typeResolver,
ArrayRef<Module::ImportedModule> extraImports) {
ModuleLookupCache cache;
::lookupInModule<CanTypeSet>(startModule, topAccessPath, decls,
resolutionKind, /*canReturnEarly=*/true,
typeResolver, cache, extraImports,
[=](Module *module, Module::AccessPathTy path,
SmallVectorImpl<ValueDecl *> &localDecls) {
module->lookupValue(path, name, lookupKind, localDecls);
}
);
}
namespace {
class VectorDeclConsumer : public VisibleDeclConsumer {
public:
SmallVectorImpl<ValueDecl *> &results;
explicit VectorDeclConsumer(SmallVectorImpl<ValueDecl *> &decls)
: results(decls) {}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason) override {
results.push_back(VD);
}
};
}
void namelookup::lookupVisibleDeclsInModule(
Module *M,
Module::AccessPathTy accessPath,
SmallVectorImpl<ValueDecl *> &decls,
NLKind lookupKind,
ResolutionKind resolutionKind,
LazyResolver *typeResolver,
ArrayRef<Module::ImportedModule> extraImports) {
ModuleLookupCache cache;
::lookupInModule<NamedCanTypeSet>(M, accessPath, decls,
resolutionKind, /*canReturnEarly=*/false,
typeResolver, cache, extraImports,
[=](Module *module, Module::AccessPathTy path,
SmallVectorImpl<ValueDecl *> &localDecls) {
VectorDeclConsumer consumer(localDecls);
module->lookupVisibleDecls(path, consumer, lookupKind);
}
);
}