Files
swift-mirror/lib/Parse/ParsePattern.cpp
2013-08-19 22:38:34 +00:00

501 lines
16 KiB
C++

//===--- ParsePattern.cpp - Swift Language Parser for Patterns ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Pattern Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/ExprHandle.h"
#include "llvm/ADT/StringMap.h"
using namespace swift;
/// Parse function arguments.
/// func-arguments:
/// curried-arguments | selector-arguments
/// curried-arguments:
/// pattern-tuple+
/// selector-arguments:
/// '(' selector-element ')' (identifier '(' selector-element ')')+
/// selector-element:
/// identifier '(' pattern-atom (':' type-annotation)? ('=' expr)? ')'
static bool parseCurriedFunctionArguments(Parser &P,
SmallVectorImpl<Pattern*> &argPat,
SmallVectorImpl<Pattern*> &bodyPat) {
// parseFunctionArguments parsed the first argument pattern.
// Parse additional curried argument clauses as long as we can.
while (P.Tok.is(tok::l_paren)) {
ParserResult<Pattern> pattern = P.parsePatternTuple(/*AllowInitExpr=*/false);
if (pattern.isNull())
return true;
else {
argPat.push_back(pattern.get());
bodyPat.push_back(pattern.get());
}
}
return false;
}
/// \brief Determine the kind of a default argument given a parsed
/// expression that has not yet been type-checked.
static DefaultArgumentKind getDefaultArgKind(ExprHandle *init) {
if (!init || !init->getExpr())
return DefaultArgumentKind::None;
auto magic = dyn_cast<MagicIdentifierLiteralExpr>(init->getExpr());
if (!magic)
return DefaultArgumentKind::Normal;
switch (magic->getKind()) {
case MagicIdentifierLiteralExpr::Column:
return DefaultArgumentKind::Column;
case MagicIdentifierLiteralExpr::File:
return DefaultArgumentKind::File;
case MagicIdentifierLiteralExpr::Line:
return DefaultArgumentKind::Line;
}
}
static bool parseSelectorArgument(Parser &P,
SmallVectorImpl<TuplePatternElt> &argElts,
SmallVectorImpl<TuplePatternElt> &bodyElts,
llvm::StringMap<VarDecl*> &selectorNames,
SourceLoc &rp)
{
ParserResult<Pattern> argPattern = P.parsePatternIdentifier();
assert(argPattern.isNonNull() &&
"selector argument did not start with an identifier!");
// Check that a selector name isn't used multiple times, which would
// lead to the function type having multiple arguments with the same name.
if (NamedPattern *name = dyn_cast<NamedPattern>(argPattern.get())) {
VarDecl *decl = name->getDecl();
StringRef id = decl->getName().str();
auto prevName = selectorNames.find(id);
if (prevName != selectorNames.end()) {
P.diagnoseRedefinition(prevName->getValue(), decl);
} else {
selectorNames[id] = decl;
}
}
if (!P.Tok.is(tok::l_paren)) {
P.diagnose(P.Tok.getLoc(),
diag::func_selector_without_paren);
return true;
}
P.consumeToken();
if (P.Tok.is(tok::r_paren)) {
P.diagnose(P.Tok, diag::func_selector_with_not_one_argument);
return true;
}
ParserResult<Pattern> bodyPattern = P.parsePatternAtom();
if (bodyPattern.isNull()) {
P.skipUntil(tok::r_paren);
return true;
}
if (P.consumeIf(tok::colon)) {
TypeRepr *type = P.parseTypeAnnotation();
if (!type) {
P.skipUntil(tok::r_paren);
return true;
}
argPattern = makeParserResult(
new (P.Context) TypedPattern(argPattern.get(), type));
bodyPattern = makeParserResult(
new (P.Context) TypedPattern(bodyPattern.get(), type));
}
ExprHandle *init = nullptr;
if (P.consumeIf(tok::equal)) {
NullablePtr<Expr> initR =
P.parseExpr(diag::expected_initializer_expr);
if (initR.isNull()) {
P.skipUntil(tok::r_paren);
return true;
}
init = ExprHandle::get(P.Context, initR.get());
}
if (P.Tok.is(tok::comma)) {
P.diagnose(P.Tok, diag::func_selector_with_not_one_argument);
P.skipUntil(tok::r_paren);
return true;
}
if (P.Tok.isNot(tok::r_paren)) {
P.diagnose(P.Tok, diag::expected_rparen_tuple_pattern_list);
return true;
}
rp = P.consumeToken(tok::r_paren);
argElts.push_back(TuplePatternElt(argPattern.get(), init,
getDefaultArgKind(init)));
bodyElts.push_back(TuplePatternElt(bodyPattern.get(), init,
getDefaultArgKind(init)));
return false;
}
static Pattern *getFirstSelectorPattern(ASTContext &Context,
const Pattern *argPattern,
SourceLoc loc)
{
Pattern *pattern = new (Context) AnyPattern(loc);
if (auto typed = dyn_cast<TypedPattern>(argPattern)) {
pattern = new (Context) TypedPattern(pattern, typed->getTypeLoc());
}
return pattern;
}
static bool parseSelectorFunctionArguments(Parser &P,
SmallVectorImpl<Pattern*> &argPat,
SmallVectorImpl<Pattern*> &bodyPat,
Pattern *firstPattern)
{
SourceLoc lp;
SmallVector<TuplePatternElt, 8> argElts;
SmallVector<TuplePatternElt, 8> bodyElts;
// For the argument pattern, try to convert the first parameter pattern to
// an anonymous AnyPattern of the same type as the body parameter.
if (ParenPattern *firstParen = dyn_cast<ParenPattern>(firstPattern)) {
bodyElts.push_back(TuplePatternElt(firstParen->getSubPattern()));
lp = firstParen->getLParenLoc();
argElts.push_back(TuplePatternElt(
getFirstSelectorPattern(P.Context,
firstParen->getSubPattern(),
firstParen->getLoc())));
} else if (TuplePattern *firstTuple = dyn_cast<TuplePattern>(firstPattern)) {
if (firstTuple->getNumFields() != 1) {
P.diagnose(P.Tok, diag::func_selector_with_not_one_argument);
return true;
}
TuplePatternElt const &firstElt = firstTuple->getFields()[0];
bodyElts.push_back(firstElt);
lp = firstTuple->getLParenLoc();
argElts.push_back(TuplePatternElt(
getFirstSelectorPattern(P.Context,
firstElt.getPattern(),
firstTuple->getLoc()),
firstElt.getInit(),
firstElt.getDefaultArgKind()));
} else
llvm_unreachable("unexpected function argument pattern!");
// Parse additional selectors as long as we can.
SourceLoc rp;
llvm::StringMap<VarDecl*> selectorNames;
for (;;) {
if (P.isStartOfBindingName(P.Tok)) {
if (parseSelectorArgument(P, argElts, bodyElts, selectorNames, rp)) {
return true;
}
} else if (P.Tok.is(tok::l_paren)) {
P.diagnose(P.Tok, diag::func_selector_with_curry);
return true;
} else
break;
}
argPat.push_back(TuplePattern::create(P.Context, lp, argElts, rp));
bodyPat.push_back(TuplePattern::create(P.Context, lp, bodyElts, rp));
return false;
}
bool Parser::parseFunctionArguments(SmallVectorImpl<Pattern*> &argPatterns,
SmallVectorImpl<Pattern*> &bodyPatterns) {
// Parse the first function argument clause.
ParserResult<Pattern> pattern = parsePatternTuple(/*AllowInitExpr=*/true);
if (pattern.isNull())
return true;
else {
Pattern *firstPattern = pattern.get();
if (isStartOfBindingName(Tok)) {
// This looks like a selector-style argument. Try to convert the first
// argument pattern into a single argument type and parse subsequent
// selector forms.
return parseSelectorFunctionArguments(*this,
argPatterns, bodyPatterns,
pattern.get());
} else {
argPatterns.push_back(firstPattern);
bodyPatterns.push_back(firstPattern);
return parseCurriedFunctionArguments(*this,
argPatterns, bodyPatterns);
}
}
}
/// parseFunctionSignature - Parse a function definition signature.
/// func-signature:
/// func-arguments func-signature-result?
/// func-signature-result:
/// '->' type
///
/// Note that this leaves retType as null if unspecified.
bool Parser::parseFunctionSignature(SmallVectorImpl<Pattern*> &argPatterns,
SmallVectorImpl<Pattern*> &bodyPatterns,
TypeRepr *&retType) {
bool HadParseError = parseFunctionArguments(argPatterns, bodyPatterns);
// If there's a trailing arrow, parse the rest as the result type.
if (consumeIf(tok::arrow)) {
if (!(retType = parseType()))
return true;
} else {
// Otherwise, we leave retType null.
retType = nullptr;
}
return HadParseError;
}
/// Parse a pattern.
/// pattern ::= pattern-atom
/// pattern ::= pattern-atom ':' type-annotation
ParserResult<Pattern> Parser::parsePattern() {
// First, parse the pattern atom.
ParserResult<Pattern> pattern = parsePatternAtom();
if (pattern.isNull())
return nullptr;
// Now parse an optional type annotation.
if (consumeIf(tok::colon)) {
TypeRepr *type = parseTypeAnnotation();
if (!type)
return nullptr;
pattern = makeParserResult(new (Context) TypedPattern(pattern.get(), type));
}
return pattern;
}
/// \brief Determine whether this token can start a pattern.
bool Parser::isStartOfPattern(Token tok) {
return tok.is(tok::kw__) || tok.is(tok::identifier) || tok.is(tok::l_paren);
}
/// \brief Determine whether this token can start a binding name, whether an
/// identifier or the special discard-value binding '_'.
bool Parser::isStartOfBindingName(Token tok) {
return tok.is(tok::kw__) || tok.is(tok::identifier);
}
Pattern *Parser::createBindingFromPattern(SourceLoc loc,
Identifier name) {
VarDecl *var = new (Context) VarDecl(loc, name, Type(), nullptr);
return new (Context) NamedPattern(var);
}
/// Parse an identifier as a pattern.
ParserResult<Pattern> Parser::parsePatternIdentifier() {
SourceLoc loc = Tok.getLoc();
if (consumeIf(tok::kw__)) {
return makeParserResult(new (Context) AnyPattern(loc));
}
StringRef text = Tok.getText();
if (consumeIf(tok::identifier)) {
Identifier ident = Context.getIdentifier(text);
return makeParserResult(createBindingFromPattern(loc, ident));
}
return nullptr;
}
/// Parse a pattern "atom", meaning the part that precedes the
/// optional type annotation.
///
/// pattern-atom ::= identifier
/// pattern-atom ::= '_'
/// pattern-atom ::= pattern-tuple
ParserResult<Pattern> Parser::parsePatternAtom() {
switch (Tok.getKind()) {
case tok::l_paren:
return parsePatternTuple(/*AllowInitExpr*/false);
case tok::identifier:
case tok::kw__:
return parsePatternIdentifier();
#define IDENTIFIER_KEYWORD(kw) case tok::kw_##kw:
#include "swift/Parse/Tokens.def"
diagnose(Tok, diag::expected_pattern_is_keyword);
consumeToken();
return nullptr;
default:
diagnose(Tok, diag::expected_pattern);
return nullptr;
}
}
Optional<TuplePatternElt> Parser::parsePatternTupleElement(bool allowInitExpr) {
// Parse the pattern.
ParserResult<Pattern> pattern = parsePattern();
if (pattern.isNull())
return Nothing;
// Parse the optional initializer.
ExprHandle *init = nullptr;
if (Tok.is(tok::equal)) {
SourceLoc EqualLoc = consumeToken();
NullablePtr<Expr> initR = parseExpr(diag::expected_initializer_expr);
if (!allowInitExpr) {
auto inFlight = diagnose(EqualLoc, diag::non_func_decl_pattern_init);
if (initR.isNonNull())
inFlight.fixItRemove(SourceRange(EqualLoc, initR.get()->getEndLoc()));
}
// FIXME: Silently dropping initializer expressions where they aren't
// permitted.
if (allowInitExpr && initR.isNonNull())
init = ExprHandle::get(Context, initR.get());
}
return TuplePatternElt(pattern.get(), init, getDefaultArgKind(init));
}
/// Parse a tuple pattern.
///
/// pattern-tuple:
/// '(' pattern-tuple-body? ')'
/// pattern-tuple-body:
/// pattern-tuple-element (',' pattern-tuple-body)*
ParserResult<Pattern> Parser::parsePatternTuple(bool AllowInitExpr) {
SourceLoc RPLoc, LPLoc = consumeToken(tok::l_paren);
SourceLoc EllipsisLoc;
// Parse all the elements.
SmallVector<TuplePatternElt, 8> elts;
bool Invalid = parseList(tok::r_paren, LPLoc, RPLoc,
tok::comma, /*OptionalSep=*/false,
diag::expected_rparen_tuple_pattern_list,
[&] () -> bool {
// Parse the pattern tuple element.
Optional<TuplePatternElt> elt = parsePatternTupleElement(AllowInitExpr);
if (!elt)
return true;
// Add this element to the list.
elts.push_back(*elt);
// If there is no ellipsis, we're done with the element.
if (Tok.isNot(tok::ellipsis))
return false;
SourceLoc ellLoc = consumeToken(tok::ellipsis);
// An element cannot have both an initializer and an ellipsis.
if (elt->getInit()) {
diagnose(ellLoc, diag::tuple_ellipsis_init)
.highlight(elt->getInit()->getExpr()->getSourceRange());
return false;
}
// An ellipsis element shall have a specified element type.
// FIXME: This seems unnecessary.
TypedPattern *typedPattern = dyn_cast<TypedPattern>(elt->getPattern());
if (!typedPattern) {
diagnose(ellLoc, diag::untyped_pattern_ellipsis)
.highlight(elt->getPattern()->getSourceRange());
return false;
}
// Variadic elements must come last.
// FIXME: Unnecessary restriction. It makes conversion more interesting,
// but is not complicated to support.
if (Tok.is(tok::r_paren)) {
EllipsisLoc = ellLoc;
} else {
diagnose(ellLoc, diag::ellipsis_pattern_not_at_end);
}
return false;
});
if (Invalid)
return nullptr;
return makeParserResult(TuplePattern::createSimple(
Context, LPLoc, elts, RPLoc, EllipsisLoc.isValid(), EllipsisLoc));
}
ParserResult<Pattern> Parser::parseMatchingPattern() {
// TODO: Since we expect a pattern in this position, we should optimistically
// parse pattern nodes for productions shared by pattern and expression
// grammar. For short-term ease of initial implementation, we always go
// through the expr parser for ambiguious productions.
// Parse productions that can only be patterns.
// matching-pattern ::= matching-pattern-var
if (Tok.is(tok::kw_var)) {
return parseMatchingPatternVar();
}
// matching-pattern ::= '_'
if (Tok.is(tok::kw__)) {
return makeParserResult(new (Context) AnyPattern(consumeToken()));
}
// matching-pattern ::= 'is' type
if (Tok.is(tok::kw_is)) {
return parseMatchingPatternIsa();
}
// matching-pattern ::= expr
// Fall back to expression parsing for ambiguous forms. Name lookup will
// disambiguate.
NullablePtr<Expr> subExpr = parseExpr(diag::expected_pattern);
if (subExpr.isNull())
return nullptr;
return makeParserResult(new (Context) ExprPattern(subExpr.get()));
}
ParserResult<Pattern> Parser::parseMatchingPatternVar() {
// 'var' patterns shouldn't nest.
if (VarPatternDepth >= 1)
diagnose(Tok.getLoc(), diag::var_pattern_in_var);
VarPatternScope scope(*this);
SourceLoc varLoc = consumeToken(tok::kw_var);
ParserResult<Pattern> subPattern = parseMatchingPattern();
if (subPattern.isNull())
return nullptr;
return makeParserResult(new (Context) VarPattern(varLoc, subPattern.get()));
}
ParserResult<Pattern> Parser::parseMatchingPatternIsa() {
SourceLoc isLoc = consumeToken(tok::kw_is);
TypeRepr *castType = parseType();
if (!castType)
return nullptr;
return makeParserResult(new (Context) IsaPattern(isLoc, castType));
}
bool Parser::isOnlyStartOfMatchingPattern() {
return Tok.is(tok::kw_var)
|| Tok.is(tok::kw__)
|| Tok.is(tok::kw_is);
}