Files
swift-mirror/benchmark/single-source/Differentiation.swift
Richard Wei 0b53a02544 [AutoDiff] Rename 'in:' to 'of:' in differential operators.
Rename the argument label `in:` in `gradient(at:in:)`, `pullback(at:in:)`, etc to `of:`, as suggested in the [pitch thread](https://forums.swift.org/t/differentiable-programming-for-gradient-based-machine-learning/42147).
2021-02-24 01:33:42 -05:00

74 lines
1.8 KiB
Swift

//===--- Differentiation.swift -------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#if canImport(_Differentiation)
import TestsUtils
import _Differentiation
public let Differentiation = [
BenchmarkInfo(
name: "DifferentiationIdentity",
runFunction: run_DifferentiationIdentity,
tags: [.regression, .differentiation]
),
BenchmarkInfo(
name: "DifferentiationSquare",
runFunction: run_DifferentiationSquare,
tags: [.regression, .differentiation]
),
BenchmarkInfo(
name: "DifferentiationArraySum",
runFunction: run_DifferentiationArraySum,
tags: [.regression, .differentiation],
setUpFunction: { blackHole(onesArray) }
),
]
@inline(never)
public func run_DifferentiationIdentity(N: Int) {
func f(_ x: Float) -> Float {
x
}
for _ in 0..<1000*N {
blackHole(valueWithGradient(at: 1, of: f))
}
}
@inline(never)
public func run_DifferentiationSquare(N: Int) {
func f(_ x: Float) -> Float {
x * x
}
for _ in 0..<1000*N {
blackHole(valueWithGradient(at: 1, of: f))
}
}
let onesArray: [Float] = Array(repeating: 1, count: 50)
@inline(never)
public func run_DifferentiationArraySum(N: Int) {
func sum(_ array: [Float]) -> Float {
var result: Float = 0
for i in withoutDerivative(at: 0..<array.count) {
result += array[i]
}
return result
}
for _ in 0..<N {
blackHole(valueWithGradient(at: onesArray, of: sum))
}
}
#endif