mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
TLDR: This is just an NFC rename in preparation for changing
SILValue::getOwnershipKind() of any forwarding instructions to return
OwnershipKind::None if they have a trivial result despite forwarding ownership
that isn't OwnershipKind::None (consider an unchecked_enum_data of a trivial
payload from a non-trivial enum).
This ensures that one does not by mistake use this routine instead of
SILValue::getOwnershipKind(). The reason why these two things must be
distinguished is that the forwarding ownership kind of an instruction that
inherits from OwnershipForwardingMixin is explicitly not the ValueOwnershipKind
of the result of the instruction. Instead it is a separate piece of state that:
1. For certain forwarding instructions, defines the OwnershipConstraint of the
forwarding instruction.
2. Defines the ownership kind of the result of the value. If the result of the
value is non-trivial then it is exactly the set ownership kind. If the result is
trivial, we use OwnershipKind::None instead. As an example of this, consider an
unchecked_enum_data that extracts from a non-trivial enum a trivial payload:
```
enum Either {
case int(Int)
case obj(Klass)
}
%1 = load_borrow %0 : $*Either
%2 = unchecked_enum_data %1 : $Either, #Either.int!enumelt.1 // Int type
end_borrow %1 : $Either
```
If we were to identify the forwarding ownership kind (guaranteed) of
unchecked_enum_data with the value ownership kind of its result, we would
violate ownership since we would be passing a guaranteed value to the operand of
the unchecked_enum_data that will only accept values with
OwnershipKind::None. =><=.
358 lines
14 KiB
C++
358 lines
14 KiB
C++
//===--- OwnershipLiveRange.cpp -------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "OwnershipLiveRange.h"
|
|
#include "OwnershipPhiOperand.h"
|
|
|
|
#include "swift/SIL/BasicBlockUtils.h"
|
|
|
|
using namespace swift;
|
|
using namespace swift::semanticarc;
|
|
|
|
OwnershipLiveRange::OwnershipLiveRange(SILValue value)
|
|
: introducer(OwnedValueIntroducer::get(value)), destroyingUses(),
|
|
ownershipForwardingUses(), unknownConsumingUses() {
|
|
assert(introducer);
|
|
assert(introducer.value.getOwnershipKind() == OwnershipKind::Owned);
|
|
|
|
SmallVector<Operand *, 32> tmpDestroyingUses;
|
|
SmallVector<Operand *, 32> tmpForwardingConsumingUses;
|
|
SmallVector<Operand *, 32> tmpUnknownConsumingUses;
|
|
|
|
// We know that our silvalue produces an @owned value. Look through all of our
|
|
// uses and classify them as either consuming or not.
|
|
SmallVector<Operand *, 32> worklist(introducer.value->getUses());
|
|
while (!worklist.empty()) {
|
|
auto *op = worklist.pop_back_val();
|
|
|
|
// Skip type dependent operands.
|
|
if (op->isTypeDependent())
|
|
continue;
|
|
|
|
// Do a quick check that we did not add ValueOwnershipKind that are not
|
|
// owned to the worklist.
|
|
assert(op->get().getOwnershipKind() == OwnershipKind::Owned &&
|
|
"Added non-owned value to worklist?!");
|
|
|
|
auto *user = op->getUser();
|
|
|
|
// Ok, this constraint can take something owned as live. Assert that it
|
|
// can also accept something that is guaranteed. Any non-consuming use of
|
|
// an owned value should be able to take a guaranteed parameter as well
|
|
// (modulo bugs). We assert to catch these.
|
|
if (!op->isLifetimeEnding()) {
|
|
continue;
|
|
}
|
|
|
|
// Ok, we know now that we have a consuming use. See if we have a destroy
|
|
// value, quickly up front. If we do have one, stash it and continue.
|
|
if (isa<DestroyValueInst>(user)) {
|
|
tmpDestroyingUses.push_back(op);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, see if we have a forwarding value that has a single
|
|
// non-trivial operand that can accept a guaranteed value. If not, we can
|
|
// not recursively process it, so be conservative and assume that we /may
|
|
// consume/ the value, so the live range must not be eliminated.
|
|
//
|
|
// DISCUSSION: For now we do not support forwarding instructions with
|
|
// multiple non-trivial arguments since we would need to optimize all of
|
|
// the non-trivial arguments at the same time.
|
|
//
|
|
// NOTE: Today we do not support TermInsts for simplicity... we /could/
|
|
// support it though if we need to.
|
|
auto *ti = dyn_cast<TermInst>(user);
|
|
if ((ti && !ti->isTransformationTerminator()) ||
|
|
!canOpcodeForwardGuaranteedValues(op) ||
|
|
1 != count_if(user->getOperandValues(
|
|
true /*ignore type dependent operands*/),
|
|
[&](SILValue v) {
|
|
return v.getOwnershipKind() == OwnershipKind::Owned;
|
|
})) {
|
|
tmpUnknownConsumingUses.push_back(op);
|
|
continue;
|
|
}
|
|
|
|
// Ok, this is a forwarding instruction whose ownership we can flip from
|
|
// owned -> guaranteed.
|
|
tmpForwardingConsumingUses.push_back(op);
|
|
|
|
// If we have a non-terminator, just visit its users recursively to see if
|
|
// the the users force the live range to be alive.
|
|
if (!ti) {
|
|
for (SILValue v : user->getResults()) {
|
|
if (v.getOwnershipKind() != OwnershipKind::Owned)
|
|
continue;
|
|
llvm::copy(v->getUses(), std::back_inserter(worklist));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we know that we have no only a terminator, but a
|
|
// transformation terminator, so we should add the users of its results to
|
|
// the worklist.
|
|
for (auto &succ : ti->getSuccessors()) {
|
|
auto *succBlock = succ.getBB();
|
|
|
|
// If we do not have any arguments, then continue.
|
|
if (succBlock->args_empty())
|
|
continue;
|
|
|
|
for (auto *succArg : succBlock->getSILPhiArguments()) {
|
|
// If we have an any value, just continue.
|
|
if (succArg->getOwnershipKind() == OwnershipKind::None)
|
|
continue;
|
|
|
|
// Otherwise add all users of this BBArg to the worklist to visit
|
|
// recursively.
|
|
llvm::copy(succArg->getUses(), std::back_inserter(worklist));
|
|
}
|
|
}
|
|
}
|
|
|
|
// The order in which we append these to consumingUses matters since we assume
|
|
// their order as an invariant. This is done to ensure that we can pass off
|
|
// all of our uses or individual sub-arrays of our users without needing to
|
|
// move around memory.
|
|
llvm::copy(tmpDestroyingUses, std::back_inserter(consumingUses));
|
|
llvm::copy(tmpForwardingConsumingUses, std::back_inserter(consumingUses));
|
|
llvm::copy(tmpUnknownConsumingUses, std::back_inserter(consumingUses));
|
|
|
|
auto cUseArrayRef = llvm::makeArrayRef(consumingUses);
|
|
destroyingUses = cUseArrayRef.take_front(tmpDestroyingUses.size());
|
|
ownershipForwardingUses = cUseArrayRef.slice(
|
|
tmpDestroyingUses.size(), tmpForwardingConsumingUses.size());
|
|
unknownConsumingUses = cUseArrayRef.take_back(tmpUnknownConsumingUses.size());
|
|
}
|
|
|
|
void OwnershipLiveRange::insertEndBorrowsAtDestroys(
|
|
SILValue newGuaranteedValue, DeadEndBlocks &deadEndBlocks,
|
|
ValueLifetimeAnalysis::Frontier &scratch) {
|
|
assert(scratch.empty() && "Expected scratch to be initially empty?!");
|
|
|
|
// Since we are looking through forwarding uses that can accept guaranteed
|
|
// parameters, we can have multiple destroy_value along the same path. We need
|
|
// to find the post-dominating block set of these destroy value to ensure that
|
|
// we do not insert multiple end_borrow.
|
|
//
|
|
// TODO: Hoist this out?
|
|
SILInstruction *inst = introducer.value->getDefiningInstruction();
|
|
Optional<ValueLifetimeAnalysis> analysis;
|
|
if (!inst) {
|
|
analysis.emplace(cast<SILArgument>(introducer.value),
|
|
getAllConsumingInsts());
|
|
} else {
|
|
analysis.emplace(inst, getAllConsumingInsts());
|
|
}
|
|
|
|
// Use all consuming uses in our value lifetime analysis to ensure correctness
|
|
// in the face of unreachable code.
|
|
bool foundCriticalEdges = !analysis->computeFrontier(
|
|
scratch, ValueLifetimeAnalysis::DontModifyCFG, &deadEndBlocks);
|
|
(void)foundCriticalEdges;
|
|
assert(!foundCriticalEdges);
|
|
auto loc = RegularLocation::getAutoGeneratedLocation();
|
|
while (!scratch.empty()) {
|
|
auto *insertPoint = scratch.pop_back_val();
|
|
|
|
// Do not insert end_borrow if the block insert point is a dead end block.
|
|
//
|
|
// DISCUSSION: This is important to do since otherwise, we may be implicitly
|
|
// reducing the lifetime of a value which we can not do yet since we do not
|
|
// require all interior pointer instructions to be guarded by borrows
|
|
// (yet). Once that constraint is in place, we will not have this problem.
|
|
//
|
|
// Consider a situation where one has a @owned switch_enum on an
|
|
// indirect box case which is post-dominated by an unreachable that we want
|
|
// to convert to @guaranteed:
|
|
//
|
|
// enum MyEnum {
|
|
// indirect case FirstCase(Int)
|
|
// ...
|
|
// }
|
|
//
|
|
// bb0(%in_guaranteed_addr : $*MyEnum):
|
|
// ...
|
|
// %0 = load [copy] %in_guaranteed_addr : $*MyEnum
|
|
// switch_enum %0 : $MyEnum, case #MyEnum.FirstCase: bb1, ...
|
|
//
|
|
// bb1(%1 : @owned ${ var Int }):
|
|
// %2 = project_box %1 : ${ var Int }, 0
|
|
// %3 = load [trivial] %2 : $*Int
|
|
// apply %log(%3) : $@convention(thin) (Int) -> ()
|
|
// unreachable
|
|
//
|
|
// In this case, we will not have a destroy_value on the box, but we may
|
|
// have a project_box on the box. This is ok since we are going to leak the
|
|
// value. But since we are using all consuming uses to determine the
|
|
// lifetime, we will want to insert an end_borrow at the head of the
|
|
// switch_enum dest block like follows:
|
|
//
|
|
// bb0(%in_guaranteed_addr : $*MyEnum):
|
|
// ...
|
|
// %0 = load_borrow %in_guaranteed_addr : $*MyEnum
|
|
// switch_enum %0 : $MyEnum, case #MyEnum.FirstCase: bb1, ...
|
|
//
|
|
// bb1(%1 : @guaranteed ${ var Int }):
|
|
// end_borrow %1 : ${ var Int }
|
|
// %2 = project_box %1 : ${ var Int }, 0
|
|
// %3 = load [trivial] %2 : $*Int
|
|
// apply %log(%3) : $@convention(thin) (Int) -> ()
|
|
// unreachable
|
|
//
|
|
// which would violate ownership invariants. Instead, we need to realize
|
|
// that %1 is dominated by a dead end block so we may not have a
|
|
// destroy_value upon it meaning we should just not insert the end_borrow
|
|
// here. If we have a destroy_value upon it (since we did not get rid of a
|
|
// destroy_value), then we will still get rid of the destroy_value if we are
|
|
// going to optimize this, so we are still correct.
|
|
if (deadEndBlocks.isDeadEnd(insertPoint->getParent()))
|
|
continue;
|
|
|
|
SILBuilderWithScope builder(insertPoint);
|
|
builder.createEndBorrow(loc, newGuaranteedValue);
|
|
}
|
|
}
|
|
|
|
void OwnershipLiveRange::convertOwnedGeneralForwardingUsesToGuaranteed() && {
|
|
while (!ownershipForwardingUses.empty()) {
|
|
auto *use = ownershipForwardingUses.back();
|
|
ownershipForwardingUses = ownershipForwardingUses.drop_back();
|
|
ForwardingOperand operand(use);
|
|
operand.replaceOwnershipKind(OwnershipKind::Owned,
|
|
OwnershipKind::Guaranteed);
|
|
}
|
|
}
|
|
|
|
void OwnershipLiveRange::convertToGuaranteedAndRAUW(
|
|
SILValue newGuaranteedValue, InstModCallbacks callbacks) && {
|
|
auto *value = cast<SingleValueInstruction>(introducer.value);
|
|
while (!destroyingUses.empty()) {
|
|
auto *d = destroyingUses.back();
|
|
destroyingUses = destroyingUses.drop_back();
|
|
callbacks.deleteInst(d->getUser());
|
|
}
|
|
|
|
callbacks.eraseAndRAUWSingleValueInst(value, newGuaranteedValue);
|
|
|
|
// Then change all of our guaranteed forwarding insts to have guaranteed
|
|
// ownership kind instead of what ever they previously had (ignoring trivial
|
|
// results);
|
|
std::move(*this).convertOwnedGeneralForwardingUsesToGuaranteed();
|
|
}
|
|
|
|
// TODO: If this is useful, move onto OwnedValueIntroducer itself?
|
|
static SILValue convertIntroducerToGuaranteed(OwnedValueIntroducer introducer) {
|
|
switch (introducer.kind) {
|
|
case OwnedValueIntroducerKind::Invalid:
|
|
llvm_unreachable("Using invalid case?!");
|
|
case OwnedValueIntroducerKind::Phi: {
|
|
auto *phiArg = cast<SILPhiArgument>(introducer.value);
|
|
phiArg->setOwnershipKind(OwnershipKind::Guaranteed);
|
|
return phiArg;
|
|
}
|
|
case OwnedValueIntroducerKind::Struct: {
|
|
auto *si = cast<StructInst>(introducer.value);
|
|
si->setForwardingOwnershipKind(OwnershipKind::Guaranteed);
|
|
return si;
|
|
}
|
|
case OwnedValueIntroducerKind::Tuple: {
|
|
auto *ti = cast<TupleInst>(introducer.value);
|
|
ti->setForwardingOwnershipKind(OwnershipKind::Guaranteed);
|
|
return ti;
|
|
}
|
|
case OwnedValueIntroducerKind::Copy:
|
|
case OwnedValueIntroducerKind::LoadCopy:
|
|
case OwnedValueIntroducerKind::Apply:
|
|
case OwnedValueIntroducerKind::BeginApply:
|
|
case OwnedValueIntroducerKind::TryApply:
|
|
case OwnedValueIntroducerKind::LoadTake:
|
|
case OwnedValueIntroducerKind::FunctionArgument:
|
|
case OwnedValueIntroducerKind::PartialApplyInit:
|
|
case OwnedValueIntroducerKind::AllocBoxInit:
|
|
case OwnedValueIntroducerKind::AllocRefInit:
|
|
return SILValue();
|
|
}
|
|
}
|
|
|
|
void OwnershipLiveRange::convertJoinedLiveRangePhiToGuaranteed(
|
|
DeadEndBlocks &deadEndBlocks, ValueLifetimeAnalysis::Frontier &scratch,
|
|
InstModCallbacks callbacks) && {
|
|
|
|
// First convert the phi value itself to be guaranteed.
|
|
SILValue phiValue = convertIntroducerToGuaranteed(introducer);
|
|
|
|
// Then insert end_borrows at each of our destroys if we are consuming. We
|
|
// have to convert the phi to guaranteed first since otherwise, the ownership
|
|
// check when we create the end_borrows will trigger.
|
|
if (introducer.hasConsumingGuaranteedOperands()) {
|
|
insertEndBorrowsAtDestroys(phiValue, deadEndBlocks, scratch);
|
|
}
|
|
|
|
// Then eliminate all of the destroys...
|
|
while (!destroyingUses.empty()) {
|
|
auto *d = destroyingUses.back();
|
|
destroyingUses = destroyingUses.drop_back();
|
|
callbacks.deleteInst(d->getUser());
|
|
}
|
|
|
|
// and change all of our guaranteed forwarding insts to have guaranteed
|
|
// ownership kind instead of what ever they previously had (ignoring trivial
|
|
// results);
|
|
std::move(*this).convertOwnedGeneralForwardingUsesToGuaranteed();
|
|
}
|
|
|
|
OwnershipLiveRange::HasConsumingUse_t
|
|
OwnershipLiveRange::hasUnknownConsumingUse(bool assumingAtFixPoint) const {
|
|
// First do a quick check if we have /any/ unknown consuming
|
|
// uses. If we do not have any, return false early.
|
|
if (unknownConsumingUses.empty()) {
|
|
return HasConsumingUse_t::No;
|
|
}
|
|
|
|
// Ok, we do have some unknown consuming uses. If we aren't assuming we are at
|
|
// the fixed point yet, just bail.
|
|
if (!assumingAtFixPoint) {
|
|
return HasConsumingUse_t::Yes;
|
|
}
|
|
|
|
// We do not know how to handle yet cases where an owned value is used by
|
|
// multiple phi nodes. So we bail early if unknown consuming uses is > 1.
|
|
//
|
|
// TODO: Build up phi node web.
|
|
auto *op = getSingleUnknownConsumingUse();
|
|
if (!op) {
|
|
return HasConsumingUse_t::Yes;
|
|
}
|
|
|
|
// Make sure our single unknown consuming use is a branch inst. If not, bail,
|
|
// this is a /real/ unknown consuming use.
|
|
if (!OwnershipPhiOperand::get(op)) {
|
|
return HasConsumingUse_t::Yes;
|
|
}
|
|
|
|
// Otherwise, setup the phi to incoming value map mapping the block arguments
|
|
// to our introducer.
|
|
return HasConsumingUse_t::YesButAllPhiArgs;
|
|
}
|
|
|
|
OwnershipLiveRange::DestroyingInstsRange
|
|
OwnershipLiveRange::getDestroyingInsts() const {
|
|
return DestroyingInstsRange(getDestroyingUses(), OperandToUser());
|
|
}
|
|
|
|
OwnershipLiveRange::ConsumingInstsRange
|
|
OwnershipLiveRange::getAllConsumingInsts() const {
|
|
return ConsumingInstsRange(consumingUses, OperandToUser());
|
|
}
|