Files
swift-mirror/lib/SILGen/TupleGenerators.h
John McCall c1f110c8e8 Generalize the handling of pack cleanups in reabstraction thunks
The result-reabstraction code doesn't need to handle cleanups properly
during the planning phase because of course we don't have any values
yet.  That is not true of argument reabstraction, so we need to make
sure that the recursive emitters can produce values with cleanups
so that we can collect and forward those cleanups correctly when
emitting the call.

As part of this, I've changed the code so that it should forward
outer addresses to inner address more consistently; it wouldn't
have done this before if we were breaking apart or assembling
a pack.  I'm not sure I can directly test this without figuring
out a way to get SILGen to reabstract both sides of a function,
though.

I'm not sure this is really doing borrowed vs owned arguments
correctly, if e.g. we need to rebstract one component of a tuple
that's otherwise borrowed.
2023-08-28 12:27:36 -04:00

457 lines
15 KiB
C++

//===--- TupleGenerators.h - Generators for tuple components ----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines several generator classes useful for destructuring
// tuples in various situations that arise in SIL generation.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SILGEN_TUPLEINPUTGENERATOR_H
#define SWIFT_SILGEN_TUPLEINPUTGENERATOR_H
#include "swift/SIL/SILValue.h"
#include "swift/SIL/AbstractionPatternGenerators.h"
#include "swift/AST/Types.h"
#include "swift/Basic/ExternalUnion.h"
#include "swift/Basic/Generators.h"
namespace swift {
namespace Lowering {
/// A reference to a generator suitable for handling pack inputs.
/// Has the same basic liveness characteristics as SimpleGeneratorRef.
class PackGeneratorRef {
struct VTable {
ManagedValue (*claimNext)(void *impl);
void (*finishCurrent)(void *impl, ManagedValue packAddr);
};
template <class Impl>
struct VTableImpl {
static constexpr VTable vtable = {
[](void *impl) {
return static_cast<Impl*>(impl)->claimNext();
},
[](void *impl, ManagedValue packAddr) {
static_cast<Impl*>(impl)->finishCurrent(packAddr);
}
};
};
void *pointer;
const VTable *vtable;
public:
template <class G>
PackGeneratorRef(G &generator,
std::enable_if_t<!std::is_same_v<std::remove_const_t<G>, PackGeneratorRef>,
bool> = false)
: pointer(&generator), vtable(&VTableImpl<G>::vtable) {}
ManagedValue claimNext() {
return vtable->claimNext(pointer);
}
void finishCurrent(ManagedValue packAddr) {
vtable->finishCurrent(pointer, packAddr);
}
};
/// A generator for destructuring a tuple type that is recursively
/// expanded in some sequence. In SIL, this sort of expansion
/// happens in both function parameters and function results.
/// The expectation is that the client will use this generator
/// to walk the sequence and then handle the element cases itself.
///
/// Unlike TupleElementGenerator, the iteration visits each
/// individual element of the substituted tuple type. This makes
/// this generator more appropriate for use cases where the elements
/// must all be visited, such as when iterating the elements of two
/// tuples in paralle.
///
/// In order to properly handle pack expansions within tuples,
/// especially any empty pack expansions in the original tuple type,
/// this generator must claim the packs as it goes. Since pack
/// values are typically claimed from a sequence that interleaves
/// packs with other values, it is important that clients claim
/// non-pack values from the sequence immediately when iteration
/// reaches them.
class ExpandedTupleInputGenerator {
const ASTContext &ctx;
PackGeneratorRef packInputs;
TupleElementGenerator origElt;
/// If origElt.isPackExpansion(), this is the pack currently
/// being destructured.
ManagedValue packValue;
/// If origElt.isPackExpansion(), this is the formal type
/// of the orig pack.
CanPackType formalPackType;
/// The current index within origElt.getSubstEltTypes().
unsigned substEltIndex;
/// Precondition: we aren't finished visiting orig elements,
/// and we've already readied the current orig element.
///
/// Ready the next subst element (the one at substEltIndex)
/// from the current orig element. If we've exhausted the supply
/// of subst elements from this orig element, advance to the
/// next orig element and repeat.
///
/// Postcondition: we're either finished or properly configured
/// with a subst element that hasn't been presented before.
void readyNextSubstElement() {
while (true) {
assert(!origElt.isFinished());
assert(substEltIndex <= origElt.getSubstTypes().size());
// If we haven't reached the limit of the current element yet,
// continue.
if (substEltIndex != origElt.getSubstTypes().size())
return;
// Otherwise, we need to advance and ready the next orig element.
// If the current orig element is a pack expansion, tell the
// pack generator about the completed pack value.
if (origElt.isOrigPackExpansion()) {
assert(packValue.isValid());
packInputs.finishCurrent(packValue);
}
// Advance to the next orig element. If we're out of elements,
// we're done.
origElt.advance();
if (origElt.isFinished()) return;
// Ready the next orig element, which may include generating a pack
// value.
readyOrigElement();
}
}
/// Ready the current orig element.
void readyOrigElement() {
substEltIndex = 0;
if (origElt.isOrigPackExpansion()) {
// The pack value exists in the lowered inputs and must be
// claimed whether it contains formal elements or not.
packValue = packInputs.claimNext();
// We don't need to do any other set up if we're going to
// immediately move past it, though.
if (origElt.getSubstTypes().empty())
return;
// Compute a formal pack type for the pack.
formalPackType = CanPackType::get(ctx, origElt.getSubstTypes());
}
}
void updatePackValue(ManagedValue newPackValue) {
assert(isOrigPackExpansion());
assert(packValue.isValid());
assert(newPackValue.isValid());
packValue = newPackValue;
}
public:
ExpandedTupleInputGenerator(const ASTContext &ctx,
PackGeneratorRef inputs,
AbstractionPattern origTupleType,
CanType substType)
: ctx(ctx), packInputs(inputs), origElt(origTupleType, substType) {
if (!origElt.isFinished()) {
readyOrigElement();
readyNextSubstElement();
}
}
/// Is this generator finished? If so, the getters below may not be used.
bool isFinished() const {
return origElt.isFinished();
}
bool doesOrigTupleVanish() const {
return origElt.doesOrigTupleVanish();
}
bool isOrigPackExpansion() const {
return origElt.isOrigPackExpansion();
}
AbstractionPattern getOrigType() const {
return origElt.isOrigPackExpansion()
? origElt.getOrigType().getPackExpansionPatternType()
: origElt.getOrigType();
}
/// Return the index of the current element in the substituted
/// tuple type.
unsigned getSubstElementIndex() const {
return origElt.getSubstIndex() + substEltIndex;
}
CanType getSubstType() const {
return origElt.getSubstTypes()[substEltIndex];
}
bool isSubstPackExpansion() const {
return isa<PackExpansionType>(getSubstType());
}
ManagedValue getPackValue() const {
assert(isOrigPackExpansion());
return packValue;
}
unsigned getPackComponentIndex() const {
assert(isOrigPackExpansion());
return substEltIndex;
}
CanPackType getFormalPackType() const {
assert(isOrigPackExpansion());
return formalPackType;
}
SILType getPackComponentType() const {
assert(isOrigPackExpansion());
return packValue.getType().getPackElementType(getPackComponentIndex());
}
/// Given that we just processed an input, advance to the next,
/// if there is on.
///
/// Postcondition: either isFinished() or all of the invariants
/// for the mutable state have been established.
void advance() {
assert(!isFinished());
assert(substEltIndex < origElt.getSubstTypes().size());
substEltIndex++;
readyNextSubstElement();
}
void finish() {
origElt.finish();
}
/// Project out the current pack component. Do not call this multiple
/// times for the same component.
///
/// You should only call this when the pack is already initialized,
/// which generally means when it corresponds to an input you've
/// received. In the reabstraction code, this means it should only
/// be used for *outer* types. If the pack is part of an output
/// you're generating, you should call createPackComponentTemporary.
ManagedValue projectPackComponent(SILGenFunction &SGF, SILLocation loc);
/// Create a temporary for the current pack component and set it in the
/// pack. Do not call this multiple times for the same component.
///
/// You should only call this when the pack not yet initialized,
/// which generally means when it corresponds to an output you're
/// generating. In the reabstraction code, this means it should only
/// be used for *inner* types. If the pack is an input you've
/// received, you should call projectPackComponent.
ManagedValue createPackComponentTemporary(SILGenFunction &SGF, SILLocation loc);
/// Set the current pack component. Do not call this multiple times
/// for the same component.
///
/// You should only call this when the pack not yet initialized,
/// which generally means when it corresponds to an output you're
/// generating. In the reabstraction code, this means it should only
/// be used for *inner* types. If the pack is an input you've
/// received, you should call projectPackComponent.
void setPackComponent(SILGenFunction &SGF, SILLocation loc,
ManagedValue elt);
};
/// A generator for visiting the addresses of the elements of
/// a tuple. Unlike the other tuple generators, this does not
/// require the original abstraction pattern to be a tuple pattern:
/// like forEachExpandedTupleElement, it permits an opaque
/// abstraction pattern.
class TupleElementAddressGenerator {
struct OpaquePatternStorage {
AbstractionPattern origType;
CanTupleType substType;
};
using Members = ExternalUnionMembers<TupleElementGenerator,
OpaquePatternStorage>;
static Members::Index getIndexForKind(bool isOpaque) {
return isOpaque ? Members::indexOf<OpaquePatternStorage>()
: Members::indexOf<TupleElementGenerator>();
}
ExternalUnion<bool, Members, getIndexForKind> origElt;
/// The address of the tuple value.
ManagedValue tupleAddr;
/// If the substituted tuple type contains pack expansions, this is
/// the induced pack type for the element sequence.
CanPackType inducedPackType;
/// The current index within origElt.getSubstEltTypes().
unsigned substEltIndex;
/// Whether the orig type is opaque, and therefore whether origElt
/// is storing an OpaquePatternStorage or a TupleElementGenerator.
bool isOrigTypeOpaque;
/// Precondition: we aren't finished visiting orig elements,
/// and we've already readied the current orig element.
///
/// Ready the next subst element (the one at substEltIndex)
/// from the current orig element. If we've exhausted the supply
/// of subst elements from this orig element, advance to the
/// next orig element and repeat.
///
/// Postcondition: we're either finished or properly configured
/// with a subst element that hasn't been presented before.
void readyNextSubstElement() {
auto &gen = origElt.get<TupleElementGenerator>(isOrigTypeOpaque);
while (true) {
assert(!gen.isFinished());
assert(substEltIndex <= gen.getSubstTypes().size());
// If we haven't reached the limit of the current element yet,
// continue.
if (substEltIndex != gen.getSubstTypes().size())
return;
// Otherwise, advance, and ready the next orig element if we
// didn't finish.
gen.advance();
if (gen.isFinished()) return;
substEltIndex = 0;
}
}
public:
TupleElementAddressGenerator(const ASTContext &ctx,
ManagedValue tupleAddr,
AbstractionPattern origType,
CanTupleType substType)
: tupleAddr(tupleAddr) {
if (substType->containsPackExpansionType()) {
inducedPackType = CanPackType::get(ctx, substType.getElementTypes());
}
isOrigTypeOpaque = !origType.isTuple();
substEltIndex = 0;
if (isOrigTypeOpaque) {
assert(origType.isTypeParameterOrOpaqueArchetype());
origElt.emplaceAggregate<OpaquePatternStorage>(isOrigTypeOpaque,
origType, substType);
} else {
auto &gen =
origElt.emplace<TupleElementGenerator>(isOrigTypeOpaque,
origType, substType);
if (!gen.isFinished()) {
readyNextSubstElement();
}
}
}
/// Is this generator finished? If so, the getters below may not be used.
bool isFinished() const {
if (isOrigTypeOpaque) {
auto &storage = origElt.get<OpaquePatternStorage>(isOrigTypeOpaque);
return substEltIndex == storage.substType->getNumElements();
} else {
return origElt.get<TupleElementGenerator>(isOrigTypeOpaque).isFinished();
}
}
AbstractionPattern getOrigType() const {
if (isOrigTypeOpaque) {
return origElt.get<OpaquePatternStorage>(isOrigTypeOpaque).origType;
} else {
auto &gen = origElt.get<TupleElementGenerator>(isOrigTypeOpaque);
return gen.isOrigPackExpansion()
? gen.getOrigType().getPackExpansionPatternType()
: gen.getOrigType();
}
}
CanType getSubstType() const {
if (isOrigTypeOpaque) {
auto &opaque = origElt.get<OpaquePatternStorage>(isOrigTypeOpaque);
return opaque.substType.getElementType(substEltIndex);
} else {
auto &gen = origElt.get<TupleElementGenerator>(isOrigTypeOpaque);
return gen.getSubstTypes()[substEltIndex];
}
}
bool isSubstPackExpansion() const {
return isa<PackExpansionType>(getSubstType());
}
unsigned getSubstElementIndex() const {
if (isOrigTypeOpaque) {
return substEltIndex;
} else {
auto &gen = origElt.get<TupleElementGenerator>(isOrigTypeOpaque);
return gen.getSubstIndex() + substEltIndex;
}
}
bool tupleContainsPackExpansion() const {
return (bool) inducedPackType;
}
CanPackType getInducedPackType() const {
assert(tupleContainsPackExpansion());
return inducedPackType;
}
/// Given that we just processed an input, advance to the next,
/// if there is on.
///
/// Postcondition: either isFinished() or all of the invariants
/// for the mutable state have been established.
void advance() {
assert(!isFinished());
substEltIndex++;
if (!isOrigTypeOpaque) {
readyNextSubstElement();
}
}
void finish() {
if (isOrigTypeOpaque) {
#ifndef NDEBUG
auto &opaque = origElt.get<OpaquePatternStorage>(isOrigTypeOpaque);
assert(substEltIndex == opaque.substType->getNumElements());
#endif
} else {
auto &gen = origElt.get<TupleElementGenerator>(isOrigTypeOpaque);
gen.finish();
}
}
/// Project out the current tuple element. Call this exactly once
/// per element.
ManagedValue projectElementAddress(SILGenFunction &SGF, SILLocation loc);
};
} // end namespace Lowering
} // end namespace swift
#endif