Files
swift-mirror/tools/driver/driver.cpp
Steven Wu 02c41656be swift-api-extract to generate JSON API information
Add a new swift-frontend driver option that extract APIs in the swift
module and print in JSON format. This is to allow tooling to understand
and process swift APIs without the need to be a swift compiler or
understand swift module/AST.
2021-02-15 15:04:52 -08:00

358 lines
13 KiB
C++

//===--- driver.cpp - Swift Compiler Driver -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This is the entry point to the swift compiler driver.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsDriver.h"
#include "swift/Basic/LLVMInitialize.h"
#include "swift/Basic/PrettyStackTrace.h"
#include "swift/Basic/Program.h"
#include "swift/Basic/TaskQueue.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Driver/Compilation.h"
#include "swift/Driver/Driver.h"
#include "swift/Driver/FrontendUtil.h"
#include "swift/Driver/Job.h"
#include "swift/Driver/ToolChain.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/FrontendTool/FrontendTool.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/Errno.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
#include <stdlib.h>
#if defined(_WIN32)
#include <windows.h>
#endif
using namespace swift;
using namespace swift::driver;
std::string getExecutablePath(const char *FirstArg) {
void *P = (void *)(intptr_t)getExecutablePath;
return llvm::sys::fs::getMainExecutable(FirstArg, P);
}
/// Run 'swift-autolink-extract'.
extern int autolink_extract_main(ArrayRef<const char *> Args, const char *Argv0,
void *MainAddr);
extern int modulewrap_main(ArrayRef<const char *> Args, const char *Argv0,
void *MainAddr);
/// Run 'swift-indent'
extern int swift_indent_main(ArrayRef<const char *> Args, const char *Argv0,
void *MainAddr);
/// Run 'swift-symbolgraph-extract'
extern int swift_symbolgraph_extract_main(ArrayRef<const char *> Args, const char *Argv0,
void *MainAddr);
/// Run 'swift-api-extract'
extern int swift_api_extract_main(ArrayRef<const char *> Args,
const char *Argv0, void *MainAddr);
/// Determine if the given invocation should run as a "subcommand".
///
/// Examples of "subcommands" are 'swift build' or 'swift test', which are
/// usually used to invoke the Swift package manager executables 'swift-build'
/// and 'swift-test', respectively.
///
/// \param ExecName The name of the argv[0] we were invoked as.
/// \param SubcommandName On success, the full name of the subcommand to invoke.
/// \param Args On return, the adjusted program arguments to use.
/// \returns True if running as a subcommand.
static bool shouldRunAsSubcommand(StringRef ExecName,
SmallString<256> &SubcommandName,
const ArrayRef<const char *> Args,
bool &isRepl) {
assert(!Args.empty());
// If we are not run as 'swift', don't do anything special. This doesn't work
// with symlinks with alternate names, but we can't detect 'swift' vs 'swiftc'
// if we try and resolve using the actual executable path.
if (ExecName != "swift")
return false;
// If there are no program arguments, always invoke as normal.
if (Args.size() == 1)
return false;
// Otherwise, we have a program argument. If it looks like an option or a
// path, then invoke in interactive mode with the arguments as given.
StringRef FirstArg(Args[1]);
if (FirstArg.startswith("-") || FirstArg.contains('.') ||
FirstArg.contains('/'))
return false;
// Otherwise, we should have some sort of subcommand. Get the subcommand name
// and remove it from the program arguments.
StringRef Subcommand = Args[1];
// If the subcommand is the "built-in" 'repl', then use the
// normal driver.
if (Subcommand == "repl") {
isRepl = true;
return false;
}
// Form the subcommand name.
SubcommandName.assign("swift-");
SubcommandName.append(Subcommand);
return true;
}
static bool shouldDisallowNewDriver(StringRef ExecName,
const ArrayRef<const char *> argv) {
// We are not invoking the driver, so don't forward.
if (ExecName != "swift" && ExecName != "swiftc") {
return true;
}
// If user specified using the old driver, don't forward.
if (llvm::find_if(argv, [](const char* arg) {
return StringRef(arg) == "-disallow-use-new-driver";
}) != argv.end()) {
return true;
}
if (llvm::sys::Process::GetEnv("SWIFT_USE_OLD_DRIVER").hasValue()) {
return true;
}
return false;
}
static int run_driver(StringRef ExecName,
const ArrayRef<const char *> argv) {
// Handle integrated tools.
if (argv.size() > 1) {
StringRef FirstArg(argv[1]);
if (FirstArg == "-frontend") {
return performFrontend(llvm::makeArrayRef(argv.data()+2,
argv.data()+argv.size()),
argv[0], (void *)(intptr_t)getExecutablePath);
}
if (FirstArg == "-modulewrap") {
return modulewrap_main(llvm::makeArrayRef(argv.data()+2,
argv.data()+argv.size()),
argv[0], (void *)(intptr_t)getExecutablePath);
}
// Run the integrated Swift frontend when called as "swift-frontend" but
// without a leading "-frontend".
if (!FirstArg.startswith("--driver-mode=")
&& ExecName == "swift-frontend") {
return performFrontend(llvm::makeArrayRef(argv.data()+1,
argv.data()+argv.size()),
argv[0], (void *)(intptr_t)getExecutablePath);
}
}
std::string Path = getExecutablePath(argv[0]);
PrintingDiagnosticConsumer PDC;
SourceManager SM;
DiagnosticEngine Diags(SM);
Diags.addConsumer(PDC);
std::string newDriverName = "swift-driver-new";
if (auto driverNameOp = llvm::sys::Process::GetEnv("SWIFT_USE_NEW_DRIVER")) {
newDriverName = driverNameOp.getValue();
}
// Forwarding calls to the swift driver if the C++ driver is invoked as `swift`
// or `swiftc`, and an environment variable SWIFT_USE_NEW_DRIVER is defined.
if (!shouldDisallowNewDriver(ExecName, argv)) {
SmallString<256> NewDriverPath(llvm::sys::path::parent_path(Path));
llvm::sys::path::append(NewDriverPath, newDriverName);
if (llvm::sys::fs::exists(NewDriverPath)) {
SmallVector<const char *, 256> subCommandArgs;
// Rewrite the program argument.
subCommandArgs.push_back(NewDriverPath.c_str());
if (ExecName == "swiftc") {
subCommandArgs.push_back("--driver-mode=swiftc");
} else {
assert(ExecName == "swift");
subCommandArgs.push_back("--driver-mode=swift");
}
subCommandArgs.insert(subCommandArgs.end(), argv.begin() + 1, argv.end());
// Push these non-op frontend arguments so the build log can indicate
// the new driver is used.
subCommandArgs.push_back("-Xfrontend");
subCommandArgs.push_back("-new-driver-path");
subCommandArgs.push_back("-Xfrontend");
subCommandArgs.push_back(NewDriverPath.c_str());
// Execute the subcommand.
subCommandArgs.push_back(nullptr);
ExecuteInPlace(NewDriverPath.c_str(), subCommandArgs.data());
// If we reach here then an error occurred (typically a missing path).
std::string ErrorString = llvm::sys::StrError();
llvm::errs() << "error: unable to invoke subcommand: " << subCommandArgs[0]
<< " (" << ErrorString << ")\n";
return 2;
}
}
Driver TheDriver(Path, ExecName, argv, Diags);
switch (TheDriver.getDriverKind()) {
case Driver::DriverKind::AutolinkExtract:
return autolink_extract_main(
TheDriver.getArgsWithoutProgramNameAndDriverMode(argv),
argv[0], (void *)(intptr_t)getExecutablePath);
case Driver::DriverKind::SwiftIndent:
return swift_indent_main(
TheDriver.getArgsWithoutProgramNameAndDriverMode(argv),
argv[0], (void *)(intptr_t)getExecutablePath);
case Driver::DriverKind::SymbolGraph:
return swift_symbolgraph_extract_main(TheDriver.getArgsWithoutProgramNameAndDriverMode(argv), argv[0], (void *)(intptr_t)getExecutablePath);
case Driver::DriverKind::APIExtract:
return swift_api_extract_main(
TheDriver.getArgsWithoutProgramNameAndDriverMode(argv), argv[0],
(void *)(intptr_t)getExecutablePath);
default:
break;
}
std::unique_ptr<llvm::opt::InputArgList> ArgList =
TheDriver.parseArgStrings(ArrayRef<const char*>(argv).slice(1));
if (Diags.hadAnyError())
return 1;
std::unique_ptr<ToolChain> TC = TheDriver.buildToolChain(*ArgList);
if (Diags.hadAnyError())
return 1;
std::unique_ptr<Compilation> C =
TheDriver.buildCompilation(*TC, std::move(ArgList));
if (Diags.hadAnyError())
return 1;
if (C) {
std::unique_ptr<sys::TaskQueue> TQ = TheDriver.buildTaskQueue(*C);
if (!TQ)
return 1;
return C->performJobs(std::move(TQ)).exitCode;
}
return 0;
}
int main(int argc_, const char **argv_) {
#if defined(_WIN32)
LPWSTR *wargv_ = CommandLineToArgvW(GetCommandLineW(), &argc_);
std::vector<std::string> utf8Args;
// We use UTF-8 as the internal character encoding. On Windows,
// arguments passed to wmain are encoded in UTF-16
for (int i = 0; i < argc_; i++) {
const wchar_t *wideArg = wargv_[i];
int wideArgLen = std::wcslen(wideArg);
utf8Args.push_back("");
llvm::ArrayRef<char> uRef((const char *)wideArg,
(const char *)(wideArg + wideArgLen));
llvm::convertUTF16ToUTF8String(uRef, utf8Args[i]);
}
std::vector<const char *> utf8CStrs;
llvm::transform(utf8Args, std::back_inserter(utf8CStrs),
std::mem_fn(&std::string::c_str));
argv_ = utf8CStrs.data();
#endif
// Expand any response files in the command line argument vector - arguments
// may be passed through response files in the event of command line length
// restrictions.
SmallVector<const char *, 256> ExpandedArgs(&argv_[0], &argv_[argc_]);
llvm::BumpPtrAllocator Allocator;
llvm::StringSaver Saver(Allocator);
swift::driver::ExpandResponseFilesWithRetry(Saver, ExpandedArgs);
// Initialize the stack trace using the parsed argument vector with expanded
// response files.
// PROGRAM_START/InitLLVM overwrites the passed in arguments with UTF-8
// versions of them on Windows. This also has the effect of overwriting the
// response file expansion. Since we handle the UTF-8 conversion above, we
// pass in a copy and throw away the modifications.
int ThrowawayExpandedArgc = ExpandedArgs.size();
const char **ThrowawayExpandedArgv = ExpandedArgs.data();
PROGRAM_START(ThrowawayExpandedArgc, ThrowawayExpandedArgv);
ArrayRef<const char *> argv(ExpandedArgs);
PrettyStackTraceSwiftVersion versionStackTrace;
// Check if this invocation should execute a subcommand.
StringRef ExecName = llvm::sys::path::stem(argv[0]);
SmallString<256> SubcommandName;
bool isRepl = false;
if (shouldRunAsSubcommand(ExecName, SubcommandName, argv, isRepl)) {
// Preserve argv for the stack trace.
SmallVector<const char *, 256> subCommandArgs(argv.begin(), argv.end());
subCommandArgs.erase(&subCommandArgs[1]);
// We are running as a subcommand, try to find the subcommand adjacent to
// the executable we are running as.
SmallString<256> SubcommandPath(
llvm::sys::path::parent_path(getExecutablePath(argv[0])));
llvm::sys::path::append(SubcommandPath, SubcommandName);
// If we didn't find the tool there, let the OS search for it.
if (!llvm::sys::fs::exists(SubcommandPath)) {
// Search for the program and use the path if found. If there was an
// error, ignore it and just let the exec fail.
auto result = llvm::sys::findProgramByName(SubcommandName);
if (!result.getError())
SubcommandPath = *result;
}
// Rewrite the program argument.
subCommandArgs[0] = SubcommandPath.c_str();
// Execute the subcommand.
subCommandArgs.push_back(nullptr);
ExecuteInPlace(SubcommandPath.c_str(), subCommandArgs.data());
// If we reach here then an error occurred (typically a missing path).
std::string ErrorString = llvm::sys::StrError();
llvm::errs() << "error: unable to invoke subcommand: " << subCommandArgs[0]
<< " (" << ErrorString << ")\n";
return 2;
}
if (isRepl) {
// Preserve argv for the stack trace.
SmallVector<const char *, 256> replArgs(argv.begin(), argv.end());
replArgs.erase(&replArgs[1]);
return run_driver(ExecName, replArgs);
} else {
return run_driver(ExecName, argv);
}
}