Files
swift-mirror/lib/SILOptimizer/Utils/Generics.cpp
John McCall d25a8aec8b Add explicit lowering for value packs and pack expansions.
- SILPackType carries whether the elements are stored directly
  in the pack, which we're not currently using in the lowering,
  but it's probably something we'll want in the final ABI.
  Having this also makes it clear that we're doing the right
  thing with substitution and element lowering.  I also toyed
  with making this a scalar type, which made it necessary in
  various places, although eventually I pulled back to the
  design where we always use packs as addresses.

- Pack boundaries are a core ABI concept, so the lowering has
  to wrap parameter pack expansions up as packs.  There are huge
  unimplemented holes here where the abstraction pattern will
  need to tell us how many elements to gather into the pack,
  but a naive approach is good enough to get things off the
  ground.

- Pack conventions are related to the existing parameter and
  result conventions, but they're different on enough grounds
  that they deserve to be separated.
2023-01-29 03:29:06 -05:00

3308 lines
128 KiB
C++

//===--- Generics.cpp ---- Utilities for transforming generics ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "generic-specializer"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeMatcher.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OptimizationRemark.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SILOptimizer/Utils/GenericCloner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "swift/Serialization/SerializedSILLoader.h"
#include "swift/Strings.h"
using namespace swift;
STATISTIC(NumPreventedGenericSpecializationLoops,
"# of prevented infinite generic specializations loops");
STATISTIC(NumPreventedTooComplexGenericSpecializations,
"# of prevented generic specializations with too complex "
"generic type parameters");
/// Set to true to enable the support for partial specialization.
llvm::cl::opt<bool> EnablePartialSpecialization(
"sil-partial-specialization", llvm::cl::init(false),
llvm::cl::desc("Enable partial specialization of generics"));
/// If set, then generic specialization tries to specialize using
/// all substitutions, even if they the replacement types are generic.
llvm::cl::opt<bool> SupportGenericSubstitutions(
"sil-partial-specialization-with-generic-substitutions",
llvm::cl::init(false),
llvm::cl::desc("Enable partial specialization with generic substitutions"));
/// Set to true to print detected infinite generic specialization loops that
/// were prevented.
llvm::cl::opt<bool> PrintGenericSpecializationLoops(
"sil-print-generic-specialization-loops", llvm::cl::init(false),
llvm::cl::desc("Print detected infinite generic specialization loops that "
"were prevented"));
llvm::cl::opt<bool> VerifyFunctionsAfterSpecialization(
"sil-generic-verify-after-specialization", llvm::cl::init(false),
llvm::cl::desc(
"Verify functions after they are specialized "
"'PrettyStackTraceFunction'-ing the original function if we fail."));
static bool OptimizeGenericSubstitutions = false;
/// Max depth of a type which can be processed by the generic
/// specializer.
/// E.g. the depth of Array<Array<Array<T>>> is 3.
/// No specializations will be produced, if any of generic parameters contains
/// a bound generic type with the depth higher than this threshold
static const unsigned TypeDepthThreshold = 50;
/// Set the width threshold rather high, because some projects uses very wide
/// tuples to model fixed size arrays.
static const unsigned TypeWidthThreshold = 2000;
/// Compute the width and the depth of a type.
/// We compute both, because some pathological test-cases result in very
/// wide types and some others result in very deep types. It is important
/// to bail as soon as we hit the threshold on any of both dimensions to
/// prevent compiler hangs and crashes.
static std::pair<unsigned, unsigned> getTypeDepthAndWidth(Type t) {
unsigned Depth = 0;
unsigned Width = 0;
if (auto *BGT = t->getAs<BoundGenericType>()) {
auto *NTD = BGT->getNominalOrBoundGenericNominal();
if (NTD) {
auto StoredProperties = NTD->getStoredProperties();
Width += StoredProperties.size();
}
++Depth;
unsigned MaxTypeDepth = 0;
auto GenericArgs = BGT->getGenericArgs();
for (auto Ty : GenericArgs) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(Ty);
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
Depth += MaxTypeDepth;
return std::make_pair(Depth, Width);
}
if (auto *TupleTy = t->getAs<TupleType>()) {
Width += TupleTy->getNumElements();
++Depth;
unsigned MaxTypeDepth = 0;
auto ElementTypes = TupleTy->getElementTypes();
for (auto Ty : ElementTypes) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(Ty);
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
Depth += MaxTypeDepth;
return std::make_pair(Depth, Width);
}
if (auto *FnTy = t->getAs<SILFunctionType>()) {
++Depth;
unsigned MaxTypeDepth = 0;
auto Params = FnTy->getParameters();
Width += Params.size();
for (auto Param : Params) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) =
getTypeDepthAndWidth(Param.getInterfaceType());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
auto Results = FnTy->getResults();
Width += Results.size();
for (auto Result : Results) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) =
getTypeDepthAndWidth(Result.getInterfaceType());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
if (FnTy->hasErrorResult()) {
Width += 1;
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) =
getTypeDepthAndWidth(FnTy->getErrorResult().getInterfaceType());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
Depth += MaxTypeDepth;
return std::make_pair(Depth, Width);
}
if (auto *FnTy = t->getAs<FunctionType>()) {
++Depth;
unsigned MaxTypeDepth = 0;
auto Params = FnTy->getParams();
Width += Params.size();
for (auto &Param : Params) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(Param.getParameterType());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
}
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(FnTy->getResult());
if (TypeDepth > MaxTypeDepth)
MaxTypeDepth = TypeDepth;
Width += TypeWidth;
Depth += MaxTypeDepth;
return std::make_pair(Depth, Width);
}
if (auto *MT = t->getAs<MetatypeType>()) {
Depth += 1;
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(MT->getInstanceType());
Width += TypeWidth;
Depth += TypeDepth;
return std::make_pair(Depth, Width);
}
return std::make_pair(Depth, Width);
}
static bool isTypeTooComplex(Type t) {
unsigned TypeWidth;
unsigned TypeDepth;
std::tie(TypeDepth, TypeWidth) = getTypeDepthAndWidth(t);
return TypeWidth >= TypeWidthThreshold || TypeDepth >= TypeDepthThreshold;
}
namespace {
/// A helper class used to check whether one type is structurally contained
/// the other type either completely or partially.
class TypeComparator : public TypeMatcher<TypeComparator> {
bool IsContained = false;
public:
bool isEqual(CanType T1, CanType T2) { return T1 == T2; }
/// Check whether the type T1 is different from T2 and contained in the type
/// T2.
bool isStrictlyContainedIn(CanType T1, CanType T2) {
if (isEqual(T1, T2))
return false;
return T2.findIf([&T1, this](Type T) -> bool {
return isEqual(T->getCanonicalType(), T1);
});
}
/// Check whether the type T1 is strictly or partially contained in the type
/// T2.
/// Partially contained means that if you drop the common structural "prefix"
/// of T1 and T2 and get T1' and T2' then T1' is strictly contained in T2'.
bool isPartiallyContainedIn(CanType T1, CanType T2) {
if (isStrictlyContainedIn(T1, T2))
return true;
match(T1, T2);
return IsContained;
}
/// This method is invoked aftre skipping a common prefix of two types,
/// when a structural difference is found.
bool mismatch(TypeBase *firstType, TypeBase *secondType,
Type sugaredFirstType) {
auto firstCanType = firstType->getCanonicalType();
auto secondCanType = secondType->getCanonicalType();
if (isEqual(firstCanType, secondCanType))
return false;
if (isStrictlyContainedIn(firstCanType, secondCanType)) {
IsContained = true;
return false;
}
return false;
}
};
class TypeReplacements {
private:
Optional<SILType> resultType;
llvm::MapVector<unsigned, CanType> indirectResultTypes;
llvm::MapVector<unsigned, CanType> paramTypeReplacements;
llvm::MapVector<unsigned, CanType> yieldTypeReplacements;
public:
Optional<SILType> getResultType() const { return resultType; }
void setResultType(SILType type) { resultType = type; }
bool hasResultType() const { return resultType.has_value(); }
const llvm::MapVector<unsigned, CanType> &getIndirectResultTypes() const {
return indirectResultTypes;
}
void addIndirectResultType(unsigned index, CanType type) {
indirectResultTypes.insert(std::make_pair(index, type));
}
bool hasIndirectResultTypes() const { return !indirectResultTypes.empty(); }
const llvm::MapVector<unsigned, CanType> &getParamTypeReplacements() const {
return paramTypeReplacements;
}
void addParameterTypeReplacement(unsigned index, CanType type) {
paramTypeReplacements.insert(std::make_pair(index, type));
}
bool hasParamTypeReplacements() const {
return !paramTypeReplacements.empty();
}
const llvm::MapVector<unsigned, CanType> &getYieldTypeReplacements() const {
return yieldTypeReplacements;
}
void addYieldTypeReplacement(unsigned index, CanType type) {
yieldTypeReplacements.insert(std::make_pair(index, type));
}
bool hasYieldTypeReplacements() const {
return !yieldTypeReplacements.empty();
}
bool hasTypeReplacements() const {
return hasResultType() || hasParamTypeReplacements() ||
hasIndirectResultTypes() || hasYieldTypeReplacements();
}
};
class SpecializedFunction {
private:
SILFunction *fn;
TypeReplacements typeReplacements;
public:
SpecializedFunction() : fn(nullptr) {}
SpecializedFunction(SILFunction *fn) : fn(fn) {}
SILFunction *getFunction() { return fn; }
void setFunction(SILFunction *newFn) { fn = newFn; }
bool hasFunction() { return fn != nullptr; }
TypeReplacements &getTypeReplacements() { return typeReplacements; }
void addParameterTypeReplacement(unsigned index, CanType type) {
typeReplacements.addParameterTypeReplacement(index, type);
}
void addYieldTypeReplacement(unsigned index, CanType type) {
typeReplacements.addYieldTypeReplacement(index, type);
}
bool hasResultType() const { return typeReplacements.hasResultType(); }
void setResultType(SILType type) { typeReplacements.setResultType(type); }
bool hasIndirectResultTypes() const {
return typeReplacements.hasIndirectResultTypes();
}
void addIndirectResultType(unsigned index, CanType type) {
typeReplacements.addIndirectResultType(index, type);
}
bool hasTypeReplacements() const {
return typeReplacements.hasTypeReplacements();
}
SILFunction *operator->() { return fn; }
void computeTypeReplacements(const ApplySite &apply);
operator bool() { return fn != nullptr; }
};
} // anonymous namespace
void SpecializedFunction::computeTypeReplacements(const ApplySite &apply) {
auto fnType = fn->getLoweredFunctionType();
if (fnType != apply.getSubstCalleeType()) {
auto &M = fn->getModule();
auto expansion = fn->getTypeExpansionContext();
auto calleeTy = apply.getSubstCalleeType();
auto substConv = apply.getSubstCalleeConv();
auto resultType =
fn->getConventions().getSILResultType(fn->getTypeExpansionContext());
SmallVector<SILResultInfo, 4> indirectResults(substConv.getIndirectSILResults());
for (auto pair : llvm::enumerate(apply.getArgumentOperands())) {
if (pair.index() < substConv.getSILArgIndexOfFirstParam()) {
auto formalIndex = substConv.getIndirectFormalResultIndexForSILArg(pair.index());
auto fnResult = indirectResults[formalIndex];
if (fnResult.isFormalIndirect()) {
// FIXME: properly get the type
auto indirectResultTy = M.getASTContext().getAnyObjectType(); //fnResult.getReturnValueType(M, fnType, expansion);
addIndirectResultType(formalIndex, indirectResultTy);
}
continue;
}
unsigned paramIdx =
pair.index() - substConv.getSILArgIndexOfFirstParam();
auto newParamType = fnType->getParameters()[paramIdx].getArgumentType(
M, fnType, expansion);
auto oldParamType = calleeTy->getParameters()[paramIdx].getArgumentType(
M, fnType, expansion);
if (newParamType != oldParamType) {
addParameterTypeReplacement(paramIdx, newParamType);
}
}
auto newConv = fn->getConventions();
for (auto pair : llvm::enumerate(substConv.getYields())) {
auto index = pair.index();
auto newType =
newConv.getYields()[index].getYieldValueType(M, fnType, expansion);
auto oldType = pair.value().getYieldValueType(
M, calleeTy, apply.getCalleeFunction()->getTypeExpansionContext());
if (oldType != newType) {
addYieldTypeReplacement(index, oldType);
}
}
if (resultType != apply.getType().getObjectType()) {
setResultType(apply.getType().getObjectType());
}
}
}
/// Checks if a second substitution map is an expanded version of
/// the first substitution map.
/// This is the case if at least one of the substitution type in Subs2 is
/// "bigger" than the corresponding substitution type in Subs1.
/// Type T2 is "smaller" than type T1 if T2 is structurally contained in T1.
static bool growingSubstitutions(SubstitutionMap Subs1,
SubstitutionMap Subs2) {
auto Replacements1 = Subs1.getReplacementTypes();
auto Replacements2 = Subs2.getReplacementTypes();
assert(Replacements1.size() == Replacements2.size());
TypeComparator TypeCmp;
// Perform component-wise comparisons for substitutions.
for (unsigned idx : indices(Replacements1)) {
auto Type1 = Replacements1[idx]->getCanonicalType();
auto Type2 = Replacements2[idx]->getCanonicalType();
// If types are the same, the substitution type does not grow.
if (TypeCmp.isEqual(Type2, Type1))
continue;
// If the new substitution type is getting smaller, the
// substitution type does not grow.
if (TypeCmp.isPartiallyContainedIn(Type2, Type1))
continue;
if (TypeCmp.isPartiallyContainedIn(Type1, Type2)) {
LLVM_DEBUG(llvm::dbgs() << "Type:\n"; Type1.dump(llvm::dbgs());
llvm::dbgs() << "is (partially) contained in type:\n";
Type2.dump(llvm::dbgs());
llvm::dbgs() << "Replacements[" << idx
<< "] has got bigger since last time.\n");
return true;
}
// None of the types is contained in the other type.
// They are not comparable in this sense.
}
// The substitution list is not growing.
return false;
}
/// Checks whether specializing a given generic apply would create an infinite
/// cycle in the generic specializations graph. This can be the case if there is
/// a loop in the specialization graph and generic parameters at each iteration
/// of such a loop are getting bigger and bigger.
/// The specialization graph is represented by means of SpecializationInformation.
/// We use this meta-information about specializations to detect cycles in this
/// graph.
static bool createsInfiniteSpecializationLoop(ApplySite Apply) {
if (!Apply)
return false;
auto *Callee = Apply.getCalleeFunction();
SILFunction *Caller = nullptr;
Caller = Apply.getFunction();
int numAcceptedCycles = 1;
// Name of the function to be specialized.
auto GenericFunc = Callee;
LLVM_DEBUG(llvm::dbgs() << "\n\n\nChecking for a specialization cycle:\n"
<< "Caller: " << Caller->getName() << "\n"
<< "Callee: " << Callee->getName() << "\n";
llvm::dbgs() << "Substitutions:\n";
Apply.getSubstitutionMap().dump(llvm::dbgs()));
auto *CurSpecializationInfo = Apply.getSpecializationInfo();
if (CurSpecializationInfo) {
LLVM_DEBUG(llvm::dbgs() << "Scan call-site's history\n");
} else if (Caller->isSpecialization()) {
CurSpecializationInfo = Caller->getSpecializationInfo();
LLVM_DEBUG(llvm::dbgs() << "Scan caller's specialization history\n");
}
while (CurSpecializationInfo) {
LLVM_DEBUG(llvm::dbgs() << "Current caller is a specialization:\n"
<< "Caller: "
<< CurSpecializationInfo->getCaller()->getName()
<< "\n"
<< "Parent: "
<< CurSpecializationInfo->getParent()->getName()
<< "\n";
llvm::dbgs() << "Substitutions:\n";
for (auto Replacement :
CurSpecializationInfo->getSubstitutions()
.getReplacementTypes()) {
Replacement->dump(llvm::dbgs());
});
if (CurSpecializationInfo->getParent() == GenericFunc) {
LLVM_DEBUG(llvm::dbgs() << "Found a call graph loop, checking "
"substitutions\n");
// Consider if components of the substitution list gets bigger compared to
// the previously seen specialization of the same generic function.
if (growingSubstitutions(CurSpecializationInfo->getSubstitutions(),
Apply.getSubstitutionMap())) {
LLVM_DEBUG(llvm::dbgs() << "Found a generic specialization loop!\n");
// Accept a cycles up to a limit. This is necessary to generate
// efficient code for some library functions, like compactMap, which
// contain small specialization cycles.
if (numAcceptedCycles == 0)
return true;
--numAcceptedCycles;
}
}
// Get the next element of the specialization history.
auto *CurCaller = CurSpecializationInfo->getCaller();
CurSpecializationInfo = nullptr;
if (!CurCaller)
break;
LLVM_DEBUG(llvm::dbgs() << "\nCurrent caller is: " << CurCaller->getName()
<< "\n");
if (!CurCaller->isSpecialization())
break;
CurSpecializationInfo = CurCaller->getSpecializationInfo();
}
assert(!CurSpecializationInfo);
LLVM_DEBUG(llvm::dbgs() << "Stop the scan: Current caller is not a "
"specialization\n");
return false;
}
// =============================================================================
// ReabstractionInfo
// =============================================================================
static bool shouldNotSpecialize(SILFunction *Callee, SILFunction *Caller,
SubstitutionMap Subs = {}) {
if (Callee->hasSemanticsAttr(semantics::OPTIMIZE_SIL_SPECIALIZE_GENERIC_NEVER))
return true;
if (Caller &&
Caller->getEffectiveOptimizationMode() == OptimizationMode::ForSize &&
Callee->hasSemanticsAttr(semantics::OPTIMIZE_SIL_SPECIALIZE_GENERIC_SIZE_NEVER)) {
return true;
}
if (Subs.hasAnySubstitutableParams() &&
Callee->hasSemanticsAttr(semantics::OPTIMIZE_SIL_SPECIALIZE_GENERIC_PARTIAL_NEVER))
return true;
return false;
}
/// Prepares the ReabstractionInfo object for further processing and checks
/// if the current function can be specialized at all.
/// Returns false, if the current function cannot be specialized.
/// Returns true otherwise.
bool ReabstractionInfo::prepareAndCheck(ApplySite Apply, SILFunction *Callee,
SubstitutionMap ParamSubs,
OptRemark::Emitter *ORE) {
assert(ParamSubs.hasAnySubstitutableParams());
if (shouldNotSpecialize(Callee, Apply ? Apply.getFunction() : nullptr))
return false;
SpecializedGenericEnv = nullptr;
SpecializedGenericSig = nullptr;
auto CalleeGenericSig = Callee->getLoweredFunctionType()
->getInvocationGenericSignature();
auto CalleeGenericEnv = Callee->getGenericEnvironment();
this->Callee = Callee;
this->Apply = Apply;
// Get the original substitution map.
CalleeParamSubMap = ParamSubs;
using namespace OptRemark;
// We do not support partial specialization.
if (!EnablePartialSpecialization && CalleeParamSubMap.hasArchetypes()) {
LLVM_DEBUG(llvm::dbgs() <<" Partial specialization is not supported.\n");
LLVM_DEBUG(ParamSubs.dump(llvm::dbgs()));
return false;
}
// Perform some checks to see if we need to bail.
if (CalleeParamSubMap.hasDynamicSelf()) {
REMARK_OR_DEBUG(ORE, [&]() {
return RemarkMissed("DynamicSelf", *Apply.getInstruction())
<< IndentDebug(4) << "Cannot specialize with dynamic self";
});
return false;
}
// Check if the substitution contains any generic types that are too deep.
// If this is the case, bail to avoid the explosion in the number of
// generated specializations.
for (auto Replacement : ParamSubs.getReplacementTypes()) {
if (isTypeTooComplex(Replacement)) {
REMARK_OR_DEBUG(ORE, [&]() {
return RemarkMissed("TypeTooDeep", *Apply.getInstruction())
<< IndentDebug(4)
<< "Cannot specialize because the generic type is too deep";
});
++NumPreventedTooComplexGenericSpecializations;
return false;
}
}
// Check if we have substitutions which replace generic type parameters with
// concrete types or unbound generic types.
bool HasConcreteGenericParams = false;
bool HasNonArchetypeGenericParams = false;
HasUnboundGenericParams = false;
CalleeGenericSig->forEachParam([&](GenericTypeParamType *GP, bool Canonical) {
if (!Canonical)
return;
// Check only the substitutions for the generic parameters.
// Ignore any dependent types, etc.
auto Replacement = Type(GP).subst(CalleeParamSubMap);
if (!Replacement->is<ArchetypeType>())
HasNonArchetypeGenericParams = true;
if (Replacement->hasArchetype()) {
HasUnboundGenericParams = true;
// Check if the replacement is an archetype which is more specific
// than the corresponding archetype in the original generic signature.
// If this is the case, then specialization makes sense, because
// it would produce something more specific.
if (CalleeGenericEnv) {
if (auto Archetype = Replacement->getAs<ArchetypeType>()) {
auto OrigArchetype =
CalleeGenericEnv->mapTypeIntoContext(GP)->castTo<ArchetypeType>();
if (Archetype->requiresClass() && !OrigArchetype->requiresClass())
HasNonArchetypeGenericParams = true;
if (Archetype->getLayoutConstraint() &&
!OrigArchetype->getLayoutConstraint())
HasNonArchetypeGenericParams = true;
}
}
} else {
HasConcreteGenericParams = true;
}
});
if (HasUnboundGenericParams) {
// Bail if we cannot specialize generic substitutions, but all substitutions
// were generic.
if (!HasConcreteGenericParams && !SupportGenericSubstitutions) {
LLVM_DEBUG(llvm::dbgs() << " Partial specialization is not supported "
"if all substitutions are generic.\n");
LLVM_DEBUG(ParamSubs.dump(llvm::dbgs()));
return false;
}
if (!HasNonArchetypeGenericParams && !HasConcreteGenericParams) {
LLVM_DEBUG(llvm::dbgs() << " Partial specialization is not supported "
"if all substitutions are archetypes.\n");
LLVM_DEBUG(ParamSubs.dump(llvm::dbgs()));
return false;
}
// We need a generic environment for the partial specialization.
if (!CalleeGenericEnv)
return false;
// Bail if the callee should not be partially specialized.
if (shouldNotSpecialize(Callee, Apply.getFunction(), ParamSubs))
return false;
}
// Check if specializing this call site would create in an infinite generic
// specialization loop.
if (createsInfiniteSpecializationLoop(Apply)) {
REMARK_OR_DEBUG(ORE, [&]() {
return RemarkMissed("SpecializationLoop", *Apply.getInstruction())
<< IndentDebug(4)
<< "Generic specialization is not supported if it would result in "
"a generic specialization of infinite depth. Callee "
<< NV("Callee", Callee)
<< " occurs multiple times on the call chain";
});
if (PrintGenericSpecializationLoops)
llvm::errs() << "Detected and prevented an infinite "
"generic specialization loop for callee: "
<< Callee->getName() << '\n';
++NumPreventedGenericSpecializationLoops;
return false;
}
return true;
}
bool ReabstractionInfo::canBeSpecialized(ApplySite Apply, SILFunction *Callee,
SubstitutionMap ParamSubs) {
ReabstractionInfo ReInfo;
return ReInfo.prepareAndCheck(Apply, Callee, ParamSubs);
}
ReabstractionInfo::ReabstractionInfo(
ModuleDecl *targetModule, bool isWholeModule, ApplySite Apply,
SILFunction *Callee, SubstitutionMap ParamSubs, IsSerialized_t Serialized,
bool ConvertIndirectToDirect, bool dropMetatypeArgs, OptRemark::Emitter *ORE)
: ConvertIndirectToDirect(ConvertIndirectToDirect),
dropMetatypeArgs(dropMetatypeArgs),
TargetModule(targetModule), isWholeModule(isWholeModule),
Serialized(Serialized) {
if (!prepareAndCheck(Apply, Callee, ParamSubs, ORE))
return;
SILFunction *Caller = nullptr;
if (Apply)
Caller = Apply.getFunction();
if (!EnablePartialSpecialization || !HasUnboundGenericParams) {
// Fast path for full specializations.
performFullSpecializationPreparation(Callee, ParamSubs);
} else {
performPartialSpecializationPreparation(Caller, Callee, ParamSubs);
}
verify();
if (SpecializedGenericSig) {
LLVM_DEBUG(llvm::dbgs() << "\n\nPartially specialized types for function: "
<< Callee->getName() << "\n\n";
llvm::dbgs() << "Original generic function type:\n"
<< Callee->getLoweredFunctionType() << "\n"
<< "Partially specialized generic function type:\n"
<< SpecializedType << "\n\n");
}
// Some correctness checks.
auto SpecializedFnTy = getSpecializedType();
auto SpecializedSubstFnTy = SpecializedFnTy;
if (SpecializedFnTy->isPolymorphic() &&
!getCallerParamSubstitutionMap().empty()) {
auto CalleeFnTy = Callee->getLoweredFunctionType();
assert(CalleeFnTy->isPolymorphic());
auto CalleeSubstFnTy = CalleeFnTy->substGenericArgs(
Callee->getModule(), getCalleeParamSubstitutionMap(),
getResilienceExpansion());
assert(!CalleeSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!CalleeSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
SpecializedSubstFnTy = SpecializedFnTy->substGenericArgs(
Callee->getModule(), getCallerParamSubstitutionMap(),
getResilienceExpansion());
assert(!SpecializedSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!SpecializedSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
auto SpecializedCalleeSubstFnTy =
createSpecializedType(CalleeSubstFnTy, Callee->getModule());
if (SpecializedSubstFnTy != SpecializedCalleeSubstFnTy) {
llvm::dbgs() << "SpecializedFnTy:\n" << SpecializedFnTy << "\n";
llvm::dbgs() << "SpecializedSubstFnTy:\n" << SpecializedSubstFnTy << "\n";
getCallerParamSubstitutionMap().getCanonical().dump(llvm::dbgs());
llvm::dbgs() << "\n\n";
llvm::dbgs() << "CalleeFnTy:\n" << CalleeFnTy << "\n";
llvm::dbgs() << "SpecializedCalleeSubstFnTy:\n" << SpecializedCalleeSubstFnTy << "\n";
ParamSubs.getCanonical().dump(llvm::dbgs());
llvm::dbgs() << "\n\n";
assert(SpecializedSubstFnTy == SpecializedCalleeSubstFnTy &&
"Substituted function types should be the same");
}
}
// If the new type is the same, there is nothing to do and
// no specialization should be performed.
if (getSubstitutedType() == Callee->getLoweredFunctionType()) {
LLVM_DEBUG(llvm::dbgs() << "The new specialized type is the same as "
"the original type. Don't specialize!\n";
llvm::dbgs() << "The type is: " << getSubstitutedType() << "\n");
SpecializedType = CanSILFunctionType();
SubstitutedType = CanSILFunctionType();
SpecializedGenericSig = nullptr;
SpecializedGenericEnv = nullptr;
return;
}
if (SpecializedGenericSig) {
// It is a partial specialization.
LLVM_DEBUG(llvm::dbgs() << "Specializing the call:\n";
Apply.getInstruction()->dumpInContext();
llvm::dbgs() << "\n\nPartially specialized types for function: "
<< Callee->getName() << "\n\n";
llvm::dbgs() << "Callee generic function type:\n"
<< Callee->getLoweredFunctionType() << "\n\n";
llvm::dbgs() << "Callee's call substitution:\n";
getCalleeParamSubstitutionMap().getCanonical().dump(llvm::dbgs());
llvm::dbgs() << "Partially specialized generic function type:\n"
<< getSpecializedType() << "\n\n";
llvm::dbgs() << "\nSpecialization call substitution:\n";
getCallerParamSubstitutionMap().getCanonical().dump(llvm::dbgs());
);
}
}
bool ReabstractionInfo::canBeSpecialized() const {
return getSpecializedType();
}
bool ReabstractionInfo::isFullSpecialization() const {
return !getCalleeParamSubstitutionMap().hasArchetypes();
}
bool ReabstractionInfo::isPartialSpecialization() const {
return getCalleeParamSubstitutionMap().hasArchetypes();
}
void ReabstractionInfo::createSubstitutedAndSpecializedTypes() {
auto &M = Callee->getModule();
// Find out how the function type looks like after applying the provided
// substitutions.
if (!SubstitutedType) {
SubstitutedType = createSubstitutedType(Callee, CallerInterfaceSubs,
HasUnboundGenericParams);
}
assert(!SubstitutedType->hasArchetype() &&
"Substituted function type should not contain archetypes");
// Check which parameters and results can be converted from
// indirect to direct ones.
NumFormalIndirectResults = SubstitutedType->getNumIndirectFormalResults();
unsigned NumArgs = NumFormalIndirectResults +
SubstitutedType->getParameters().size();
Conversions.resize(NumArgs);
TrivialArgs.resize(NumArgs);
droppedMetatypeArgs.resize(NumArgs);
SILFunctionConventions substConv(SubstitutedType, M);
TypeExpansionContext resilienceExp = getResilienceExpansion();
TypeExpansionContext minimalExp(ResilienceExpansion::Minimal,
TargetModule, isWholeModule);
if (SubstitutedType->getNumDirectFormalResults() == 0) {
// The original function has no direct result yet. Try to convert the first
// indirect result to a direct result.
// TODO: We could also convert multiple indirect results by returning a
// tuple type and created tuple_extract instructions at the call site.
unsigned IdxForResult = 0;
for (SILResultInfo RI : SubstitutedType->getIndirectFormalResults()) {
assert(RI.isFormalIndirect());
TypeCategory tc = getReturnTypeCategory(RI, substConv, resilienceExp);
if (tc != NotLoadable) {
Conversions.set(IdxForResult);
if (tc == LoadableAndTrivial)
TrivialArgs.set(IdxForResult);
if (resilienceExp != minimalExp &&
getReturnTypeCategory(RI, substConv, minimalExp) == NotLoadable) {
hasConvertedResilientParams = true;
}
break;
}
++IdxForResult;
}
}
// Try to convert indirect incoming parameters to direct parameters.
unsigned IdxForParam = NumFormalIndirectResults;
for (SILParameterInfo PI : SubstitutedType->getParameters()) {
auto IdxToInsert = IdxForParam;
++IdxForParam;
TypeCategory tc = getParamTypeCategory(PI, substConv, resilienceExp);
if (tc == NotLoadable)
continue;
switch (PI.getConvention()) {
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Guaranteed:
Conversions.set(IdxToInsert);
if (tc == LoadableAndTrivial)
TrivialArgs.set(IdxToInsert);
if (resilienceExp != minimalExp &&
getParamTypeCategory(PI, substConv, minimalExp) == NotLoadable) {
hasConvertedResilientParams = true;
}
break;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Pack_Inout:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Guaranteed:
break;
case ParameterConvention::Direct_Owned:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed: {
CanType ty = PI.getInterfaceType();
if (dropMetatypeArgs && isa<MetatypeType>(ty) && !ty->hasArchetype())
droppedMetatypeArgs.set(IdxToInsert);
break;
}
}
}
// Produce a specialized type, which is the substituted type with
// the parameters/results passing conventions adjusted according
// to the conversions selected above.
SpecializedType = createSpecializedType(SubstitutedType, M);
}
ReabstractionInfo::TypeCategory ReabstractionInfo::
getReturnTypeCategory(const SILResultInfo &RI,
const SILFunctionConventions &substConv,
TypeExpansionContext typeExpansion) {
auto &M = Callee->getModule();
auto ResultTy = substConv.getSILType(RI, typeExpansion);
ResultTy = Callee->mapTypeIntoContext(ResultTy);
auto &TL = M.Types.getTypeLowering(ResultTy, typeExpansion);
if (!TL.isLoadable())
return NotLoadable;
if (RI.getReturnValueType(M, SubstitutedType, typeExpansion)
->isVoid())
return NotLoadable;
if (!shouldExpand(M, ResultTy))
return NotLoadable;
return TL.isTrivial() ? LoadableAndTrivial : Loadable;
}
ReabstractionInfo::TypeCategory ReabstractionInfo::
getParamTypeCategory(const SILParameterInfo &PI,
const SILFunctionConventions &substConv,
TypeExpansionContext typeExpansion) {
auto &M = Callee->getModule();
auto ParamTy = substConv.getSILType(PI, typeExpansion);
ParamTy = Callee->mapTypeIntoContext(ParamTy);
auto &TL = M.Types.getTypeLowering(ParamTy, typeExpansion);
if (!TL.isLoadable())
return NotLoadable;
return TL.isTrivial() ? LoadableAndTrivial : Loadable;
}
/// Create a new substituted type with the updated signature.
CanSILFunctionType
ReabstractionInfo::createSubstitutedType(SILFunction *OrigF,
SubstitutionMap SubstMap,
bool HasUnboundGenericParams) {
auto &M = OrigF->getModule();
if ((SpecializedGenericSig &&
SpecializedGenericSig->areAllParamsConcrete()) ||
!HasUnboundGenericParams) {
SpecializedGenericSig = nullptr;
SpecializedGenericEnv = nullptr;
}
auto CanSpecializedGenericSig = SpecializedGenericSig.getCanonicalSignature();
auto lowered = OrigF->getLoweredFunctionType();
auto genSub =
lowered->substGenericArgs(M, SubstMap, getResilienceExpansion());
auto unsub = genSub->getUnsubstitutedType(M);
auto specialized = CanSpecializedGenericSig.getReducedType(unsub);
// First substitute concrete types into the existing function type.
CanSILFunctionType FnTy = cast<SILFunctionType>(specialized);
assert(FnTy);
assert((CanSpecializedGenericSig || !FnTy->hasTypeParameter()) &&
"Type parameters outside generic context?");
// Use the new specialized generic signature.
auto NewFnTy = SILFunctionType::get(
CanSpecializedGenericSig, FnTy->getExtInfo(), FnTy->getCoroutineKind(),
FnTy->getCalleeConvention(), FnTy->getParameters(), FnTy->getYields(),
FnTy->getResults(), FnTy->getOptionalErrorResult(),
FnTy->getPatternSubstitutions(), SubstitutionMap(), M.getASTContext(),
FnTy->getWitnessMethodConformanceOrInvalid());
// This is an interface type. It should not have any archetypes.
assert(!NewFnTy->hasArchetype());
return NewFnTy;
}
/// Convert the substituted function type into a specialized function type based
/// on the ReabstractionInfo.
CanSILFunctionType ReabstractionInfo::
createSpecializedType(CanSILFunctionType SubstFTy, SILModule &M) const {
SmallVector<SILResultInfo, 8> SpecializedResults;
SmallVector<SILYieldInfo, 8> SpecializedYields;
SmallVector<SILParameterInfo, 8> SpecializedParams;
auto context = getResilienceExpansion();
unsigned IndirectResultIdx = 0;
for (SILResultInfo RI : SubstFTy->getResults()) {
RI = RI.getUnsubstituted(M, SubstFTy, context);
if (RI.isFormalIndirect()) {
bool isTrivial = TrivialArgs.test(IndirectResultIdx);
if (isFormalResultConverted(IndirectResultIdx++)) {
// Convert the indirect result to a direct result.
// Indirect results are passed as owned, so we also need to pass the
// direct result as owned (except it's a trivial type).
auto C = (isTrivial
? ResultConvention::Unowned
: ResultConvention::Owned);
SpecializedResults.push_back(RI.getWithConvention(C));
continue;
}
}
// No conversion: re-use the original, substituted result info.
SpecializedResults.push_back(RI);
}
unsigned idx = 0;
for (SILParameterInfo PI : SubstFTy->getParameters()) {
unsigned paramIdx = idx++;
PI = PI.getUnsubstituted(M, SubstFTy, context);
if (isDroppedMetatypeArg(param2ArgIndex(paramIdx)))
continue;
bool isTrivial = TrivialArgs.test(param2ArgIndex(paramIdx));
if (!isParamConverted(paramIdx)) {
// No conversion: re-use the original, substituted parameter info.
SpecializedParams.push_back(PI);
continue;
}
// Convert the indirect parameter to a direct parameter.
// Indirect parameters are passed as owned/guaranteed, so we also
// need to pass the direct/guaranteed parameter as
// owned/guaranteed (except it's a trivial type).
auto C = ParameterConvention::Direct_Unowned;
if (!isTrivial) {
if (PI.isGuaranteed()) {
C = ParameterConvention::Direct_Guaranteed;
} else {
C = ParameterConvention::Direct_Owned;
}
}
SpecializedParams.push_back(PI.getWithConvention(C));
}
for (SILYieldInfo YI : SubstFTy->getYields()) {
// For now, always re-use the original, substituted yield info.
SpecializedYields.push_back(YI.getUnsubstituted(M, SubstFTy, context));
}
auto Signature = SubstFTy->isPolymorphic()
? SubstFTy->getInvocationGenericSignature()
: CanGenericSignature();
return SILFunctionType::get(
Signature, SubstFTy->getExtInfo(),
SubstFTy->getCoroutineKind(), SubstFTy->getCalleeConvention(),
SpecializedParams, SpecializedYields, SpecializedResults,
SubstFTy->getOptionalErrorResult(), SubstitutionMap(), SubstitutionMap(),
M.getASTContext(), SubstFTy->getWitnessMethodConformanceOrInvalid());
}
/// Create a new generic signature from an existing one by adding
/// additional requirements.
static std::pair<GenericEnvironment *, GenericSignature>
getGenericEnvironmentAndSignatureWithRequirements(
GenericSignature OrigGenSig, GenericEnvironment *OrigGenericEnv,
ArrayRef<Requirement> Requirements, SILModule &M) {
SmallVector<Requirement, 2> RequirementsCopy(Requirements.begin(),
Requirements.end());
auto NewGenSig = buildGenericSignature(M.getASTContext(),
OrigGenSig, { },
std::move(RequirementsCopy));
auto NewGenEnv = NewGenSig.getGenericEnvironment();
return { NewGenEnv, NewGenSig };
}
/// This is a fast path for full specializations.
/// There is no need to form a new generic signature in such cases,
/// because the specialized function will be non-generic.
void ReabstractionInfo::performFullSpecializationPreparation(
SILFunction *Callee, SubstitutionMap ParamSubs) {
assert((!EnablePartialSpecialization || !HasUnboundGenericParams) &&
"Only full specializations are handled here");
SILModule &M = Callee->getModule();
this->Callee = Callee;
// Get the original substitution map.
ClonerParamSubMap = ParamSubs;
SubstitutedType = Callee->getLoweredFunctionType()->substGenericArgs(
M, ClonerParamSubMap, getResilienceExpansion());
CallerParamSubMap = {};
createSubstitutedAndSpecializedTypes();
}
/// If the archetype (or any of its dependent types) has requirements
/// depending on other archetypes, return true.
/// Otherwise return false.
static bool hasNonSelfContainedRequirements(ArchetypeType *Archetype,
GenericSignature Sig,
GenericEnvironment *Env) {
auto Reqs = Sig.getRequirements();
auto CurrentGP = Archetype->getInterfaceType()
->getCanonicalType()
->getRootGenericParam();
for (auto Req : Reqs) {
switch(Req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::Layout:
// FIXME: Second type of a superclass requirement may contain
// generic parameters.
continue;
case RequirementKind::SameShape:
case RequirementKind::SameType: {
// Check if this requirement contains more than one generic param.
// If this is the case, then these archetypes are interdependent and
// we should return true.
auto First = Req.getFirstType()->getCanonicalType();
auto Second = Req.getSecondType()->getCanonicalType();
SmallSetVector<TypeBase *, 2> UsedGenericParams;
First.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
Second.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
if (UsedGenericParams.count(CurrentGP) && UsedGenericParams.size() > 1)
return true;
}
}
}
return false;
}
/// Collect all requirements for a generic parameter corresponding to a given
/// archetype.
static void collectRequirements(ArchetypeType *Archetype, GenericSignature Sig,
GenericEnvironment *Env,
SmallVectorImpl<Requirement> &CollectedReqs) {
auto Reqs = Sig.getRequirements();
auto CurrentGP = Archetype->getInterfaceType()
->getCanonicalType()
->getRootGenericParam();
CollectedReqs.clear();
for (auto Req : Reqs) {
switch(Req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::Layout:
// If it is a generic param or something derived from it, add this
// requirement.
// FIXME: Second type of a superclass requirement may contain
// generic parameters.
if (Req.getFirstType()->getCanonicalType()->getRootGenericParam() ==
CurrentGP)
CollectedReqs.push_back(Req);
continue;
case RequirementKind::SameShape:
case RequirementKind::SameType: {
// Check if this requirement contains more than one generic param.
// If this is the case, then these archetypes are interdependent and
// we should return true.
auto First = Req.getFirstType()->getCanonicalType();
auto Second = Req.getSecondType()->getCanonicalType();
SmallSetVector<GenericTypeParamType *, 2> UsedGenericParams;
First.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
Second.visit([&](Type Ty) {
if (auto *GP = Ty->getAs<GenericTypeParamType>()) {
UsedGenericParams.insert(GP);
}
});
if (!UsedGenericParams.count(CurrentGP))
continue;
if (UsedGenericParams.size() != 1) {
llvm::dbgs() << "Strange requirement for "
<< CurrentGP->getCanonicalType() << "\n";
Req.dump(llvm::dbgs());
}
assert(UsedGenericParams.size() == 1);
CollectedReqs.push_back(Req);
continue;
}
}
}
}
/// Returns true if a given substitution should participate in the
/// partial specialization.
///
/// TODO:
/// If a replacement is an archetype or a dependent type
/// of an archetype, then it does not make sense to substitute
/// it into the signature of the specialized function, because
/// it does not provide any benefits at runtime and may actually
/// lead to performance degradations.
///
/// If a replacement is a loadable type, it is most likely
/// rather beneficial to specialize using this substitution, because
/// it would allow for more efficient codegen for this type.
///
/// If a substitution simply replaces a generic parameter in the callee
/// by a generic parameter in the caller and this generic parameter
/// in the caller does have more "specific" conformances or requirements,
/// then it does name make any sense to perform this substitutions.
/// In particular, if the generic parameter in the callee is unconstrained
/// (i.e. just T), then providing a more specific generic parameter with some
/// conformances does not help, because the body of the callee does not invoke
/// any methods from any of these new conformances, unless these conformances
/// or requirements influence the layout of the generic type, e.g. "class",
/// "Trivial of size N", "HeapAllocationObject", etc.
/// (NOTE: It could be that additional conformances can still be used due
/// to conditional conformances or something like that, if the caller
/// has an invocation like: "G<T>().method(...)". In this case, G<T>().method()
/// and G<T:P>().method() may be resolved differently).
///
/// We may need to analyze the uses of the generic type inside
/// the function body (recursively). It is ever loaded/stored?
/// Do we create objects of this type? Which conformances are
/// really used?
static bool
shouldBePartiallySpecialized(Type Replacement,
GenericSignature Sig, GenericEnvironment *Env) {
// If replacement is a concrete type, this substitution
// should participate.
if (!Replacement->hasArchetype())
return true;
// We cannot handle opened existentials yet.
if (Replacement->hasOpenedExistential())
return false;
if (!SupportGenericSubstitutions) {
// Don't partially specialize if the replacement contains an archetype.
if (Replacement->hasArchetype())
return false;
}
// If the archetype used (or any of its dependent types) has requirements
// depending on other caller's archetypes, then we don't want to specialize
// on it as it may require introducing more generic parameters, which
// is not beneficial.
// Collect the archetypes used by the replacement type.
llvm::SmallSetVector<ArchetypeType *, 2> UsedArchetypes;
Replacement.visit([&](Type Ty) {
if (auto Archetype = Ty->getAs<ArchetypeType>()) {
if (auto Primary = dyn_cast<PrimaryArchetypeType>(Archetype)) {
UsedArchetypes.insert(Primary);
}
if (auto Pack = dyn_cast<PackArchetypeType>(Archetype)) {
UsedArchetypes.insert(Pack);
}
}
});
// Check if any of the used archetypes are non-self contained when
// it comes to requirements.
for (auto *UsedArchetype : UsedArchetypes) {
if (hasNonSelfContainedRequirements(UsedArchetype, Sig, Env)) {
LLVM_DEBUG(llvm::dbgs() << "Requirements of the archetype depend on "
"other caller's generic parameters! "
"It cannot be partially specialized:\n";
UsedArchetype->dump(llvm::dbgs());
llvm::dbgs() << "This archetype is used in the substitution: "
<< Replacement << "\n");
return false;
}
}
if (OptimizeGenericSubstitutions) {
// Is it an unconstrained generic parameter?
if (auto Archetype = Replacement->getAs<ArchetypeType>()) {
if (Archetype->getConformsTo().empty()) {
// TODO: If Replacement add a new layout constraint, then
// it may be still useful to perform the partial specialization.
return false;
}
}
}
return true;
}
namespace swift {
/// A helper class for creating partially specialized function signatures.
///
/// The following naming convention is used to describe the members and
/// functions:
/// Caller - the function which invokes the callee.
/// Callee - the callee to be specialized.
/// Specialized - the specialized callee which is being created.
class FunctionSignaturePartialSpecializer {
/// Maps caller's generic parameters to generic parameters of the specialized
/// function.
llvm::DenseMap<SubstitutableType *, Type>
CallerInterfaceToSpecializedInterfaceMapping;
/// Maps callee's generic parameters to generic parameters of the specialized
/// function.
llvm::DenseMap<SubstitutableType *, Type>
CalleeInterfaceToSpecializedInterfaceMapping;
/// Maps the generic parameters of the specialized function to the caller's
/// contextual types.
llvm::DenseMap<SubstitutableType *, Type>
SpecializedInterfaceToCallerArchetypeMapping;
/// A SubstitutionMap for re-mapping caller's interface types
/// to interface types of the specialized function.
SubstitutionMap CallerInterfaceToSpecializedInterfaceMap;
/// Maps callee's interface types to caller's contextual types.
/// It is computed from the original substitutions.
SubstitutionMap CalleeInterfaceToCallerArchetypeMap;
/// Maps callee's interface types to specialized functions interface types.
SubstitutionMap CalleeInterfaceToSpecializedInterfaceMap;
/// Maps the generic parameters of the specialized function to the caller's
/// contextual types.
SubstitutionMap SpecializedInterfaceToCallerArchetypeMap;
/// Generic signatures and environments for the caller, callee and
/// the specialized function.
GenericSignature CallerGenericSig;
GenericEnvironment *CallerGenericEnv;
GenericSignature CalleeGenericSig;
GenericEnvironment *CalleeGenericEnv;
GenericSignature SpecializedGenericSig;
GenericEnvironment *SpecializedGenericEnv;
SILModule &M;
ModuleDecl *SM;
ASTContext &Ctx;
/// Set of newly created generic type parameters.
SmallVector<GenericTypeParamType*, 2> AllGenericParams;
/// Set of newly created requirements.
SmallVector<Requirement, 2> AllRequirements;
/// Archetypes used in the substitutions of an apply instructions.
/// These are the contextual archetypes of the caller function, which
/// invokes a generic function that is being specialized.
llvm::SmallSetVector<ArchetypeType *, 2> UsedCallerArchetypes;
/// Number of created generic parameters so far.
unsigned GPIdx = 0;
void createGenericParamsForUsedCallerArchetypes();
void createGenericParamsForCalleeGenericParams();
void addRequirements(ArrayRef<Requirement> Reqs, SubstitutionMap &SubsMap);
void addCallerRequirements();
void addCalleeRequirements();
std::pair<GenericEnvironment *, GenericSignature>
getSpecializedGenericEnvironmentAndSignature();
void computeCallerInterfaceToSpecializedInterfaceMap();
void computeCalleeInterfaceToSpecializedInterfaceMap();
void computeSpecializedInterfaceToCallerArchetypeMap();
/// Collect all used archetypes from all the substitutions.
/// Take into account only those archetypes that occur in the
/// substitutions of generic parameters which will be partially
/// specialized. Ignore all others.
void collectUsedCallerArchetypes(SubstitutionMap ParamSubs);
/// Create a new generic parameter.
GenericTypeParamType *createGenericParam();
public:
FunctionSignaturePartialSpecializer(SILModule &M,
GenericSignature CallerGenericSig,
GenericEnvironment *CallerGenericEnv,
GenericSignature CalleeGenericSig,
GenericEnvironment *CalleeGenericEnv,
SubstitutionMap ParamSubs)
: CallerGenericSig(CallerGenericSig), CallerGenericEnv(CallerGenericEnv),
CalleeGenericSig(CalleeGenericSig), CalleeGenericEnv(CalleeGenericEnv),
M(M), SM(M.getSwiftModule()), Ctx(M.getASTContext()) {
SpecializedGenericSig = nullptr;
SpecializedGenericEnv = nullptr;
CalleeInterfaceToCallerArchetypeMap = ParamSubs;
}
/// This constructor is used by when processing @_specialize.
/// In this case, the caller and the callee are the same function.
FunctionSignaturePartialSpecializer(SILModule &M,
GenericSignature CalleeGenericSig,
GenericEnvironment *CalleeGenericEnv,
GenericSignature SpecializedSig)
: CallerGenericSig(CalleeGenericSig), CallerGenericEnv(CalleeGenericEnv),
CalleeGenericSig(CalleeGenericSig), CalleeGenericEnv(CalleeGenericEnv),
SpecializedGenericSig(SpecializedSig),
M(M), SM(M.getSwiftModule()), Ctx(M.getASTContext()) {
// Create the new generic signature using provided requirements.
SpecializedGenericEnv = SpecializedGenericSig.getGenericEnvironment();
// Compute SubstitutionMaps required for re-mapping.
// Callee's generic signature and specialized generic signature
// use the same set of generic parameters, i.e. each generic
// parameter should be mapped to itself.
for (auto GP : CalleeGenericSig.getGenericParams()) {
CalleeInterfaceToSpecializedInterfaceMapping[GP] = Type(GP);
}
computeCalleeInterfaceToSpecializedInterfaceMap();
// Each generic parameter of the callee is mapped to its own
// archetype.
SpecializedInterfaceToCallerArchetypeMap =
SubstitutionMap::get(
SpecializedGenericSig,
[&](SubstitutableType *type) -> Type {
return CalleeGenericEnv->mapTypeIntoContext(type);
},
LookUpConformanceInSignature(SpecializedGenericSig.getPointer()));
}
GenericSignature getSpecializedGenericSignature() {
return SpecializedGenericSig;
}
GenericEnvironment *getSpecializedGenericEnvironment() {
return SpecializedGenericEnv;
}
void createSpecializedGenericSignature(SubstitutionMap ParamSubs);
void createSpecializedGenericSignatureWithNonGenericSubs();
SubstitutionMap computeClonerParamSubs();
SubstitutionMap getCallerParamSubs();
void computeCallerInterfaceSubs(SubstitutionMap &CallerInterfaceSubs);
};
} // end of namespace
GenericTypeParamType *
FunctionSignaturePartialSpecializer::createGenericParam() {
auto GP = GenericTypeParamType::get(/*isParameterPack*/ false, 0, GPIdx++, Ctx);
AllGenericParams.push_back(GP);
return GP;
}
/// Collect all used caller's archetypes from all the substitutions.
void FunctionSignaturePartialSpecializer::collectUsedCallerArchetypes(
SubstitutionMap ParamSubs) {
for (auto Replacement : ParamSubs.getReplacementTypes()) {
if (!Replacement->hasArchetype())
continue;
// If the substitution will not be performed in the specialized
// function, there is no need to check for any archetypes inside
// the replacement.
if (!shouldBePartiallySpecialized(Replacement,
CallerGenericSig, CallerGenericEnv))
continue;
// Add used generic parameters/archetypes.
Replacement.visit([&](Type Ty) {
if (auto Archetype = Ty->getAs<ArchetypeType>()) {
if (auto Primary = dyn_cast<PrimaryArchetypeType>(Archetype)) {
UsedCallerArchetypes.insert(Primary);
}
if (auto Pack = dyn_cast<PackArchetypeType>(Archetype)) {
UsedCallerArchetypes.insert(Pack);
}
}
});
}
}
void FunctionSignaturePartialSpecializer::
computeCallerInterfaceToSpecializedInterfaceMap() {
if (!CallerGenericSig)
return;
CallerInterfaceToSpecializedInterfaceMap =
SubstitutionMap::get(
CallerGenericSig,
[&](SubstitutableType *type) -> Type {
return CallerInterfaceToSpecializedInterfaceMapping.lookup(type);
},
LookUpConformanceInSignature(CallerGenericSig.getPointer()));
LLVM_DEBUG(llvm::dbgs() << "\n\nCallerInterfaceToSpecializedInterfaceMap "
"map:\n";
CallerInterfaceToSpecializedInterfaceMap.dump(llvm::dbgs()));
}
void FunctionSignaturePartialSpecializer::
computeSpecializedInterfaceToCallerArchetypeMap() {
// Define a substitution map for re-mapping interface types of
// the specialized function to contextual types of the caller.
SpecializedInterfaceToCallerArchetypeMap =
SubstitutionMap::get(
SpecializedGenericSig,
[&](SubstitutableType *type) -> Type {
LLVM_DEBUG(llvm::dbgs() << "Mapping specialized interface type to "
"caller archetype:\n";
llvm::dbgs() << "Interface type: "; type->dump(llvm::dbgs());
llvm::dbgs() << "Archetype: ";
auto Archetype =
SpecializedInterfaceToCallerArchetypeMapping.lookup(type);
if (Archetype) Archetype->dump(llvm::dbgs());
else llvm::dbgs() << "Not found!\n";);
return SpecializedInterfaceToCallerArchetypeMapping.lookup(type);
},
LookUpConformanceInSignature(SpecializedGenericSig.getPointer()));
LLVM_DEBUG(llvm::dbgs() << "\n\nSpecializedInterfaceToCallerArchetypeMap "
"map:\n";
SpecializedInterfaceToCallerArchetypeMap.dump(llvm::dbgs()));
}
void FunctionSignaturePartialSpecializer::
computeCalleeInterfaceToSpecializedInterfaceMap() {
CalleeInterfaceToSpecializedInterfaceMap =
SubstitutionMap::get(
CalleeGenericSig,
[&](SubstitutableType *type) -> Type {
return CalleeInterfaceToSpecializedInterfaceMapping.lookup(type);
},
LookUpConformanceInSignature(CalleeGenericSig.getPointer()));
LLVM_DEBUG(llvm::dbgs() << "\n\nCalleeInterfaceToSpecializedInterfaceMap:\n";
CalleeInterfaceToSpecializedInterfaceMap.dump(llvm::dbgs()));
}
/// Generate a new generic type parameter for each used archetype from
/// the caller.
void FunctionSignaturePartialSpecializer::
createGenericParamsForUsedCallerArchetypes() {
for (auto CallerArchetype : UsedCallerArchetypes) {
auto CallerGenericParam = CallerArchetype->getInterfaceType();
assert(CallerGenericParam->is<GenericTypeParamType>());
LLVM_DEBUG(llvm::dbgs() << "\n\nChecking used caller archetype:\n";
CallerArchetype->dump(llvm::dbgs());
llvm::dbgs() << "It corresponds to the caller generic "
"parameter:\n";
CallerGenericParam->dump(llvm::dbgs()));
// Create an equivalent generic parameter.
auto SubstGenericParam = createGenericParam();
auto SubstGenericParamCanTy = SubstGenericParam->getCanonicalType();
(void)SubstGenericParamCanTy;
CallerInterfaceToSpecializedInterfaceMapping
[CallerGenericParam->getCanonicalType()
->castTo<GenericTypeParamType>()] = SubstGenericParam;
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
CallerArchetype;
LLVM_DEBUG(llvm::dbgs() << "\nCreated a new specialized generic "
"parameter:\n";
SubstGenericParam->dump(llvm::dbgs());
llvm::dbgs() << "Created a mapping "
"(caller interface -> specialize interface):\n"
<< CallerGenericParam << " -> "
<< SubstGenericParamCanTy << "\n";
llvm::dbgs() << "Created a mapping"
"(specialized interface -> caller archetype):\n"
<< SubstGenericParamCanTy << " -> "
<< CallerArchetype->getCanonicalType() << "\n");
}
}
/// Create a new generic parameter for each of the callee's generic parameters
/// which requires a substitution.
void FunctionSignaturePartialSpecializer::
createGenericParamsForCalleeGenericParams() {
for (auto GP : CalleeGenericSig.getGenericParams()) {
auto CanTy = GP->getCanonicalType();
auto CanTyInContext = CalleeGenericSig.getReducedType(CanTy);
auto Replacement = CanTyInContext.subst(CalleeInterfaceToCallerArchetypeMap);
LLVM_DEBUG(llvm::dbgs() << "\n\nChecking callee generic parameter:\n";
CanTy->dump(llvm::dbgs()));
if (!Replacement) {
LLVM_DEBUG(llvm::dbgs() << "No replacement found. Skipping.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Replacement found:\n";
Replacement->dump(llvm::dbgs()));
bool ShouldSpecializeGP = shouldBePartiallySpecialized(
Replacement, CallerGenericSig, CallerGenericEnv);
if (ShouldSpecializeGP) {
LLVM_DEBUG(llvm::dbgs() << "Should be partially specialized.\n");
} else {
LLVM_DEBUG(llvm::dbgs() << "Should not be partially specialized.\n");
}
// Create an equivalent generic parameter in the specialized
// generic environment.
auto SubstGenericParam = createGenericParam();
auto SubstGenericParamCanTy = SubstGenericParam->getCanonicalType();
// Remember which specialized generic parameter correspond's to callee's
// generic parameter.
CalleeInterfaceToSpecializedInterfaceMapping[GP] = SubstGenericParam;
LLVM_DEBUG(llvm::dbgs() << "\nCreated a new specialized generic "
"parameter:\n";
SubstGenericParam->dump(llvm::dbgs());
llvm::dbgs() << "Created a mapping "
"(callee interface -> specialized interface):\n"
<< CanTy << " -> "
<< SubstGenericParamCanTy << "\n");
if (!ShouldSpecializeGP) {
// Remember the original substitution from the apply instruction.
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
Replacement;
LLVM_DEBUG(llvm::dbgs() << "Created a mapping (specialized interface -> "
"caller archetype):\n"
<< Type(SubstGenericParam) << " -> "
<< Replacement << "\n");
continue;
}
// Add a same type requirement based on the provided generic parameter
// substitutions.
auto ReplacementCallerInterfaceTy = Replacement->mapTypeOutOfContext();
auto SpecializedReplacementCallerInterfaceTy =
ReplacementCallerInterfaceTy.subst(
CallerInterfaceToSpecializedInterfaceMap);
assert(!SpecializedReplacementCallerInterfaceTy->hasError());
Requirement Req(RequirementKind::SameType, SubstGenericParamCanTy,
SpecializedReplacementCallerInterfaceTy);
AllRequirements.push_back(Req);
LLVM_DEBUG(llvm::dbgs() << "Added a requirement:\n";
Req.dump(llvm::dbgs()));
if (ReplacementCallerInterfaceTy->is<GenericTypeParamType>()) {
// Remember that the new generic parameter corresponds
// to the same caller archetype, which corresponds to
// the ReplacementCallerInterfaceTy.
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
SpecializedInterfaceToCallerArchetypeMapping.lookup(
ReplacementCallerInterfaceTy
.subst(CallerInterfaceToSpecializedInterfaceMap)
->castTo<SubstitutableType>());
LLVM_DEBUG(llvm::dbgs()
<< "Created a mapping (specialized interface -> "
"caller archetype):\n"
<< Type(SubstGenericParam) << " -> "
<< SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam]
->getCanonicalType()
<< "\n");
continue;
}
SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam] =
Replacement;
LLVM_DEBUG(llvm::dbgs()
<< "Created a mapping (specialized interface -> "
"caller archetype):\n"
<< Type(SubstGenericParam) << " -> "
<< SpecializedInterfaceToCallerArchetypeMapping[SubstGenericParam]
->getCanonicalType()
<< "\n");
}
}
/// Add requirements from a given list of requirements re-mapping them using
/// the provided SubstitutionMap.
void FunctionSignaturePartialSpecializer::addRequirements(
ArrayRef<Requirement> Reqs, SubstitutionMap &SubsMap) {
for (auto &reqReq : Reqs) {
LLVM_DEBUG(llvm::dbgs() << "\n\nRe-mapping the requirement:\n";
reqReq.dump(llvm::dbgs()));
AllRequirements.push_back(reqReq.subst(SubsMap));
}
}
/// Add requirements from the caller's signature.
void FunctionSignaturePartialSpecializer::addCallerRequirements() {
for (auto CallerArchetype : UsedCallerArchetypes) {
// Add requirements for this caller generic parameter and its dependent
// types.
SmallVector<Requirement, 4> CollectedReqs;
collectRequirements(CallerArchetype, CallerGenericSig, CallerGenericEnv,
CollectedReqs);
if (!CollectedReqs.empty()) {
LLVM_DEBUG(llvm::dbgs() << "Adding caller archetype requirements:\n";
for (auto Req : CollectedReqs) {
Req.dump(llvm::dbgs());
}
CallerInterfaceToSpecializedInterfaceMap.dump(llvm::dbgs());
);
addRequirements(CollectedReqs, CallerInterfaceToSpecializedInterfaceMap);
}
}
}
/// Add requirements from the callee's signature.
void FunctionSignaturePartialSpecializer::addCalleeRequirements() {
addRequirements(CalleeGenericSig.getRequirements(),
CalleeInterfaceToSpecializedInterfaceMap);
}
std::pair<GenericEnvironment *, GenericSignature>
FunctionSignaturePartialSpecializer::
getSpecializedGenericEnvironmentAndSignature() {
if (AllGenericParams.empty())
return { nullptr, nullptr };
// Finalize the archetype builder.
auto GenSig = buildGenericSignature(Ctx, GenericSignature(),
AllGenericParams, AllRequirements);
auto *GenEnv = GenSig.getGenericEnvironment();
return { GenEnv, GenSig };
}
SubstitutionMap FunctionSignaturePartialSpecializer::computeClonerParamSubs() {
return SubstitutionMap::get(
CalleeGenericSig,
[&](SubstitutableType *type) -> Type {
LLVM_DEBUG(llvm::dbgs() << "\ngetSubstitution for ClonerParamSubs:\n"
<< Type(type) << "\n"
<< "in generic signature:\n";
CalleeGenericSig->print(llvm::dbgs()));
auto SpecializedInterfaceTy =
Type(type).subst(CalleeInterfaceToSpecializedInterfaceMap);
return SpecializedGenericEnv->mapTypeIntoContext(
SpecializedInterfaceTy);
},
LookUpConformanceInSignature(SpecializedGenericSig.getPointer()));
}
SubstitutionMap FunctionSignaturePartialSpecializer::getCallerParamSubs() {
return SpecializedInterfaceToCallerArchetypeMap;
}
void FunctionSignaturePartialSpecializer::computeCallerInterfaceSubs(
SubstitutionMap &CallerInterfaceSubs) {
CallerInterfaceSubs = SubstitutionMap::get(
CalleeGenericSig,
[&](SubstitutableType *type) -> Type {
// First, map callee's interface type to specialized interface type.
auto Ty = Type(type).subst(CalleeInterfaceToSpecializedInterfaceMap);
Type SpecializedInterfaceTy =
SpecializedGenericEnv->mapTypeIntoContext(Ty)
->mapTypeOutOfContext();
assert(!SpecializedInterfaceTy->hasError());
return SpecializedInterfaceTy;
},
LookUpConformanceInSignature(CalleeGenericSig.getPointer()));
LLVM_DEBUG(llvm::dbgs() << "\n\nCallerInterfaceSubs map:\n";
CallerInterfaceSubs.dump(llvm::dbgs()));
}
/// Fast-path for the case when generic substitutions are not supported.
void FunctionSignaturePartialSpecializer::
createSpecializedGenericSignatureWithNonGenericSubs() {
// Simply create a set of same-type requirements based on concrete
// substitutions.
SmallVector<Requirement, 4> Requirements;
CalleeGenericSig->forEachParam([&](GenericTypeParamType *GP, bool Canonical) {
if (!Canonical)
return;
auto Replacement = Type(GP).subst(CalleeInterfaceToCallerArchetypeMap);
if (Replacement->hasArchetype())
return;
// Replacement is concrete. Add a same type requirement.
Requirement Req(RequirementKind::SameType, GP, Replacement);
Requirements.push_back(Req);
});
// Create a new generic signature by taking the existing one
// and adding new requirements to it. No need to introduce
// any new generic parameters.
auto GenPair = getGenericEnvironmentAndSignatureWithRequirements(
CalleeGenericSig, CalleeGenericEnv, Requirements, M);
if (GenPair.second) {
SpecializedGenericSig = GenPair.second.getCanonicalSignature();
SpecializedGenericEnv = GenPair.first;
}
for (auto GP : CalleeGenericSig.getGenericParams()) {
CalleeInterfaceToSpecializedInterfaceMapping[GP] = Type(GP);
}
computeCalleeInterfaceToSpecializedInterfaceMap();
SpecializedInterfaceToCallerArchetypeMap =
CalleeInterfaceToCallerArchetypeMap;
}
void FunctionSignaturePartialSpecializer::createSpecializedGenericSignature(
SubstitutionMap ParamSubs) {
// Collect all used caller's archetypes from all the substitutions.
collectUsedCallerArchetypes(ParamSubs);
// Generate a new generic type parameter for each used archetype from
// the caller.
createGenericParamsForUsedCallerArchetypes();
// Create a SubstitutionMap for re-mapping caller's interface types
// to interface types of the specialized function.
computeCallerInterfaceToSpecializedInterfaceMap();
// Add generic parameters that will come from the callee.
// Introduce a new generic parameter in the new generic signature
// for each generic parameter from the callee.
createGenericParamsForCalleeGenericParams();
computeCalleeInterfaceToSpecializedInterfaceMap();
// Add requirements from the callee's generic signature.
addCalleeRequirements();
// Add requirements from the caller's generic signature.
addCallerRequirements();
auto GenPair = getSpecializedGenericEnvironmentAndSignature();
if (GenPair.second) {
SpecializedGenericSig = GenPair.second.getCanonicalSignature();
SpecializedGenericEnv = GenPair.first;
computeSpecializedInterfaceToCallerArchetypeMap();
}
}
/// Builds a new generic and function signatures for a partial specialization.
/// Allows for partial specializations even if substitutions contain
/// type parameters.
///
/// The new generic signature has the following generic parameters:
/// - For each substitution with a concrete type CT as a replacement for a
/// generic type T, it introduces a generic parameter T' and a
/// requirement T' == CT
/// - For all other substitutions that are considered for partial specialization,
/// it collects first the archetypes used in the replacements. Then for each such
/// archetype A a new generic parameter T' introduced.
/// - If there is a substitution for type T and this substitution is excluded
/// from partial specialization (e.g. because it is impossible or would result
/// in a less efficient code), then a new generic parameter T' is introduced,
/// which does not get any additional, more specific requirements based on the
/// substitutions.
///
/// After all generic parameters are added according to the rules above,
/// the requirements of the callee's signature are re-mapped by re-formulating
/// them in terms of the newly introduced generic parameters. In case a remapped
/// requirement does not contain any generic types, it can be omitted, because
/// it is fulfilled already.
///
/// If any of the generic parameters were introduced for caller's archetypes,
/// their requirements from the caller's signature are re-mapped by
/// re-formulating them in terms of the newly introduced generic parameters.
void ReabstractionInfo::performPartialSpecializationPreparation(
SILFunction *Caller, SILFunction *Callee,
SubstitutionMap ParamSubs) {
SILModule &M = Callee->getModule();
// Caller is the SILFunction containing the apply instruction.
CanGenericSignature CallerGenericSig;
GenericEnvironment *CallerGenericEnv = nullptr;
if (Caller) {
CallerGenericSig = Caller->getLoweredFunctionType()
->getInvocationGenericSignature();
CallerGenericEnv = Caller->getGenericEnvironment();
}
// Callee is the generic function being called by the apply instruction.
auto CalleeFnTy = Callee->getLoweredFunctionType();
auto CalleeGenericSig = CalleeFnTy->getInvocationGenericSignature();
auto CalleeGenericEnv = Callee->getGenericEnvironment();
LLVM_DEBUG(llvm::dbgs() << "\n\nTrying partial specialization for: "
<< Callee->getName() << "\n";
llvm::dbgs() << "Callee generic signature is:\n";
CalleeGenericSig->print(llvm::dbgs()));
FunctionSignaturePartialSpecializer FSPS(M,
CallerGenericSig, CallerGenericEnv,
CalleeGenericSig, CalleeGenericEnv,
ParamSubs);
// Create the partially specialized generic signature and generic environment.
if (SupportGenericSubstitutions)
FSPS.createSpecializedGenericSignature(ParamSubs);
else
FSPS.createSpecializedGenericSignatureWithNonGenericSubs();
// Once the specialized signature is known, compute different
// maps and function types based on it. The specializer will need
// them for cloning and specializing the function body, rewriting
// the original apply instruction, etc.
finishPartialSpecializationPreparation(FSPS);
}
void ReabstractionInfo::finishPartialSpecializationPreparation(
FunctionSignaturePartialSpecializer &FSPS) {
SpecializedGenericSig = FSPS.getSpecializedGenericSignature();
SpecializedGenericEnv = FSPS.getSpecializedGenericEnvironment();
if (SpecializedGenericSig) {
LLVM_DEBUG(llvm::dbgs() << "\nCreated SpecializedGenericSig:\n";
SpecializedGenericSig->print(llvm::dbgs());
SpecializedGenericEnv->dump(llvm::dbgs()));
}
// Create substitution lists for the caller and cloner.
ClonerParamSubMap = FSPS.computeClonerParamSubs();
CallerParamSubMap = FSPS.getCallerParamSubs();
// Create a substitution map for the caller interface substitutions.
FSPS.computeCallerInterfaceSubs(CallerInterfaceSubs);
if (CalleeParamSubMap.empty()) {
// It can happen if there is no caller or it is an eager specialization.
CalleeParamSubMap = CallerParamSubMap;
}
HasUnboundGenericParams =
SpecializedGenericSig && !SpecializedGenericSig->areAllParamsConcrete();
createSubstitutedAndSpecializedTypes();
if (getSubstitutedType() != Callee->getLoweredFunctionType()) {
if (getSubstitutedType()->isPolymorphic())
LLVM_DEBUG(llvm::dbgs() << "Created new specialized type: "
<< SpecializedType << "\n");
}
}
/// This constructor is used when processing @_specialize.
ReabstractionInfo::ReabstractionInfo(ModuleDecl *targetModule,
bool isWholeModule, SILFunction *Callee,
GenericSignature SpecializedSig,
bool isPrespecialization)
: TargetModule(targetModule), isWholeModule(isWholeModule),
isPrespecialization(isPrespecialization) {
Serialized =
this->isPrespecialization ? IsNotSerialized : Callee->isSerialized();
if (shouldNotSpecialize(Callee, nullptr))
return;
this->Callee = Callee;
ConvertIndirectToDirect = true;
SILModule &M = Callee->getModule();
auto CalleeGenericSig =
Callee->getLoweredFunctionType()->getInvocationGenericSignature();
auto *CalleeGenericEnv = Callee->getGenericEnvironment();
FunctionSignaturePartialSpecializer FSPS(M,
CalleeGenericSig, CalleeGenericEnv,
SpecializedSig);
finishPartialSpecializationPreparation(FSPS);
}
// =============================================================================
// GenericFuncSpecializer
// =============================================================================
GenericFuncSpecializer::GenericFuncSpecializer(
SILOptFunctionBuilder &FuncBuilder, SILFunction *GenericFunc,
SubstitutionMap ParamSubs,
const ReabstractionInfo &ReInfo,
bool isMandatory)
: FuncBuilder(FuncBuilder), M(GenericFunc->getModule()),
GenericFunc(GenericFunc),
ParamSubs(ParamSubs),
ReInfo(ReInfo), isMandatory(isMandatory) {
assert((GenericFunc->isDefinition() || ReInfo.isPrespecialized()) &&
"Expected definition or pre-specialized entry-point to specialize!");
auto FnTy = ReInfo.getSpecializedType();
if (ReInfo.isPartialSpecialization()) {
Mangle::PartialSpecializationMangler Mangler(
GenericFunc, FnTy, ReInfo.isSerialized(), /*isReAbstracted*/ true);
ClonedName = Mangler.mangle();
} else {
Mangle::GenericSpecializationMangler Mangler(
GenericFunc, ReInfo.isSerialized());
if (ReInfo.isPrespecialized()) {
ClonedName = Mangler.manglePrespecialized(ParamSubs);
} else {
ClonedName = Mangler.mangleReabstracted(ParamSubs,
ReInfo.needAlternativeMangling(),
ReInfo.hasDroppedMetatypeArgs());
}
}
LLVM_DEBUG(llvm::dbgs() << " Specialized function " << ClonedName << '\n');
}
/// Return an existing specialization if one exists.
SILFunction *GenericFuncSpecializer::lookupSpecialization() {
SILFunction *SpecializedF = M.lookUpFunction(ClonedName);
if (!SpecializedF) {
// In case the specialized function is already serialized in an imported
// module, we need to take that. This can happen in case of cross-module-
// optimization.
// Otherwise we could end up that another de-serialized function from the
// same module would reference the new (non-external) specialization we
// would create here.
SpecializedF = M.loadFunction(ClonedName, SILModule::LinkingMode::LinkAll,
SILLinkage::Shared);
}
if (SpecializedF) {
if (ReInfo.getSpecializedType() != SpecializedF->getLoweredFunctionType()) {
llvm::dbgs() << "Looking for a function: " << ClonedName << "\n"
<< "Expected type: " << ReInfo.getSpecializedType() << "\n"
<< "Found type: "
<< SpecializedF->getLoweredFunctionType() << "\n";
}
assert(ReInfo.getSpecializedType()
== SpecializedF->getLoweredFunctionType() &&
"Previously specialized function does not match expected type.");
LLVM_DEBUG(llvm::dbgs() << "Found an existing specialization for: "
<< ClonedName << "\n");
return SpecializedF;
}
LLVM_DEBUG(llvm::dbgs() << "Could not find an existing specialization for: "
<< ClonedName << "\n");
return nullptr;
}
void ReabstractionInfo::verify() const {
assert((!SpecializedGenericSig && !SpecializedGenericEnv &&
!getSpecializedType()->isPolymorphic()) ||
(SpecializedGenericSig && SpecializedGenericEnv &&
getSpecializedType()->isPolymorphic()));
}
/// Create a new specialized function if possible, and cache it.
SILFunction *
GenericFuncSpecializer::tryCreateSpecialization(bool forcePrespecialization) {
// Do not create any new specializations at Onone.
if (!GenericFunc->shouldOptimize() && !forcePrespecialization && !isMandatory)
return nullptr;
LLVM_DEBUG(llvm::dbgs() << "Creating a specialization: "
<< ClonedName << "\n");
ReInfo.verify();
// Create a new function.
SILFunction *SpecializedF = GenericCloner::cloneFunction(
FuncBuilder, GenericFunc, ReInfo,
// Use these substitutions inside the new specialized function being
// created.
ReInfo.getClonerParamSubstitutionMap(),
ClonedName);
assert((SpecializedF->getLoweredFunctionType()->isPolymorphic() &&
SpecializedF->getGenericEnvironment()) ||
(!SpecializedF->getLoweredFunctionType()->isPolymorphic() &&
!SpecializedF->getGenericEnvironment()));
// Store the meta-information about how this specialization was created.
auto *Caller = ReInfo.getApply() ? ReInfo.getApply().getFunction() : nullptr;
SubstitutionMap Subs = Caller ? ReInfo.getApply().getSubstitutionMap()
: ReInfo.getClonerParamSubstitutionMap();
SpecializedF->setClassSubclassScope(SubclassScope::NotApplicable);
SpecializedF->setSpecializationInfo(
GenericSpecializationInformation::create(Caller, GenericFunc, Subs));
if (VerifyFunctionsAfterSpecialization) {
PrettyStackTraceSILFunction SILFunctionDumper(
llvm::Twine("Generic function: ") + GenericFunc->getName() +
". Specialized Function: " + SpecializedF->getName(),
GenericFunc);
SpecializedF->verify();
}
return SpecializedF;
}
// =============================================================================
// Apply substitution
// =============================================================================
/// Fix the case where a void function returns the result of an apply, which is
/// also a call of a void-returning function.
/// We always want a void function returning a tuple _instruction_.
static void fixUsedVoidType(SILValue VoidVal, SILLocation Loc,
SILBuilder &Builder) {
assert(VoidVal->getType().isVoid());
if (VoidVal->use_empty())
return;
auto *NewVoidVal = Builder.createTuple(Loc, VoidVal->getType(), { });
VoidVal->replaceAllUsesWith(NewVoidVal);
}
static SILValue fixSpecializedReturnType(SILValue returnVal, SILType returnType,
SILLocation Loc, SILBuilder &Builder) {
SILValue newReturnVal;
if (returnType.isAddress()) {
newReturnVal = Builder.createUncheckedAddrCast(Loc, returnVal, returnType);
} else if (SILType::canRefCast(returnVal->getType(), returnType,
Builder.getModule())) {
newReturnVal = Builder.createUncheckedRefCast(Loc, returnVal, returnType);
} else {
if (Builder.hasOwnership()) {
newReturnVal =
Builder.createUncheckedValueCast(Loc, returnVal, returnType);
} else {
newReturnVal =
Builder.createUncheckedBitwiseCast(Loc, returnVal, returnType);
}
}
return newReturnVal;
}
/// Prepare call arguments. Perform re-abstraction if required.
///
/// \p ArgAtIndexNeedsEndBorrow after return contains indices of arguments that
/// need end borrow. The reason why we are doing this in a separate array is
/// that we are going to eventually need to pass off Arguments to SILBuilder
/// which will want an ArrayRef<SILValue>() so using a composite type here would
/// force us to do some sort of conversion then.
static void
prepareCallArguments(ApplySite AI, SILBuilder &Builder,
const ReabstractionInfo &ReInfo,
const TypeReplacements &typeReplacements,
SmallVectorImpl<SILValue> &Arguments,
SmallVectorImpl<unsigned> &ArgAtIndexNeedsEndBorrow,
SILValue &StoreResultTo) {
/// SIL function conventions for the original apply site with substitutions.
SILLocation Loc = AI.getLoc();
auto substConv = AI.getSubstCalleeConv();
unsigned ArgIdx = AI.getCalleeArgIndexOfFirstAppliedArg();
auto handleConversion = [&](SILValue InputValue) {
// Rewriting SIL arguments is only for lowered addresses.
if (!substConv.useLoweredAddresses())
return false;
if (ArgIdx < substConv.getSILArgIndexOfFirstParam()) {
// Handle result arguments.
unsigned formalIdx =
substConv.getIndirectFormalResultIndexForSILArg(ArgIdx);
bool converted = false;
if (typeReplacements.hasIndirectResultTypes()) {
auto typeReplacementIt = typeReplacements.getIndirectResultTypes().find(formalIdx);
if (typeReplacementIt != typeReplacements.getIndirectResultTypes().end()) {
auto specializedTy = typeReplacementIt->second;
if (InputValue->getType().isAddress()) {
auto argTy = SILType::getPrimitiveAddressType(specializedTy);
InputValue = Builder.createUncheckedAddrCast(Loc, InputValue, argTy);
} else {
auto argTy = SILType::getPrimitiveObjectType(specializedTy);
if (SILType::canRefCast(InputValue->getType(), argTy,
Builder.getModule())) {
InputValue = Builder.createUncheckedRefCast(Loc, InputValue, argTy);
} else {
if (Builder.hasOwnership()) {
InputValue =
Builder.createUncheckedValueCast(Loc, InputValue, argTy);
} else {
InputValue =
Builder.createUncheckedBitwiseCast(Loc, InputValue, argTy);
}
}
}
converted = true;
}
}
if (!ReInfo.isFormalResultConverted(formalIdx)) {
if (converted)
Arguments.push_back(InputValue);
return converted;
}
// The result is converted from indirect to direct. We need to insert
// a store later.
assert(!StoreResultTo);
StoreResultTo = InputValue;
return true;
}
if (ReInfo.isDroppedMetatypeArg(ArgIdx))
return true;
// Handle arguments for formal parameters.
unsigned paramIdx = ArgIdx - substConv.getSILArgIndexOfFirstParam();
// Handle type conversions for shape based specializations, e.g.
// some reference type -> AnyObject
bool converted = false;
if (typeReplacements.hasParamTypeReplacements()) {
auto typeReplacementIt = typeReplacements.getParamTypeReplacements().find(paramIdx);
if (typeReplacementIt != typeReplacements.getParamTypeReplacements().end()) {
auto specializedTy = typeReplacementIt->second;
if (InputValue->getType().isAddress()) {
auto argTy = SILType::getPrimitiveAddressType(specializedTy);
InputValue = Builder.createUncheckedAddrCast(Loc, InputValue, argTy);
} else {
auto argTy = SILType::getPrimitiveObjectType(specializedTy);
if (SILType::canRefCast(InputValue->getType(), argTy,
Builder.getModule())) {
InputValue = Builder.createUncheckedRefCast(Loc, InputValue, argTy);
} else {
if (Builder.hasOwnership()) {
InputValue =
Builder.createUncheckedValueCast(Loc, InputValue, argTy);
} else {
InputValue =
Builder.createUncheckedBitwiseCast(Loc, InputValue, argTy);
}
}
}
converted = true;
}
}
if (!ReInfo.isParamConverted(paramIdx)) {
if (converted) {
Arguments.push_back(InputValue);
}
return converted;
}
// An argument is converted from indirect to direct. Instead of the
// address we pass the loaded value.
auto argConv = substConv.getSILArgumentConvention(ArgIdx);
SILValue Val;
if (!argConv.isGuaranteedConvention() || isa<PartialApplyInst>(AI)) {
Val = Builder.emitLoadValueOperation(Loc, InputValue,
LoadOwnershipQualifier::Take);
} else {
Val = Builder.emitLoadBorrowOperation(Loc, InputValue);
if (Val->getOwnershipKind() == OwnershipKind::Guaranteed)
ArgAtIndexNeedsEndBorrow.push_back(Arguments.size());
}
Arguments.push_back(Val);
return true;
};
for (auto &Op : AI.getArgumentOperands()) {
if (!handleConversion(Op.get()))
Arguments.push_back(Op.get());
++ArgIdx;
}
}
static void
cleanupCallArguments(SILBuilder &builder, SILLocation loc,
ArrayRef<SILValue> values,
ArrayRef<unsigned> valueIndicesThatNeedEndBorrow) {
for (int index : valueIndicesThatNeedEndBorrow) {
auto *lbi = cast<LoadBorrowInst>(values[index]);
builder.createEndBorrow(loc, lbi);
}
}
/// Create a new apply based on an old one, but with a different
/// function being applied.
static ApplySite
replaceWithSpecializedCallee(ApplySite applySite, SILValue callee,
const ReabstractionInfo &reInfo,
const TypeReplacements &typeReplacements = {}) {
SILBuilderWithScope builder(applySite.getInstruction());
SILLocation loc = applySite.getLoc();
SmallVector<SILValue, 4> arguments;
SmallVector<unsigned, 4> argsNeedingEndBorrow;
SILValue resultOut;
prepareCallArguments(applySite, builder, reInfo,
typeReplacements, arguments,
argsNeedingEndBorrow, resultOut);
// Create a substituted callee type.
//
// NOTE: We do not perform this substitution if we are promoting a full apply
// site callee of a partial apply.
auto canFnTy = callee->getType().castTo<SILFunctionType>();
SubstitutionMap subs;
if (reInfo.getSpecializedType()->isPolymorphic() &&
canFnTy->isPolymorphic()) {
subs = reInfo.getCallerParamSubstitutionMap();
subs = SubstitutionMap::get(canFnTy->getSubstGenericSignature(), subs);
}
auto calleeSubstFnTy = canFnTy->substGenericArgs(
*callee->getModule(), subs, reInfo.getResilienceExpansion());
auto calleeSILSubstFnTy = SILType::getPrimitiveObjectType(calleeSubstFnTy);
SILFunctionConventions substConv(calleeSubstFnTy, builder.getModule());
switch (applySite.getKind()) {
case ApplySiteKind::TryApplyInst: {
auto *tai = cast<TryApplyInst>(applySite);
SILBasicBlock *resultBlock = tai->getNormalBB();
assert(resultBlock->getSinglePredecessorBlock() == tai->getParent());
// First insert the cleanups for our arguments int he appropriate spot.
FullApplySite(tai).insertAfterApplication(
[&](SILBuilder &argBuilder) {
cleanupCallArguments(argBuilder, loc, arguments,
argsNeedingEndBorrow);
});
auto *newTAI = builder.createTryApply(loc, callee, subs, arguments,
resultBlock, tai->getErrorBB(),
tai->getApplyOptions());
if (resultOut) {
assert(substConv.useLoweredAddresses());
// The original normal result of the try_apply is an empty tuple.
assert(resultBlock->getNumArguments() == 1);
builder.setInsertionPoint(resultBlock->begin());
fixUsedVoidType(resultBlock->getArgument(0), loc, builder);
SILValue returnValue = resultBlock->replacePhiArgument(
0, resultOut->getType().getObjectType(), OwnershipKind::Owned);
// Store the direct result to the original result address.
builder.emitStoreValueOperation(loc, returnValue, resultOut,
StoreOwnershipQualifier::Init);
}
return newTAI;
}
case ApplySiteKind::ApplyInst: {
auto *ai = cast<ApplyInst>(applySite);
FullApplySite(ai).insertAfterApplication(
[&](SILBuilder &argBuilder) {
cleanupCallArguments(argBuilder, loc, arguments,
argsNeedingEndBorrow);
});
auto *newAI =
builder.createApply(loc, callee, subs, arguments,
ai->getApplyOptions());
SILValue returnValue = newAI;
if (resultOut) {
if (!calleeSILSubstFnTy.isNoReturnFunction(
builder.getModule(), builder.getTypeExpansionContext())) {
// Store the direct result to the original result address.
fixUsedVoidType(ai, loc, builder);
builder.emitStoreValueOperation(loc, returnValue, resultOut,
StoreOwnershipQualifier::Init);
} else {
builder.createUnreachable(loc);
// unreachable should be the terminator instruction.
// So, split the current basic block right after the
// inserted unreachable instruction.
builder.getInsertionPoint()->getParent()->split(
builder.getInsertionPoint());
}
} else if (typeReplacements.hasResultType()) {
returnValue = fixSpecializedReturnType(
newAI, *typeReplacements.getResultType(), loc, builder);
}
ai->replaceAllUsesWith(returnValue);
return newAI;
}
case ApplySiteKind::BeginApplyInst: {
auto *bai = cast<BeginApplyInst>(applySite);
assert(!resultOut);
FullApplySite(bai).insertAfterApplication(
[&](SILBuilder &argBuilder) {
cleanupCallArguments(argBuilder, loc, arguments,
argsNeedingEndBorrow);
});
auto *newBAI = builder.createBeginApply(loc, callee, subs, arguments,
bai->getApplyOptions());
for (auto pair : llvm::enumerate(bai->getYieldedValues())) {
auto index = pair.index();
SILValue oldYield = pair.value();
SILValue newYield = newBAI->getYieldedValues()[index];
auto it = typeReplacements.getYieldTypeReplacements().find(index);
if (it != typeReplacements.getYieldTypeReplacements().end()) {
SILType newType;
if (newYield->getType().isObject()) {
newType = SILType::getPrimitiveObjectType(it->second);
} else {
newType = SILType::getPrimitiveAddressType(it->second);
}
auto converted =
fixSpecializedReturnType(newYield, newType, loc, builder);
oldYield->replaceAllUsesWith(converted);
}
}
bai->replaceAllUsesPairwiseWith(newBAI);
return newBAI;
}
case ApplySiteKind::PartialApplyInst: {
auto *pai = cast<PartialApplyInst>(applySite);
auto *newPAI = builder.createPartialApply(
loc, callee, subs, arguments,
pai->getType().getAs<SILFunctionType>()->getCalleeConvention(),
pai->isOnStack());
// When we have a partial apply, we should always perform a load [take].
pai->replaceAllUsesWith(newPAI);
assert(llvm::none_of(arguments,
[](SILValue v) { return isa<LoadBorrowInst>(v); }) &&
"Partial apply consumes all of its parameters?!");
return newPAI;
}
}
llvm_unreachable("unhandled kind of apply");
}
namespace {
/// local overload of `replaceWithSpecializedFunction` that takes a
/// `SpecializedFunction`
ApplySite replaceWithSpecializedFunction(ApplySite AI,
SpecializedFunction &NewF,
const ReabstractionInfo &ReInfo) {
SILBuilderWithScope Builder(AI.getInstruction());
FunctionRefInst *FRI =
Builder.createFunctionRef(AI.getLoc(), NewF.getFunction());
return replaceWithSpecializedCallee(AI, FRI, ReInfo,
NewF.getTypeReplacements());
}
} // anonymous namespace
/// Create a new apply based on an old one, but with a different
/// function being applied.
ApplySite swift::
replaceWithSpecializedFunction(ApplySite AI, SILFunction *NewF,
const ReabstractionInfo &ReInfo) {
SpecializedFunction SpecializedF(NewF);
return replaceWithSpecializedFunction(AI, SpecializedF, ReInfo);
}
namespace {
class ReabstractionThunkGenerator {
SILOptFunctionBuilder &FunctionBuilder;
SILFunction *OrigF;
SILModule &M;
SILFunction *SpecializedFunc;
const ReabstractionInfo &ReInfo;
PartialApplyInst *OrigPAI;
std::string ThunkName;
RegularLocation Loc;
SmallVector<SILValue, 4> Arguments;
public:
ReabstractionThunkGenerator(SILOptFunctionBuilder &FunctionBuilder,
const ReabstractionInfo &ReInfo,
PartialApplyInst *OrigPAI,
SILFunction *SpecializedFunc)
: FunctionBuilder(FunctionBuilder), OrigF(OrigPAI->getCalleeFunction()), M(OrigF->getModule()),
SpecializedFunc(SpecializedFunc), ReInfo(ReInfo), OrigPAI(OrigPAI),
Loc(RegularLocation::getAutoGeneratedLocation()) {
if (!ReInfo.isPartialSpecialization()) {
Mangle::GenericSpecializationMangler Mangler(OrigF, ReInfo.isSerialized());
ThunkName = Mangler.mangleNotReabstracted(
ReInfo.getCalleeParamSubstitutionMap());
} else {
Mangle::PartialSpecializationMangler Mangler(
OrigF, ReInfo.getSpecializedType(), ReInfo.isSerialized(),
/*isReAbstracted*/ false);
ThunkName = Mangler.mangle();
}
}
SILFunction *createThunk();
protected:
FullApplySite createReabstractionThunkApply(SILBuilder &Builder);
SILArgument *convertReabstractionThunkArguments(
SILBuilder &Builder, SmallVectorImpl<unsigned> &ArgsNeedingEndBorrows);
};
} // anonymous namespace
SILFunction *ReabstractionThunkGenerator::createThunk() {
SILFunction *Thunk = FunctionBuilder.getOrCreateSharedFunction(
Loc, ThunkName, ReInfo.getSubstitutedType(), IsBare, IsTransparent,
ReInfo.isSerialized(), ProfileCounter(), IsThunk, IsNotDynamic,
IsNotDistributed, IsNotRuntimeAccessible);
// Re-use an existing thunk.
if (!Thunk->empty())
return Thunk;
Thunk->setGenericEnvironment(ReInfo.getSpecializedGenericEnvironment());
SILBasicBlock *EntryBB = Thunk->createBasicBlock();
SILBuilder Builder(EntryBB);
// If the original specialized function had unqualified ownership, set the
// thunk to have unqualified ownership as well.
//
// This is a stop gap measure to allow for easy inlining. We could always make
// the Thunk qualified, but then we would need to either fix the inliner to
// inline qualified into unqualified functions /or/ have the
// OwnershipModelEliminator run as part of the normal compilation pipeline
// (which we are not doing yet).
if (!SpecializedFunc->hasOwnership()) {
Thunk->setOwnershipEliminated();
}
if (!SILModuleConventions(M).useLoweredAddresses()) {
for (auto SpecArg : SpecializedFunc->getArguments()) {
auto *NewArg = EntryBB->createFunctionArgument(SpecArg->getType(),
SpecArg->getDecl());
NewArg->copyFlags(cast<SILFunctionArgument>(SpecArg));
Arguments.push_back(NewArg);
}
FullApplySite ApplySite = createReabstractionThunkApply(Builder);
SILValue ReturnValue = ApplySite.getResult();
assert(ReturnValue && "getPseudoResult out of sync with ApplySite?!");
Builder.createReturn(Loc, ReturnValue);
return Thunk;
}
// Handle lowered addresses.
SmallVector<unsigned, 4> ArgsThatNeedEndBorrow;
SILArgument *ReturnValueAddr =
convertReabstractionThunkArguments(Builder, ArgsThatNeedEndBorrow);
FullApplySite ApplySite = createReabstractionThunkApply(Builder);
SILValue ReturnValue = ApplySite.getResult();
assert(ReturnValue && "getPseudoResult out of sync with ApplySite?!");
if (ReturnValueAddr) {
// Need to store the direct results to the original indirect address.
Builder.emitStoreValueOperation(Loc, ReturnValue, ReturnValueAddr,
StoreOwnershipQualifier::Init);
SILType VoidTy = OrigPAI->getSubstCalleeType()->getDirectFormalResultsType(
M, Builder.getTypeExpansionContext());
assert(VoidTy.isVoid());
ReturnValue = Builder.createTuple(Loc, VoidTy, {});
}
Builder.createReturn(Loc, ReturnValue);
// Now that we have finished constructing our CFG (note the return above),
// insert any compensating end borrows that we need.
ApplySite.insertAfterApplication([&](SILBuilder &argBuilder) {
cleanupCallArguments(argBuilder, Loc, Arguments, ArgsThatNeedEndBorrow);
});
return Thunk;
}
/// Create a call to a reabstraction thunk. Return the call's direct result.
FullApplySite ReabstractionThunkGenerator::createReabstractionThunkApply(
SILBuilder &Builder) {
SILFunction *Thunk = &Builder.getFunction();
auto *FRI = Builder.createFunctionRef(Loc, SpecializedFunc);
auto Subs = Thunk->getForwardingSubstitutionMap();
auto specConv = SpecializedFunc->getConventions();
if (!SpecializedFunc->getLoweredFunctionType()->hasErrorResult()) {
return Builder.createApply(Loc, FRI, Subs, Arguments);
}
// Create the logic for calling a throwing function.
SILBasicBlock *NormalBB = Thunk->createBasicBlock();
SILBasicBlock *ErrorBB = Thunk->createBasicBlock();
auto *TAI =
Builder.createTryApply(Loc, FRI, Subs, Arguments, NormalBB, ErrorBB);
auto *ErrorVal = ErrorBB->createPhiArgument(
SpecializedFunc->mapTypeIntoContext(
specConv.getSILErrorType(Builder.getTypeExpansionContext())),
OwnershipKind::Owned);
Builder.setInsertionPoint(ErrorBB);
Builder.createThrow(Loc, ErrorVal);
NormalBB->createPhiArgument(
SpecializedFunc->mapTypeIntoContext(
specConv.getSILResultType(Builder.getTypeExpansionContext())),
OwnershipKind::Owned);
Builder.setInsertionPoint(NormalBB);
return FullApplySite(TAI);
}
/// Create SIL arguments for a reabstraction thunk with lowered addresses. This
/// may involve replacing indirect arguments with loads and stores. Return the
/// SILArgument for the address of an indirect result, or nullptr.
///
/// FIXME: Remove this if we don't need to create reabstraction thunks after
/// address lowering.
SILArgument *ReabstractionThunkGenerator::convertReabstractionThunkArguments(
SILBuilder &Builder, SmallVectorImpl<unsigned> &ArgsThatNeedEndBorrow) {
SILFunction *Thunk = &Builder.getFunction();
CanSILFunctionType SpecType = SpecializedFunc->getLoweredFunctionType();
CanSILFunctionType SubstType = ReInfo.getSubstitutedType();
auto specConv = SpecializedFunc->getConventions();
(void)specConv;
SILFunctionConventions substConv(SubstType, M);
assert(specConv.useLoweredAddresses());
// ReInfo.NumIndirectResults corresponds to SubstTy's formal indirect
// results. SpecTy may have fewer formal indirect results.
assert(SubstType->getNumIndirectFormalResults()
>= SpecType->getNumIndirectFormalResults());
SILBasicBlock *EntryBB = Thunk->getEntryBlock();
SILArgument *ReturnValueAddr = nullptr;
auto SpecArgIter = SpecializedFunc->getArguments().begin();
auto cloneSpecializedArgument = [&]() {
// No change to the argument.
SILArgument *SpecArg = *SpecArgIter++;
auto *NewArg =
EntryBB->createFunctionArgument(SpecArg->getType(), SpecArg->getDecl());
NewArg->setNoImplicitCopy(
cast<SILFunctionArgument>(SpecArg)->isNoImplicitCopy());
NewArg->setLifetimeAnnotation(
cast<SILFunctionArgument>(SpecArg)->getLifetimeAnnotation());
NewArg->setClosureCapture(
cast<SILFunctionArgument>(SpecArg)->isClosureCapture());
Arguments.push_back(NewArg);
};
// ReInfo.NumIndirectResults corresponds to SubstTy's formal indirect
// results. SpecTy may have fewer formal indirect results.
assert(SubstType->getNumIndirectFormalResults()
>= SpecType->getNumIndirectFormalResults());
unsigned resultIdx = 0;
for (auto substRI : SubstType->getIndirectFormalResults()) {
if (ReInfo.isFormalResultConverted(resultIdx++)) {
// Convert an originally indirect to direct specialized result.
// Store the result later.
// FIXME: This only handles a single result! Partial specialization could
// induce some combination of direct and indirect results.
SILType ResultTy = SpecializedFunc->mapTypeIntoContext(
substConv.getSILType(substRI, Builder.getTypeExpansionContext()));
assert(ResultTy.isAddress());
assert(!ReturnValueAddr);
ReturnValueAddr = EntryBB->createFunctionArgument(ResultTy);
continue;
}
// If the specialized result is already indirect, simply clone the indirect
// result argument.
assert((*SpecArgIter)->getType().isAddress());
cloneSpecializedArgument();
}
assert(SpecArgIter
== SpecializedFunc->getArgumentsWithoutIndirectResults().begin());
unsigned numParams = SpecType->getNumParameters();
assert(numParams == SubstType->getNumParameters());
for (unsigned paramIdx = 0; paramIdx < numParams; ++paramIdx) {
if (ReInfo.isParamConverted(paramIdx)) {
// Convert an originally indirect to direct specialized parameter.
assert(!specConv.isSILIndirect(SpecType->getParameters()[paramIdx]));
// Instead of passing the address, pass the loaded value.
SILType ParamTy = SpecializedFunc->mapTypeIntoContext(
substConv.getSILType(SubstType->getParameters()[paramIdx],
Builder.getTypeExpansionContext()));
assert(ParamTy.isAddress());
SILArgument *SpecArg = *SpecArgIter++;
SILFunctionArgument *NewArg =
EntryBB->createFunctionArgument(ParamTy, SpecArg->getDecl());
NewArg->setNoImplicitCopy(
cast<SILFunctionArgument>(SpecArg)->isNoImplicitCopy());
NewArg->setLifetimeAnnotation(
cast<SILFunctionArgument>(SpecArg)->getLifetimeAnnotation());
NewArg->setClosureCapture(
cast<SILFunctionArgument>(SpecArg)->isClosureCapture());
if (!NewArg->getArgumentConvention().isGuaranteedConvention()) {
SILValue argVal = Builder.emitLoadValueOperation(
Loc, NewArg, LoadOwnershipQualifier::Take);
Arguments.push_back(argVal);
} else {
SILValue argVal = Builder.emitLoadBorrowOperation(Loc, NewArg);
if (argVal->getOwnershipKind() == OwnershipKind::Guaranteed)
ArgsThatNeedEndBorrow.push_back(Arguments.size());
Arguments.push_back(argVal);
}
continue;
}
// Simply clone unconverted direct or indirect parameters.
cloneSpecializedArgument();
}
assert(SpecArgIter == SpecializedFunc->getArguments().end());
return ReturnValueAddr;
}
/// Create a pre-specialization of the library function with
/// \p UnspecializedName, using the substitutions from \p Apply.
static bool createPrespecialized(StringRef UnspecializedName,
ApplySite Apply,
SILOptFunctionBuilder &FuncBuilder) {
SILModule &M = FuncBuilder.getModule();
SILFunction *UnspecFunc = M.lookUpFunction(UnspecializedName);
if (UnspecFunc) {
if (!UnspecFunc->isDefinition())
M.loadFunction(UnspecFunc, SILModule::LinkingMode::LinkAll);
} else {
UnspecFunc = M.loadFunction(UnspecializedName,
SILModule::LinkingMode::LinkAll);
}
if (!UnspecFunc || !UnspecFunc->isDefinition())
return false;
ReabstractionInfo ReInfo(M.getSwiftModule(), M.isWholeModule(), ApplySite(),
UnspecFunc, Apply.getSubstitutionMap(),
IsNotSerialized,
/*ConvertIndirectToDirect=*/true);
if (!ReInfo.canBeSpecialized())
return false;
GenericFuncSpecializer FuncSpecializer(FuncBuilder,
UnspecFunc, Apply.getSubstitutionMap(),
ReInfo);
SILFunction *SpecializedF = FuncSpecializer.lookupSpecialization();
if (!SpecializedF)
SpecializedF = FuncSpecializer.tryCreateSpecialization();
if (!SpecializedF)
return false;
// Link after prespecializing to pull in everything referenced from another
// module in case some referenced functions have non-public linkage.
M.linkFunction(SpecializedF, SILModule::LinkingMode::LinkAll);
SpecializedF->setLinkage(SILLinkage::Public);
SpecializedF->setSerialized(IsNotSerialized);
return true;
}
/// Create pre-specializations of the library function X if \p ProxyFunc has
/// @_semantics("prespecialize.X") attributes.
static bool createPrespecializations(ApplySite Apply, SILFunction *ProxyFunc,
SILOptFunctionBuilder &FuncBuilder) {
if (Apply.getSubstitutionMap().hasArchetypes())
return false;
SILModule &M = FuncBuilder.getModule();
bool prespecializeFound = false;
for (const std::string &semAttrStr : ProxyFunc->getSemanticsAttrs()) {
StringRef semAttr(semAttrStr);
if (semAttr.consume_front("prespecialize.")) {
prespecializeFound = true;
if (!createPrespecialized(semAttr, Apply, FuncBuilder)) {
M.getASTContext().Diags.diagnose(Apply.getLoc().getSourceLoc(),
diag::cannot_prespecialize,
semAttr);
}
}
}
return prespecializeFound;
}
static SILFunction *
lookupOrCreatePrespecialization(SILOptFunctionBuilder &funcBuilder,
SILFunction *origF, std::string clonedName,
ReabstractionInfo &reInfo) {
if (auto *specializedF = funcBuilder.getModule().lookUpFunction(clonedName)) {
assert(reInfo.getSpecializedType() ==
specializedF->getLoweredFunctionType() &&
"Previously specialized function does not match expected type.");
return specializedF;
}
auto *declaration =
GenericCloner::createDeclaration(funcBuilder, origF, reInfo, clonedName);
declaration->setLinkage(SILLinkage::PublicExternal);
ScopeCloner scopeCloner(*declaration);
return declaration;
}
bool usePrespecialized(
SILOptFunctionBuilder &funcBuilder, ApplySite apply, SILFunction *refF,
const ReabstractionInfo &specializedReInfo,
ReabstractionInfo &prespecializedReInfo, SpecializedFunction &result) {
SmallVector<std::tuple<unsigned, ReabstractionInfo, AvailabilityContext>, 4>
layoutMatches;
for (auto *SA : refF->getSpecializeAttrs()) {
if (!SA->isExported())
continue;
// Check whether SPI allows using this function.
auto spiGroup = SA->getSPIGroup();
if (!spiGroup.empty()) {
auto currentModule = funcBuilder.getModule().getSwiftModule();
auto funcModule = SA->getSPIModule();
// Don't use this SPI if the current module does not import the function's
// module with @_spi(<spiGroup>).
if (currentModule != funcModule &&
!currentModule->isImportedAsSPI(spiGroup, funcModule))
continue;
}
// Check whether the availability of the specialization allows for using
// it. We check the deployment target or the current functions availability
// target depending which one is more recent.
auto specializationAvail = SA->getAvailability();
auto &ctxt = funcBuilder.getModule().getSwiftModule()->getASTContext();
auto deploymentAvail = AvailabilityContext::forDeploymentTarget(ctxt);
auto currentFn = apply.getFunction();
auto isInlinableCtxt = (currentFn->getResilienceExpansion()
== ResilienceExpansion::Minimal);
auto currentFnAvailability = currentFn->getAvailabilityForLinkage();
// If we are in an inlineable function we can't use the specialization except
// the inlinable function itself has availability we can use.
if (currentFnAvailability.isAlwaysAvailable() && isInlinableCtxt) {
continue;
}
else if (isInlinableCtxt) {
deploymentAvail = currentFnAvailability;
}
if (!currentFnAvailability.isAlwaysAvailable() &&
!deploymentAvail.isContainedIn(currentFnAvailability))
deploymentAvail = currentFnAvailability;
if (!deploymentAvail.isContainedIn(specializationAvail))
continue;
ReabstractionInfo reInfo(funcBuilder.getModule().getSwiftModule(),
funcBuilder.getModule().isWholeModule(), refF,
SA->getSpecializedSignature(),
/*isPrespecialization*/ true);
if (specializedReInfo.getSpecializedType() != reInfo.getSpecializedType()) {
SmallVector<Type, 4> newSubs;
auto specializedSig = SA->getSpecializedSignature();
auto erasedParams = SA->getTypeErasedParams();
if(!ctxt.LangOpts.hasFeature(Feature::LayoutPrespecialization) || erasedParams.empty()) {
continue;
}
unsigned score = 0;
for (auto &entry :
llvm::enumerate(apply.getSubstitutionMap().getReplacementTypes())) {
auto genericParam = specializedSig.getGenericParams()[entry.index()];
bool erased = std::any_of(erasedParams.begin(), erasedParams.end(), [&](auto Ty) {
return Ty->isEqual(genericParam);
});
auto layout = specializedSig->getLayoutConstraint(genericParam);
if (!erased || !layout || !layout->isClass()) {
newSubs.push_back(entry.value());
} else if (!entry.value()->isAnyClassReferenceType()) {
// non-reference type can't be applied
break;
} else if (!specializedSig->getRequiredProtocols(genericParam)
.empty()) {
llvm::report_fatal_error("Unexpected protocol requirements");
} else if (layout->isNativeClass()) {
newSubs.push_back(genericParam->getASTContext().TheNativeObjectType);
score += 1;
} else {
newSubs.push_back(genericParam->getASTContext().getAnyObjectType());
}
}
if (newSubs.size() !=
apply.getSubstitutionMap().getReplacementTypes().size()) {
continue;
}
auto newSubstMap = SubstitutionMap::get(
apply.getSubstitutionMap().getGenericSignature(), newSubs,
apply.getSubstitutionMap().getConformances());
ReabstractionInfo layoutReInfo = ReabstractionInfo(
funcBuilder.getModule().getSwiftModule(),
funcBuilder.getModule().isWholeModule(), apply, refF, newSubstMap,
apply.getFunction()->isSerialized() ? IsSerialized : IsNotSerialized,
/*ConvertIndirectToDirect=*/true, /*dropMetatypeArgs*/true, nullptr);
if (layoutReInfo.getSpecializedType() == reInfo.getSpecializedType()) {
layoutMatches.push_back(
std::make_tuple(score, reInfo, specializationAvail));
}
continue;
}
SubstitutionMap subs = reInfo.getCalleeParamSubstitutionMap();
Mangle::GenericSpecializationMangler mangler(refF, reInfo.isSerialized());
std::string name = reInfo.isPrespecialized() ?
mangler.manglePrespecialized(subs) :
mangler.mangleReabstracted(subs, reInfo.needAlternativeMangling());
prespecializedReInfo = reInfo;
auto fn = lookupOrCreatePrespecialization(funcBuilder, refF, name, reInfo);
if (!specializationAvail.isAlwaysAvailable())
fn->setAvailabilityForLinkage(specializationAvail);
result.setFunction(fn);
return true;
}
if (!layoutMatches.empty()) {
std::tuple<unsigned, ReabstractionInfo, AvailabilityContext> res =
layoutMatches[0];
for (auto &tuple : layoutMatches) {
if (std::get<0>(tuple) > std::get<0>(res))
res = tuple;
}
auto reInfo = std::get<1>(res);
auto specializationAvail = std::get<2>(res);
// TODO: Deduplicate
SubstitutionMap subs = reInfo.getCalleeParamSubstitutionMap();
Mangle::GenericSpecializationMangler mangler(refF, reInfo.isSerialized());
std::string name = reInfo.isPrespecialized()
? mangler.manglePrespecialized(subs)
: mangler.mangleReabstracted(
subs, reInfo.needAlternativeMangling());
prespecializedReInfo = reInfo;
auto fn = lookupOrCreatePrespecialization(funcBuilder, refF, name, reInfo);
if (!specializationAvail.isAlwaysAvailable())
fn->setAvailabilityForLinkage(specializationAvail);
result.setFunction(fn);
result.computeTypeReplacements(apply);
return true;
}
return false;
}
void swift::trySpecializeApplyOfGeneric(
SILOptFunctionBuilder &FuncBuilder,
ApplySite Apply, DeadInstructionSet &DeadApplies,
SmallVectorImpl<SILFunction *> &NewFunctions,
OptRemark::Emitter &ORE,
bool isMandatory) {
assert(Apply.hasSubstitutions() && "Expected an apply with substitutions!");
auto *F = Apply.getFunction();
auto *RefF =
cast<FunctionRefInst>(Apply.getCallee())->getReferencedFunction();
LLVM_DEBUG(llvm::dbgs() << "\n\n*** ApplyInst in function " << F->getName()
<< ":\n";
Apply.getInstruction()->dumpInContext());
// If the caller is fragile but the callee is not, bail out.
// Specializations have shared linkage, which means they do
// not have an external entry point, Since the callee is not
// fragile we cannot serialize the body of the specialized
// callee either.
if (F->isSerialized() && !RefF->hasValidLinkageForFragileInline())
return;
if (shouldNotSpecialize(RefF, F))
return;
// If the caller and callee are both fragile, preserve the fragility when
// cloning the callee. Otherwise, strip it off so that we can optimize
// the body more.
IsSerialized_t Serialized = IsNotSerialized;
if (F->isSerialized())
Serialized = IsSerialized;
// If it is OnoneSupport consider all specializations as non-serialized
// as we do not SIL serialize their bodies.
// It is important to set this flag here, because it affects the
// mangling of the specialization's name.
if (Apply.getModule().isOptimizedOnoneSupportModule()) {
if (createPrespecializations(Apply, RefF, FuncBuilder)) {
return;
}
Serialized = IsNotSerialized;
}
ReabstractionInfo ReInfo(FuncBuilder.getModule().getSwiftModule(),
FuncBuilder.getModule().isWholeModule(), Apply, RefF,
Apply.getSubstitutionMap(), Serialized,
/*ConvertIndirectToDirect=*/ true,
/*dropMetatypeArgs=*/ isMandatory,
&ORE);
if (!ReInfo.canBeSpecialized())
return;
// Check if there is a pre-specialization available in a library.
SpecializedFunction prespecializedF{};
ReabstractionInfo prespecializedReInfo;
bool replacePartialApplyWithoutReabstraction = false;
if (usePrespecialized(FuncBuilder, Apply, RefF, ReInfo, prespecializedReInfo,
prespecializedF)) {
ReInfo = prespecializedReInfo;
}
// If there is not pre-specialization and we don't have a body give up.
if (!prespecializedF.hasFunction() && !RefF->isDefinition())
return;
SILModule &M = F->getModule();
bool needAdaptUsers = false;
auto *PAI = dyn_cast<PartialApplyInst>(Apply);
if (PAI && ReInfo.hasConversions()) {
// If we have a partial_apply and we converted some results/parameters from
// indirect to direct there are 3 cases:
// 1) All uses of the partial_apply are apply sites again. In this case
// we can just adapt all the apply sites which use the partial_apply.
// 2) The result of the partial_apply is re-abstracted anyway (and the
// re-abstracted function type matches with our specialized type). In
// this case we can just skip the existing re-abstraction.
// 3) For all other cases we need to create a new re-abstraction thunk.
needAdaptUsers = true;
SmallVector<Operand *, 4> worklist(PAI->getUses());
while (!worklist.empty()) {
auto *Use = worklist.pop_back_val();
SILInstruction *User = Use->getUser();
// Look through copy_value.
if (auto *cvi = dyn_cast<CopyValueInst>(User)) {
llvm::copy(cvi->getUses(), std::back_inserter(worklist));
continue;
}
// Ignore destroy_value.
if (isa<DestroyValueInst>(User))
continue;
// Ignore older ref count instructions.
if (isa<RefCountingInst>(User))
continue;
if (isIncidentalUse(User))
continue;
auto FAS = FullApplySite::isa(User);
if (FAS && FAS.getCallee() == PAI)
continue;
auto *PAIUser = dyn_cast<PartialApplyInst>(User);
if (PAIUser && isPartialApplyOfReabstractionThunk(PAIUser)) {
CanSILFunctionType NewPAType =
ReInfo.createSpecializedType(PAI->getFunctionType(), M);
if (PAIUser->getFunctionType() == NewPAType)
continue;
}
replacePartialApplyWithoutReabstraction = true;
break;
}
}
GenericFuncSpecializer FuncSpecializer(FuncBuilder,
RefF, Apply.getSubstitutionMap(),
ReInfo, isMandatory);
SpecializedFunction SpecializedF =
prespecializedF.hasFunction() ? prespecializedF
: FuncSpecializer.lookupSpecialization();
if (!SpecializedF.hasFunction()) {
SpecializedF = FuncSpecializer.tryCreateSpecialization();
if (!SpecializedF)
return;
LLVM_DEBUG(llvm::dbgs() << "Created specialized function: "
<< SpecializedF->getName() << "\n"
<< "Specialized function type: "
<< SpecializedF->getLoweredFunctionType() << "\n");
NewFunctions.push_back(SpecializedF.getFunction());
}
if (F->isSerialized() && !SpecializedF->hasValidLinkageForFragileInline()) {
// If the specialized function already exists as a "IsNotSerialized" function,
// but now it's called from a "IsSerialized" function, we need to mark it as
// IsSerialized.
SpecializedF->setSerialized(IsSerialized);
assert(SpecializedF->hasValidLinkageForFragileInline());
// ... including all referenced shared functions.
FuncBuilder.getModule().linkFunction(SpecializedF.getFunction(),
SILModule::LinkingMode::LinkAll);
}
ORE.emit([&]() {
std::string Str;
llvm::raw_string_ostream OS(Str);
SpecializedF->getLoweredFunctionType().print(
OS, PrintOptions::printQuickHelpDeclaration());
using namespace OptRemark;
return RemarkPassed("Specialized", *Apply.getInstruction())
<< "Specialized function " << NV("Function", RefF) << " with type "
<< NV("FuncType", OS.str());
});
// Verify our function after we have finished fixing up call sites/etc. Dump
// the generic function if there is an assertion failure (or a crash) to make
// it easier to debug such problems since the original generic function is
// easily at hand.
SWIFT_DEFER {
if (VerifyFunctionsAfterSpecialization) {
PrettyStackTraceSILFunction SILFunctionDumper(
llvm::Twine("Generic function: ") + RefF->getName() +
". Specialized Function: " + SpecializedF->getName(),
RefF);
SpecializedF->verify();
}
};
assert(ReInfo.getSpecializedType()
== SpecializedF->getLoweredFunctionType() &&
"Previously specialized function does not match expected type.");
DeadApplies.insert(Apply.getInstruction());
if (replacePartialApplyWithoutReabstraction) {
// There are some unknown users of the partial_apply. Therefore we need a
// thunk which converts from the re-abstracted function back to the
// original function with indirect parameters/results.
auto *PAI = cast<PartialApplyInst>(Apply.getInstruction());
SILFunction *Thunk = ReabstractionThunkGenerator(FuncBuilder, ReInfo, PAI,
SpecializedF.getFunction())
.createThunk();
if (VerifyFunctionsAfterSpecialization) {
PrettyStackTraceSILFunction SILFunctionDumper(
llvm::Twine("Thunk For Generic function: ") + RefF->getName() +
". Specialized Function: " + SpecializedF->getName(),
RefF);
Thunk->verify();
}
NewFunctions.push_back(Thunk);
SILBuilderWithScope Builder(PAI);
auto *FRI = Builder.createFunctionRef(PAI->getLoc(), Thunk);
SmallVector<SILValue, 4> Arguments;
for (auto &Op : PAI->getArgumentOperands()) {
Arguments.push_back(Op.get());
}
auto Subs = ReInfo.getCallerParamSubstitutionMap();
auto FnTy = Thunk->getLoweredFunctionType();
Subs = SubstitutionMap::get(FnTy->getSubstGenericSignature(), Subs);
auto *NewPAI = Builder.createPartialApply(
PAI->getLoc(), FRI, Subs, Arguments,
PAI->getType().getAs<SILFunctionType>()->getCalleeConvention(),
PAI->isOnStack());
PAI->replaceAllUsesWith(NewPAI);
DeadApplies.insert(PAI);
return;
}
// Make the required changes to the call site.
ApplySite newApply =
replaceWithSpecializedFunction(Apply, SpecializedF, ReInfo);
if (needAdaptUsers) {
// Adapt all known users of the partial_apply. This is needed in case we
// converted some indirect parameters/results to direct ones.
auto *NewPAI = cast<PartialApplyInst>(newApply);
ReInfo.prunePartialApplyArgs(NewPAI->getNumArguments());
for (Operand *Use : NewPAI->getUses()) {
SILInstruction *User = Use->getUser();
if (auto FAS = FullApplySite::isa(User)) {
replaceWithSpecializedCallee(FAS, NewPAI, ReInfo);
DeadApplies.insert(FAS.getInstruction());
continue;
}
if (auto *PAI = dyn_cast<PartialApplyInst>(User)) {
SILValue result = NewPAI;
if (SpecializedF.hasTypeReplacements()) {
SILBuilderWithScope builder(Apply.getInstruction());
auto fnType = PAI->getType();
result =
builder.createConvertFunction(Apply.getLoc(), NewPAI, fnType,
/*withoutActuallyEscaping*/ false);
}
// This is a partial_apply of a re-abstraction thunk. Just skip this.
assert(PAI->getType() == result->getType());
PAI->replaceAllUsesWith(result);
DeadApplies.insert(PAI);
}
}
}
}
// =============================================================================
// Prespecialized symbol lookup.
// =============================================================================
#define PRESPEC_SYMBOL(s) MANGLE_AS_STRING(s),
static const char *PrespecSymbols[] = {
#include "OnonePrespecializations.def"
nullptr
};
#undef PRESPEC_SYMBOL
llvm::DenseSet<StringRef> PrespecSet;
bool swift::isKnownPrespecialization(StringRef SpecName) {
if (PrespecSet.empty()) {
const char **Pos = &PrespecSymbols[0];
while (const char *Sym = *Pos++) {
PrespecSet.insert(Sym);
}
assert(!PrespecSet.empty());
}
return PrespecSet.count(SpecName) != 0;
}
void swift::checkCompletenessOfPrespecializations(SILModule &M) {
const char **Pos = &PrespecSymbols[0];
while (const char *Sym = *Pos++) {
StringRef FunctionName(Sym);
SILFunction *F = M.lookUpFunction(FunctionName);
if (!F || F->getLinkage() != SILLinkage::Public) {
M.getASTContext().Diags.diagnose(SourceLoc(),
diag::missing_prespecialization,
FunctionName);
}
}
}
/// Try to look up an existing specialization in the specialization cache.
/// If it is found, it tries to link this specialization.
///
/// For now, it performs a lookup only in the standard library.
/// But in the future, one could think of maintaining a cache
/// of optimized specializations.
static SILFunction *lookupExistingSpecialization(SILModule &M,
StringRef FunctionName) {
// Try to link existing specialization only in -Onone mode.
// All other compilation modes perform specialization themselves.
// TODO: Cache optimized specializations and perform lookup here?
// Only check that this function exists, but don't read
// its body. It can save some compile-time.
if (isKnownPrespecialization(FunctionName)){
return M.loadFunction(FunctionName, SILModule::LinkingMode::LinkAll,
SILLinkage::PublicExternal);
}
return nullptr;
}
SILFunction *swift::lookupPrespecializedSymbol(SILModule &M,
StringRef FunctionName) {
// First check if the module contains a required specialization already.
auto *Specialization = M.lookUpFunction(FunctionName);
if (Specialization) {
if (Specialization->getLinkage() == SILLinkage::PublicExternal)
return Specialization;
}
// Then check if the required specialization can be found elsewhere.
Specialization = lookupExistingSpecialization(M, FunctionName);
if (!Specialization)
return nullptr;
assert(hasPublicVisibility(Specialization->getLinkage()) &&
"Pre-specializations should have public visibility");
Specialization->setLinkage(SILLinkage::PublicExternal);
assert(Specialization->isExternalDeclaration() &&
"Specialization should be a public external declaration");
LLVM_DEBUG(llvm::dbgs() << "Found existing specialization for: "
<< FunctionName << '\n';
llvm::dbgs() << swift::Demangle::demangleSymbolAsString(
Specialization->getName())
<< "\n\n");
return Specialization;
}