mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
The old invalidation lattice was incorrect because changes to control flow could cause changes to the call graph, so we've decided to change the way passes invalidate analysis. In the new scheme, the lattice is replaced with a list of traits that passes preserve or invalidate. The current traits are Calls and Branches. Now, passes report which traits they preserve, which is the opposite of the previous implementation where passes needed to report what they invalidate. Node: I tried to limit the changes in this commit to mechanical changes to ease the review. I will cleanup some of the code in a following commit. Swift SVN r26449
591 lines
21 KiB
C++
591 lines
21 KiB
C++
//===--------- LoopSimplify.cpp - Loop structure simplify -*- C++ -*-------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-looprotate"
|
|
|
|
#include "swift/SIL/Dominance.h"
|
|
#include "swift/SILAnalysis/Analysis.h"
|
|
#include "swift/SILAnalysis/DominanceAnalysis.h"
|
|
#include "swift/SILAnalysis/LoopAnalysis.h"
|
|
#include "swift/SILPasses/Passes.h"
|
|
#include "swift/SILPasses/Transforms.h"
|
|
#include "swift/SILPasses/Utils/CFG.h"
|
|
#include "swift/SILPasses/Utils/SILSSAUpdater.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace swift;
|
|
|
|
static llvm::cl::opt<bool> ShouldRotate("sil-looprotate",
|
|
llvm::cl::init(true));
|
|
|
|
/// Splits the critical edges between from and to. This code assumes there is
|
|
/// only one edge between the two basic blocks.
|
|
static SILBasicBlock *splitIfCriticalEdge(SILBasicBlock *From,
|
|
SILBasicBlock *To,
|
|
DominanceInfo *DT,
|
|
SILLoopInfo *LI) {
|
|
auto *T = From->getTerminator();
|
|
for (unsigned i = 0, e = T->getSuccessors().size(); i != e; ++i) {
|
|
if (T->getSuccessors()[i] == To)
|
|
return splitCriticalEdge(T, i, DT, LI);
|
|
}
|
|
llvm_unreachable("Destination block not found");
|
|
}
|
|
|
|
static SILBasicBlock *getSingleOutsideLoopPredecessor(SILLoop *L,
|
|
SILBasicBlock *BB) {
|
|
SmallVector<SILBasicBlock *, 8> Preds;
|
|
for (auto *Pred : BB->getPreds())
|
|
if (!L->contains(Pred))
|
|
Preds.push_back(Pred);
|
|
if (Preds.size() != 1)
|
|
return nullptr;
|
|
return Preds[0];
|
|
}
|
|
|
|
/// Check whether all operands are loop invariant.
|
|
static bool hasLoopInvariantOperands(SILInstruction *I, SILLoop *L,
|
|
llvm::DenseSet<SILInstruction *> &Inv) {
|
|
auto Opds = I->getAllOperands();
|
|
|
|
return std::all_of(Opds.begin(), Opds.end(), [=](Operand &Op) {
|
|
|
|
auto *Def = Op.get().getDef();
|
|
// Operand is outside the loop or marked invariant.
|
|
if (auto *Inst = dyn_cast<SILInstruction>(Def))
|
|
return !L->contains(Inst->getParent()) || Inv.count(Inst);
|
|
if (auto *Arg = dyn_cast<SILArgument>(Def))
|
|
return !L->contains(Arg->getParent());
|
|
|
|
return false;
|
|
});
|
|
}
|
|
|
|
/// We can not duplicate blocks with AllocStack instructions (they need to be
|
|
/// FIFO). Other instructions can be moved to the preheader.
|
|
static bool
|
|
canDuplicateOrMoveToPreheader(SILLoop *L, SILBasicBlock *Preheader,
|
|
SILBasicBlock *Blk,
|
|
SmallVectorImpl<SILInstruction *> &Move) {
|
|
llvm::DenseSet<SILInstruction *> Invariant;
|
|
for (auto &I : *Blk) {
|
|
auto *Inst = &I;
|
|
if (auto *MI = dyn_cast<MethodInst>(Inst)) {
|
|
if (MI->getMember().isForeign && MI->isVolatile())
|
|
return false;
|
|
if (MI->isVolatile() || !hasLoopInvariantOperands(Inst, L, Invariant))
|
|
continue;
|
|
Move.push_back(Inst);
|
|
Invariant.insert(Inst);
|
|
} else if (!I.isTriviallyDuplicatable())
|
|
return false;
|
|
else if (isa<FunctionRefInst>(Inst)) {
|
|
Move.push_back(Inst);
|
|
Invariant.insert(Inst);
|
|
} else if (isa<IntegerLiteralInst>(Inst)) {
|
|
Move.push_back(Inst);
|
|
Invariant.insert(Inst);
|
|
} else if (!Inst->mayHaveSideEffects() &&
|
|
!Inst->mayReadFromMemory() &&
|
|
!isa<TermInst>(Inst) &&
|
|
!isa<AllocationInst>(Inst) && /* not marked mayhavesideffects */
|
|
hasLoopInvariantOperands(Inst, L, Invariant)) {
|
|
Move.push_back(Inst);
|
|
Invariant.insert(Inst);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void mapOperands(SILInstruction *I,
|
|
llvm::DenseMap<ValueBase *, SILValue> ValueMap) {
|
|
for (auto &Opd : I->getAllOperands()) {
|
|
SILValue OrigVal = Opd.get();
|
|
ValueBase *OrigDef = OrigVal.getDef();
|
|
if (SILValue MappedVal = ValueMap[OrigDef]) {
|
|
unsigned ResultIdx = OrigVal.getResultNumber();
|
|
// All mapped instructions have their result number set to zero. Except
|
|
// for arguments that we followed along one edge to their incoming value
|
|
// on that edge.
|
|
if (isa<SILArgument>(OrigDef))
|
|
ResultIdx = MappedVal.getResultNumber();
|
|
Opd.set(SILValue(MappedVal.getDef(), ResultIdx));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
updateSSAForUseOfInst(SILSSAUpdater &Updater,
|
|
SmallVectorImpl<SILArgument*> &InsertedPHIs,
|
|
llvm::DenseMap<ValueBase *, SILValue> &ValueMap,
|
|
SILBasicBlock *Header, SILBasicBlock *EntryCheckBlock,
|
|
ValueBase *Inst) {
|
|
if (Inst->use_empty())
|
|
return;
|
|
|
|
// Find the mapped instruction.
|
|
SILValue MappedValue = ValueMap[Inst];
|
|
auto *MappedInst = MappedValue.getDef();
|
|
assert(MappedValue);
|
|
assert(MappedInst);
|
|
|
|
// For each use of a specific result value of the instruction.
|
|
for (unsigned i = 0, e = Inst->getNumTypes(); i != e; ++i) {
|
|
SILValue Res(Inst, i);
|
|
// For block arguments, MappedValue is already indexed to indicate the
|
|
// single result value that feeds the argument. In this case, i==0 because
|
|
// SILArgument only produces one value.
|
|
SILValue MappedRes =
|
|
isa<SILArgument>(Inst) ? MappedValue : SILValue(MappedInst, i);
|
|
assert(Res.getType() == MappedRes.getType() && "The types must match");
|
|
|
|
InsertedPHIs.clear();
|
|
Updater.Initialize(Res.getType());
|
|
Updater.AddAvailableValue(Header, Res);
|
|
Updater.AddAvailableValue(EntryCheckBlock, MappedRes);
|
|
|
|
|
|
// Because of the way that phi nodes are represented we have to collect all
|
|
// uses before we update SSA. Modifying one phi node can invalidate another
|
|
// unrelated phi nodes operands through the common branch instruction (that
|
|
// has to be modified). This would invalidate a plain ValueUseIterator.
|
|
// Instead we collect uses wrapping uses in branches specially so that we
|
|
// can reconstruct the use even after the branch has been modified.
|
|
SmallVector<UseWrapper, 8> StoredUses;
|
|
for (auto *U : Res.getUses())
|
|
StoredUses.push_back(UseWrapper(U));
|
|
for (auto U : StoredUses) {
|
|
Operand *Use = U;
|
|
SILInstruction *User = Use->getUser();
|
|
assert(User && "Missing user");
|
|
|
|
// Ignore uses in the same basic block.
|
|
if (User->getParent() == Header)
|
|
continue;
|
|
|
|
assert(User->getParent() != EntryCheckBlock &&
|
|
"The entry check block should dominate the header");
|
|
Updater.RewriteUse(*Use);
|
|
}
|
|
// Canonicalize inserted phis to avoid extra BB Args.
|
|
for (SILArgument *Arg : InsertedPHIs) {
|
|
if (SILInstruction *Inst = replaceBBArgWithCast(Arg)) {
|
|
Arg->replaceAllUsesWith(Inst);
|
|
// DCE+SimplifyCFG runs as a post-pass cleanup.
|
|
// DCE replaces dead arg values with undef.
|
|
// SimplifyCFG deletes the dead BB arg.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Rewrite the code we just created in the preheader and update SSA form.
|
|
static void
|
|
rewriteNewLoopEntryCheckBlock(SILBasicBlock *Header,
|
|
SILBasicBlock *EntryCheckBlock,
|
|
llvm::DenseMap<ValueBase *, SILValue> ValueMap) {
|
|
SmallVector<SILArgument*, 4> InsertedPHIs;
|
|
SILSSAUpdater Updater(&InsertedPHIs);
|
|
|
|
// Fix PHIs (incomming arguments).
|
|
for (auto *Inst: Header->getBBArgs())
|
|
updateSSAForUseOfInst(Updater, InsertedPHIs, ValueMap, Header,
|
|
EntryCheckBlock, Inst);
|
|
|
|
auto InstIter = Header->begin();
|
|
|
|
// The terminator might change from under us.
|
|
while (InstIter != Header->end()) {
|
|
auto &Inst = *InstIter;
|
|
updateSSAForUseOfInst(Updater, InsertedPHIs, ValueMap, Header,
|
|
EntryCheckBlock, &Inst);
|
|
InstIter++;
|
|
}
|
|
}
|
|
|
|
/// Update the dominator tree after rotating the loop.
|
|
/// The former preheader now dominates all of the former headers children. The
|
|
/// former latch now dominates the former header.
|
|
static void updateDomTree(DominanceInfo *DT, SILBasicBlock *Preheader,
|
|
SILBasicBlock *Latch, SILBasicBlock *Header) {
|
|
auto *HeaderN = DT->getNode(Header);
|
|
SmallVector<DominanceInfoNode *, 4> Children(HeaderN->begin(),
|
|
HeaderN->end());
|
|
auto *PreheaderN = DT->getNode(Preheader);
|
|
for (auto *Child : Children)
|
|
DT->changeImmediateDominator(Child, PreheaderN);
|
|
|
|
if (Header != Latch)
|
|
DT->changeImmediateDominator(HeaderN, DT->getNode(Latch));
|
|
}
|
|
|
|
/// \brief Try to create a unique loop preheader.
|
|
///
|
|
/// FIXME: We should handle merging multiple loop predecessors.
|
|
static SILBasicBlock* insertPreheader(SILLoop *L, DominanceInfo *DT,
|
|
SILLoopInfo *LI) {
|
|
assert(!L->getLoopPreheader() && "Expect multiple preheaders");
|
|
|
|
SILBasicBlock *Header = L->getHeader();
|
|
SILBasicBlock *Preheader = nullptr;
|
|
if (auto LoopPred = getSingleOutsideLoopPredecessor(L, Header)) {
|
|
if (isa<CondBranchInst>(LoopPred->getTerminator())) {
|
|
Preheader = splitIfCriticalEdge(LoopPred, Header, DT, LI);
|
|
assert(Preheader && "Must have a preheader now");
|
|
}
|
|
}
|
|
return Preheader;
|
|
}
|
|
|
|
/// \brief Convert a loop with multiple backedges to a single backedge loop.
|
|
///
|
|
/// Create a new block as a common target for all the current loop backedges.
|
|
static SILBasicBlock *insertBackedgeBlock(SILLoop *L, DominanceInfo *DT,
|
|
SILLoopInfo *LI) {
|
|
assert(!L->getLoopLatch() && "Must have > 1 backedge.");
|
|
|
|
// For simplicity, assume a single preheader
|
|
SILBasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader)
|
|
return nullptr;
|
|
|
|
SILBasicBlock *Header = L->getHeader();
|
|
SILFunction *F = Header->getParent();
|
|
|
|
// Figure out which basic blocks contain back-edges to the loop header.
|
|
SmallVector<SILBasicBlock*, 4> BackedgeBlocks;
|
|
for (auto *Pred : Header->getPreds()) {
|
|
if (Pred == Preheader)
|
|
continue;
|
|
// Branches can be handled trivially and CondBranch edges can be split.
|
|
if (!isa<BranchInst>(Pred->getTerminator())
|
|
&& !isa<CondBranchInst>(Pred->getTerminator())) {
|
|
return nullptr;
|
|
}
|
|
BackedgeBlocks.push_back(Pred);
|
|
}
|
|
|
|
// Create and insert the new backedge block...
|
|
SILBasicBlock *BEBlock =
|
|
new (F->getModule()) SILBasicBlock(F, BackedgeBlocks.back());
|
|
|
|
DEBUG(llvm::dbgs() << " Inserting unique backedge block " << *BEBlock
|
|
<< "\n");
|
|
|
|
// Now that the block has been inserted into the function, create PHI nodes in
|
|
// the backedge block which correspond to any PHI nodes in the header block.
|
|
SmallVector<SILValue, 6> BBArgs;
|
|
for (auto *BBArg : Header->getBBArgs()) {
|
|
BBArgs.push_back(BEBlock->createBBArg(BBArg->getType(), /*Decl=*/nullptr));
|
|
}
|
|
|
|
// Arbitrarily pick one of the predecessor's branch locations.
|
|
SILLocation BranchLoc = BackedgeBlocks.back()->getTerminator()->getLoc();
|
|
|
|
// Create an unconditional branch that propagates the newly created BBArgs.
|
|
BranchInst *Branch = BranchInst::create(BranchLoc, Header, BBArgs, *F);
|
|
BEBlock->getInstList().insert(BEBlock->getInstList().end(), Branch);
|
|
|
|
// Redirect the backedge blocks to BEBlock instead of Header.
|
|
for (auto *Pred : BackedgeBlocks) {
|
|
auto *Terminator = Pred->getTerminator();
|
|
|
|
if (auto *Branch = dyn_cast<BranchInst>(Terminator))
|
|
changeBranchTarget(Branch, 0, BEBlock, /*PreserveArgs=*/true);
|
|
else if (auto *CondBranch = dyn_cast<CondBranchInst>(Terminator)) {
|
|
unsigned EdgeIdx = (CondBranch->getTrueBB() == Header)
|
|
? CondBranchInst::TrueIdx : CondBranchInst::FalseIdx;
|
|
changeBranchTarget(CondBranch, EdgeIdx, BEBlock, /*PreserveArgs=*/true);
|
|
}
|
|
else {
|
|
llvm_unreachable("Expected a branch terminator.");
|
|
}
|
|
}
|
|
|
|
// Update Loop Information - we know that this block is now in the current
|
|
// loop and all parent loops.
|
|
L->addBasicBlockToLoop(BEBlock, LI->getBase());
|
|
|
|
// Update dominator information
|
|
SILBasicBlock *DomBB = BackedgeBlocks.back();
|
|
for (auto BBIter = BackedgeBlocks.begin(),
|
|
BBEnd = std::prev(BackedgeBlocks.end());
|
|
BBIter != BBEnd; ++BBIter) {
|
|
DomBB = DT->findNearestCommonDominator(DomBB, *BBIter);
|
|
}
|
|
DT->addNewBlock(BEBlock, DomBB);
|
|
|
|
return BEBlock;
|
|
}
|
|
|
|
|
|
/// Canonicalize the loop for rotation and downstream passes.
|
|
///
|
|
/// Create a single preheader and single latch block.
|
|
///
|
|
/// FIXME: We should identify nested loops with a common header and separate
|
|
/// them before merging the latch. See LLVM's separateNestedLoop.
|
|
static bool simplifyLoop(SILLoop *L, DominanceInfo *DT, SILLoopInfo *LI) {
|
|
bool ChangedCFG = false;
|
|
if (!L->getLoopPreheader()) {
|
|
if (insertPreheader(L, DT, LI))
|
|
ChangedCFG = true;
|
|
else
|
|
return ChangedCFG; // Skip further simplification with no preheader.
|
|
}
|
|
if (!L->getLoopLatch())
|
|
ChangedCFG |= (insertBackedgeBlock(L, DT, LI) != nullptr);
|
|
|
|
return ChangedCFG;
|
|
}
|
|
|
|
static bool rotateLoopAtMostUpToLatch(SILLoop *L, DominanceInfo *DT,
|
|
SILLoopInfo *LI, bool ShouldVerify) {
|
|
auto *Latch = L->getLoopLatch();
|
|
if (!Latch) {
|
|
DEBUG(llvm::dbgs() << *L << " does not have a single latch block\n");
|
|
return false;
|
|
}
|
|
|
|
bool DidRotate = rotateLoop(L, DT, LI, false /* RotateSingleBlockLoops */,
|
|
Latch, ShouldVerify);
|
|
|
|
// Keep rotating at most until we hit the original latch.
|
|
if (DidRotate)
|
|
while (rotateLoop(L, DT, LI, false, Latch, ShouldVerify)) {}
|
|
|
|
return DidRotate;
|
|
}
|
|
|
|
/// We rotated a loop if it has the following properties.
|
|
///
|
|
/// * It has an exiting header with a conditional branch.
|
|
/// * It has a preheader (the function will try to create one for critical edges
|
|
/// from cond_br).
|
|
///
|
|
/// We will rotate at most up to the basic block passed as an argument.
|
|
/// We will not rotate a loop where the header is equal to the latch except is
|
|
/// RotateSingleBlockLoops is true.
|
|
///
|
|
/// Note: The code relies on the 'UpTo' basic block to stay within the rotate
|
|
/// loop for termination.
|
|
bool swift::rotateLoop(SILLoop *L, DominanceInfo *DT, SILLoopInfo *LI,
|
|
bool RotateSingleBlockLoops, SILBasicBlock *UpTo,
|
|
bool ShouldVerify) {
|
|
assert(L != nullptr && DT != nullptr && LI != nullptr &&
|
|
"Missing loop information");
|
|
|
|
auto *Header = L->getHeader();
|
|
if (!Header)
|
|
return false;
|
|
|
|
// We need a preheader - this is also a cannonicalization for follow-up
|
|
// passes.
|
|
auto *Preheader = L->getLoopPreheader();
|
|
if (!Preheader) {
|
|
DEBUG(llvm::dbgs() << *L << " no preheader\n");
|
|
DEBUG(L->getHeader()->getParent()->dump());
|
|
return false;
|
|
}
|
|
|
|
if (!RotateSingleBlockLoops && Header == UpTo)
|
|
return false;
|
|
|
|
assert(RotateSingleBlockLoops || L->getBlocks().size() != 1);
|
|
|
|
// Need a conditional branch that guards the entry into the loop.
|
|
auto *LoopEntryBranch = dyn_cast<CondBranchInst>(Header->getTerminator());
|
|
if (!LoopEntryBranch)
|
|
return false;
|
|
|
|
// The header needs to exit the loop.
|
|
if (!L->isLoopExiting(Header)) {
|
|
DEBUG(llvm::dbgs() << *L << " not a exiting header\n");
|
|
DEBUG(L->getHeader()->getParent()->dump());
|
|
return false;
|
|
}
|
|
|
|
// We need a single backedge and the latch must not exit the loop if it is
|
|
// also the header.
|
|
auto *Latch = L->getLoopLatch();
|
|
if (!Latch) {
|
|
DEBUG(llvm::dbgs() << *L << " no single latch\n");
|
|
return false;
|
|
}
|
|
|
|
// Make sure we can duplicate the header.
|
|
SmallVector<SILInstruction *, 8> MoveToPreheader;
|
|
if (!canDuplicateOrMoveToPreheader(L, Preheader, Header, MoveToPreheader)) {
|
|
DEBUG(llvm::dbgs() << *L << " instructions in header preventing rotating\n");
|
|
return false;
|
|
}
|
|
|
|
auto *NewHeader = LoopEntryBranch->getTrueBB();
|
|
auto *Exit = LoopEntryBranch->getFalseBB();
|
|
if (L->contains(Exit))
|
|
std::swap(NewHeader, Exit);
|
|
assert(L->contains(NewHeader) && !L->contains(Exit) &&
|
|
"Could not find loop header and exit block");
|
|
|
|
// We don't want to rotate such that we merge two headers of separate loops
|
|
// into one. This can be turned into an assert again once we have guaranteed
|
|
// preheader insertions.
|
|
if (!NewHeader->getSinglePredecessor() && Header != Latch)
|
|
return false;
|
|
|
|
// Now that we know we can perform the rotation - move the instructions that
|
|
// need moving.
|
|
for (auto *Inst : MoveToPreheader)
|
|
Inst->moveBefore(Preheader->getTerminator());
|
|
|
|
DEBUG(llvm::dbgs() << " Rotating " << *L);
|
|
|
|
// Map the values for the duplicated header block. We are duplicating the
|
|
// header instructions into the end of the preheader.
|
|
llvm::DenseMap<ValueBase *, SILValue> ValueMap;
|
|
|
|
// The original 'phi' argument values are just the values coming from the
|
|
// preheader edge.
|
|
ArrayRef<SILArgument *> PHIs = Header->getBBArgs();
|
|
OperandValueArrayRef PreheaderArgs =
|
|
cast<BranchInst>(Preheader->getTerminator())->getArgs();
|
|
assert(PHIs.size() == PreheaderArgs.size() &&
|
|
"Basic block arguments and incoming edge mismatch");
|
|
|
|
// Here we also store the value index to use into the value map (versus
|
|
// non-argument values where the operand use decides which value index to
|
|
// use).
|
|
for (unsigned Idx = 0, E = PHIs.size(); Idx != E; ++Idx)
|
|
ValueMap[PHIs[Idx]] = PreheaderArgs[Idx];
|
|
|
|
// The other instructions are just cloned to the preheader.
|
|
TermInst *PreheaderBranch = Preheader->getTerminator();
|
|
for (auto &Inst : *Header) {
|
|
SILInstruction *I = Inst.clone(PreheaderBranch);
|
|
mapOperands(I, ValueMap);
|
|
|
|
// The actual operand will sort out which result idx to use.
|
|
ValueMap[&Inst] = SILValue(I, 0);
|
|
}
|
|
|
|
PreheaderBranch->dropAllReferences();
|
|
PreheaderBranch->eraseFromParent();
|
|
|
|
// If there were any uses of instructions in the duplicated loop entry check
|
|
// block rewrite them using the ssa updater.
|
|
rewriteNewLoopEntryCheckBlock(Header, Preheader, ValueMap);
|
|
|
|
L->moveToHeader(NewHeader);
|
|
|
|
// Now the original preheader dominates all of headers children and the
|
|
// original latch dominates the header.
|
|
updateDomTree(DT, Preheader, Latch, Header);
|
|
|
|
assert(DT->getNode(NewHeader)->getIDom() == DT->getNode(Preheader));
|
|
assert(!DT->dominates(Header, Exit) ||
|
|
DT->getNode(Exit)->getIDom() == DT->getNode(Preheader));
|
|
assert(DT->getNode(Header)->getIDom() == DT->getNode(Latch) ||
|
|
((Header == Latch) &&
|
|
DT->getNode(Header)->getIDom() == DT->getNode(Preheader)));
|
|
|
|
// Beautify the IR. Move the old header to after the old latch as it is now
|
|
// the latch.
|
|
Header->moveAfter(Latch);
|
|
|
|
// Merge the the old latch with the old header if possible.
|
|
mergeBasicBlockWithSuccessor(Latch, DT, LI);
|
|
|
|
// Create a new preheader.
|
|
splitIfCriticalEdge(Preheader, NewHeader, DT, LI);
|
|
|
|
if (ShouldVerify) {
|
|
DT->verify();
|
|
LI->verify();
|
|
Latch->getParent()->verify();
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << " to " << *L);
|
|
DEBUG(L->getHeader()->getParent()->dump());
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class LoopRotation : public SILFunctionTransform {
|
|
|
|
StringRef getName() override { return "SIL Loop Rotation"; }
|
|
|
|
void run() override {
|
|
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
|
|
assert(LA);
|
|
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
assert(DA);
|
|
|
|
SILFunction *F = getFunction();
|
|
assert(F);
|
|
SILLoopInfo *LI = LA->getLoopInfo(F);
|
|
assert(LI);
|
|
DominanceInfo *DT = DA->getDomInfo(F);
|
|
|
|
if (LI->empty()) {
|
|
DEBUG(llvm::dbgs() << "No loops in " << F->getName() << "\n");
|
|
return;
|
|
}
|
|
if (!ShouldRotate) {
|
|
DEBUG(llvm::dbgs() << "Skipping loop rotation in " << F->getName()
|
|
<< "\n");
|
|
return;
|
|
}
|
|
DEBUG(llvm::dbgs() << "Rotating loops in " << F->getName() << "\n");
|
|
bool ShouldVerify = getOptions().VerifyAll;
|
|
|
|
bool Changed = false;
|
|
for (auto *LoopIt : *LI) {
|
|
// Rotate loops recursively bottom-up in the loop tree.
|
|
SmallVector<SILLoop *, 8> Worklist;
|
|
Worklist.push_back(LoopIt);
|
|
for (unsigned i = 0; i < Worklist.size(); ++i) {
|
|
auto *L = Worklist[i];
|
|
for (auto *SubLoop : *L)
|
|
Worklist.push_back(SubLoop);
|
|
}
|
|
|
|
while (!Worklist.empty()) {
|
|
SILLoop *Loop = Worklist.pop_back_val();
|
|
Changed |= simplifyLoop(Loop, DT, LI);
|
|
Changed |= rotateLoopAtMostUpToLatch(Loop, DT, LI, ShouldVerify);
|
|
}
|
|
}
|
|
|
|
if (Changed) {
|
|
// We preserve loop info and the dominator tree.
|
|
DA->lockInvalidation();
|
|
LA->lockInvalidation();
|
|
PM->invalidateAnalysis(F, SILAnalysis::PreserveKind::Nothing);
|
|
DA->unlockInvalidation();
|
|
LA->unlockInvalidation();
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createLoopRotate() {
|
|
return new LoopRotation();
|
|
}
|