mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
This is pretty much a simplification of the existing RawOptionSetType logic; now, instead of generating a bunch of implicit decls, we provide the minimum set of declarations from which the stdlib will be able to generate default implementations of everything else. The new imported declaration looks like this:
struct MyOptions: OptionSetType {
let rawValue: UInt // or whatever raw type
init(rawValue: UInt)
static var A: MyOptions { return MyOptions(rawValue: 1) }
static var B: MyOptions { return MyOptions(rawValue: 2) }
/* etc. */
}
Still hidden behind a staging flag, until the stdlib implementation can land.
Swift SVN r28213
6032 lines
227 KiB
C++
6032 lines
227 KiB
C++
//===--- ImportDecl.cpp - Import Clang Declarations -----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements support for importing Clang declarations into Swift.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ImporterImpl.h"
|
|
#include "swift/Strings.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Attr.h"
|
|
#include "swift/AST/Builtins.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/Stmt.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "swift/Parse/Lexer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclVisitor.h"
|
|
#include "clang/Basic/CharInfo.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/Path.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#define DEBUG_TYPE "Clang module importer"
|
|
|
|
STATISTIC(NumTotalImportedEntities, "# of imported clang entities");
|
|
STATISTIC(NumFactoryMethodsWrongResult,
|
|
"# of factory methods not mapped due to an incorrect result type");
|
|
STATISTIC(NumFactoryMethodsAsInitializers,
|
|
"# of factory methods mapped to initializers");
|
|
|
|
using namespace swift;
|
|
|
|
namespace swift {
|
|
namespace inferred_attributes {
|
|
enum {
|
|
requires_stored_property_inits = 0x01
|
|
};
|
|
}
|
|
}
|
|
|
|
/// \brief Retrieve the type of 'self' for the given context.
|
|
static Type getSelfTypeForContext(DeclContext *dc) {
|
|
// For a protocol or extension thereof, the type is 'Self'.
|
|
// FIXME: Weird that we're producing an archetype for protocol Self,
|
|
// but the declared type of the context in non-protocol cases.
|
|
if (dc->isProtocolOrProtocolExtensionContext())
|
|
return dc->getProtocolSelf()->getArchetype();
|
|
return dc->getDeclaredTypeOfContext();
|
|
}
|
|
|
|
static bool isInSystemModule(DeclContext *D) {
|
|
if (cast<ClangModuleUnit>(D->getModuleScopeContext())->isSystemModule())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Create an implicit 'self' decl for a method in the specified type. If
|
|
/// 'static' is true, then this is self for a static method in the type.
|
|
///
|
|
/// Note that this decl is created, but it is returned with an incorrect
|
|
/// DeclContext that needs to be reset once the method exists.
|
|
///
|
|
static VarDecl *createSelfDecl(DeclContext *DC, bool isStaticMethod) {
|
|
auto selfType = getSelfTypeForContext(DC);
|
|
|
|
ASTContext &C = DC->getASTContext();
|
|
|
|
if (isStaticMethod)
|
|
selfType = MetatypeType::get(selfType);
|
|
|
|
bool isLet = true;
|
|
if (auto *ND = selfType->getAnyNominal())
|
|
isLet = !isa<StructDecl>(ND) && !isa<EnumDecl>(ND);
|
|
|
|
VarDecl *selfDecl = new (C) ParamDecl(/*IsLet*/isLet, SourceLoc(),
|
|
Identifier(), SourceLoc(), C.Id_self,
|
|
selfType, DC);
|
|
selfDecl->setImplicit();
|
|
return selfDecl;
|
|
}
|
|
|
|
|
|
|
|
/// Create a typedpattern(namedpattern(decl))
|
|
static Pattern *createTypedNamedPattern(VarDecl *decl) {
|
|
ASTContext &Ctx = decl->getASTContext();
|
|
Type ty = decl->getType();
|
|
Pattern *P = new (Ctx) NamedPattern(decl);
|
|
P->setType(ty);
|
|
P->setImplicit();
|
|
P = new (Ctx) TypedPattern(P, TypeLoc::withoutLoc(ty));
|
|
P->setType(ty);
|
|
P->setImplicit();
|
|
return P;
|
|
}
|
|
|
|
template <size_t A, size_t B>
|
|
static bool verifyNameMapping(MappedTypeNameKind NameMappping,
|
|
const char (&left)[A], const char (&right)[B]) {
|
|
return NameMappping == MappedTypeNameKind::DoNothing ||
|
|
strcmp(left, right) != 0;
|
|
}
|
|
|
|
/// \brief Map a well-known C type to a swift type from the standard library.
|
|
///
|
|
/// \param IsError set to true when we know the corresponding swift type name,
|
|
/// but we could not find it. (For example, the type was not defined in the
|
|
/// standard library or the required standard library module was not imported.)
|
|
/// This should be a hard error, we don't want to map the type only sometimes.
|
|
///
|
|
/// \returns A pair of a swift type and its name that corresponds to a given
|
|
/// C type.
|
|
static std::pair<Type, StringRef>
|
|
getSwiftStdlibType(const clang::TypedefNameDecl *D,
|
|
Identifier Name,
|
|
ClangImporter::Implementation &Impl,
|
|
bool *IsError, MappedTypeNameKind &NameMapping) {
|
|
*IsError = false;
|
|
|
|
MappedCTypeKind CTypeKind;
|
|
unsigned Bitwidth;
|
|
StringRef SwiftModuleName;
|
|
bool IsSwiftModule; // True if SwiftModuleName == STDLIB_NAME.
|
|
StringRef SwiftTypeName;
|
|
MappedLanguages Languages;
|
|
bool CanBeMissing;
|
|
|
|
do {
|
|
#define MAP_TYPE(C_TYPE_NAME, C_TYPE_KIND, C_TYPE_BITWIDTH, \
|
|
SWIFT_MODULE_NAME, SWIFT_TYPE_NAME, LANGUAGES, \
|
|
CAN_BE_MISSING, C_NAME_MAPPING) \
|
|
if (Name.str() == C_TYPE_NAME) { \
|
|
CTypeKind = MappedCTypeKind::C_TYPE_KIND; \
|
|
Bitwidth = C_TYPE_BITWIDTH; \
|
|
if (StringRef(SWIFT_MODULE_NAME) == StringRef(STDLIB_NAME)) \
|
|
IsSwiftModule = true; \
|
|
else { \
|
|
IsSwiftModule = false; \
|
|
SwiftModuleName = SWIFT_MODULE_NAME; \
|
|
} \
|
|
SwiftTypeName = SWIFT_TYPE_NAME; \
|
|
Languages = MappedLanguages::LANGUAGES; \
|
|
CanBeMissing = CAN_BE_MISSING; \
|
|
NameMapping = MappedTypeNameKind::C_NAME_MAPPING; \
|
|
assert(verifyNameMapping(MappedTypeNameKind::C_NAME_MAPPING, \
|
|
C_TYPE_NAME, SWIFT_TYPE_NAME) && \
|
|
"MappedTypes.def: Identical names must use DoNothing"); \
|
|
break; \
|
|
}
|
|
#include "MappedTypes.def"
|
|
|
|
// We did not find this type, thus it is not mapped.
|
|
return std::make_pair(Type(), "");
|
|
} while(0);
|
|
|
|
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
|
|
|
|
if (Languages != MappedLanguages::All) {
|
|
if ((unsigned(Languages) & unsigned(MappedLanguages::ObjC1)) != 0 &&
|
|
!ClangCtx.getLangOpts().ObjC1)
|
|
return std::make_pair(Type(), "");
|
|
}
|
|
|
|
auto ClangType = D->getUnderlyingType();
|
|
|
|
// If the C type does not have the expected size, don't import it as a stdlib
|
|
// type.
|
|
unsigned ClangTypeSize = ClangCtx.getTypeSize(ClangType);
|
|
if (Bitwidth != 0 && Bitwidth != ClangTypeSize)
|
|
return std::make_pair(Type(), "");
|
|
|
|
// Check other expected properties of the C type.
|
|
switch(CTypeKind) {
|
|
case MappedCTypeKind::UnsignedInt:
|
|
if (!ClangType->isUnsignedIntegerType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::SignedInt:
|
|
if (!ClangType->isSignedIntegerType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::UnsignedWord:
|
|
if (ClangTypeSize != 64 && ClangTypeSize != 32)
|
|
return std::make_pair(Type(), "");
|
|
if (!ClangType->isUnsignedIntegerType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::SignedWord:
|
|
if (ClangTypeSize != 64 && ClangTypeSize != 32)
|
|
return std::make_pair(Type(), "");
|
|
if (!ClangType->isSignedIntegerType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::FloatIEEEsingle:
|
|
case MappedCTypeKind::FloatIEEEdouble:
|
|
case MappedCTypeKind::FloatX87DoubleExtended: {
|
|
if (!ClangType->isFloatingType())
|
|
return std::make_pair(Type(), "");
|
|
|
|
const llvm::fltSemantics &Sem = ClangCtx.getFloatTypeSemantics(ClangType);
|
|
switch(CTypeKind) {
|
|
case MappedCTypeKind::FloatIEEEsingle:
|
|
assert(Bitwidth == 32 && "FloatIEEEsingle should be 32 bits wide");
|
|
if (&Sem != &APFloat::IEEEsingle)
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::FloatIEEEdouble:
|
|
assert(Bitwidth == 64 && "FloatIEEEdouble should be 64 bits wide");
|
|
if (&Sem != &APFloat::IEEEdouble)
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::FloatX87DoubleExtended:
|
|
assert(Bitwidth == 80 && "FloatX87DoubleExtended should be 80 bits wide");
|
|
if (&Sem != &APFloat::x87DoubleExtended)
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("should see only floating point types here");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MappedCTypeKind::VaList:
|
|
if (ClangTypeSize != ClangCtx.getTypeSize(ClangCtx.VoidPtrTy))
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::ObjCBool:
|
|
if (!ClangCtx.hasSameType(ClangType, ClangCtx.ObjCBuiltinBoolTy) &&
|
|
!(ClangCtx.getBOOLDecl() &&
|
|
ClangCtx.hasSameType(ClangType, ClangCtx.getBOOLType())))
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::ObjCSel:
|
|
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCSelType()) &&
|
|
!ClangCtx.hasSameType(ClangType,
|
|
ClangCtx.getObjCSelRedefinitionType()))
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::ObjCId:
|
|
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCIdType()) &&
|
|
!ClangCtx.hasSameType(ClangType,
|
|
ClangCtx.getObjCIdRedefinitionType()))
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::ObjCClass:
|
|
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCClassType()) &&
|
|
!ClangCtx.hasSameType(ClangType,
|
|
ClangCtx.getObjCClassRedefinitionType()))
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
|
|
case MappedCTypeKind::CGFloat:
|
|
if (!ClangType->isFloatingType())
|
|
return std::make_pair(Type(), "");
|
|
break;
|
|
}
|
|
|
|
Module *M;
|
|
if (IsSwiftModule)
|
|
M = Impl.getStdlibModule();
|
|
else
|
|
M = Impl.getNamedModule(SwiftModuleName);
|
|
if (!M) {
|
|
// User did not import the library module that contains the type we want to
|
|
// substitute.
|
|
*IsError = true;
|
|
return std::make_pair(Type(), "");
|
|
}
|
|
|
|
Type SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
|
|
if (!SwiftType && !CanBeMissing) {
|
|
// The required type is not defined in the standard library.
|
|
*IsError = true;
|
|
return std::make_pair(Type(), "");
|
|
}
|
|
return std::make_pair(SwiftType, SwiftTypeName);
|
|
}
|
|
|
|
static bool isNSDictionaryMethod(const clang::ObjCMethodDecl *MD,
|
|
clang::Selector cmd) {
|
|
if (MD->getSelector() != cmd)
|
|
return false;
|
|
if (isa<clang::ObjCProtocolDecl>(MD->getDeclContext()))
|
|
return false;
|
|
if (MD->getClassInterface()->getName() != "NSDictionary")
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// \brief Returns the common prefix of two strings at camel-case word
|
|
/// granularity.
|
|
///
|
|
/// For example, given "NSFooBar" and "NSFooBas", returns "NSFoo"
|
|
/// (not "NSFooBa"). The returned StringRef is a slice of the "a" argument.
|
|
///
|
|
/// If either string has a non-identifier character immediately after the
|
|
/// prefix, \p followedByNonIdentifier will be set to \c true. If both strings
|
|
/// have identifier characters after the prefix, \p followedByNonIdentifier will
|
|
/// be set to \c false. Otherwise, \p followedByNonIdentifier will not be
|
|
/// changed from its initial value.
|
|
///
|
|
/// This is used to derive the common prefix of enum constants so we can elide
|
|
/// it from the Swift interface.
|
|
static StringRef getCommonWordPrefix(StringRef a, StringRef b,
|
|
bool &followedByNonIdentifier) {
|
|
auto aWords = camel_case::getWords(a), bWords = camel_case::getWords(b);
|
|
auto aI = aWords.begin(), aE = aWords.end(),
|
|
bI = bWords.begin(), bE = bWords.end();
|
|
|
|
unsigned prevLength = 0;
|
|
unsigned prefixLength = 0;
|
|
for ( ; aI != aE && bI != bE; ++aI, ++bI) {
|
|
if (*aI != *bI) {
|
|
followedByNonIdentifier = false;
|
|
break;
|
|
}
|
|
|
|
prevLength = prefixLength;
|
|
prefixLength = aI.getPosition() + aI->size();
|
|
}
|
|
|
|
// Avoid creating a prefix where the rest of the string starts with a number.
|
|
if ((aI != aE && !Lexer::isIdentifier(*aI)) ||
|
|
(bI != bE && !Lexer::isIdentifier(*bI))) {
|
|
followedByNonIdentifier = true;
|
|
prefixLength = prevLength;
|
|
}
|
|
|
|
return a.slice(0, prefixLength);
|
|
}
|
|
|
|
/// Returns the common word-prefix of two strings, allowing the second string
|
|
/// to be a common English plural form of the first.
|
|
///
|
|
/// For example, given "NSProperty" and "NSProperties", the full "NSProperty"
|
|
/// is returned. Given "NSMagicArmor" and "NSMagicArmory", only
|
|
/// "NSMagic" is returned.
|
|
///
|
|
/// The "-s", "-es", and "-ies" patterns cover every plural NS_OPTIONS name
|
|
/// in Cocoa and Cocoa Touch.
|
|
///
|
|
/// \see getCommonWordPrefix
|
|
static StringRef getCommonPluralPrefix(StringRef singular, StringRef plural) {
|
|
assert(!plural.empty());
|
|
|
|
if (singular.empty())
|
|
return singular;
|
|
|
|
bool ignored;
|
|
StringRef commonPrefix = getCommonWordPrefix(singular, plural, ignored);
|
|
if (commonPrefix.size() == singular.size() || plural.back() != 's')
|
|
return commonPrefix;
|
|
|
|
StringRef leftover = singular.substr(commonPrefix.size());
|
|
|
|
// Is the plural string just "[singular]s"?
|
|
plural = plural.drop_back();
|
|
if (plural.endswith(leftover))
|
|
return singular;
|
|
|
|
if (plural.empty() || plural.back() != 'e')
|
|
return commonPrefix;
|
|
|
|
// Is the plural string "[singular]es"?
|
|
plural = plural.drop_back();
|
|
if (plural.endswith(leftover))
|
|
return singular;
|
|
|
|
if (plural.empty() || !(plural.back() == 'i' && singular.back() == 'y'))
|
|
return commonPrefix;
|
|
|
|
// Is the plural string "[prefix]ies" and the singular "[prefix]y"?
|
|
plural = plural.drop_back();
|
|
leftover = leftover.drop_back();
|
|
if (plural.endswith(leftover))
|
|
return singular;
|
|
|
|
return commonPrefix;
|
|
}
|
|
|
|
|
|
/// Build the \c rawValue property trivial getter for an option set or
|
|
/// unknown enum.
|
|
///
|
|
/// \code
|
|
/// struct NSSomeOptionSet : RawOptionSetType {
|
|
/// let rawValue: Raw
|
|
/// }
|
|
/// \endcode
|
|
static FuncDecl *makeRawValueTrivialGetter(ClangImporter::Implementation &Impl,
|
|
StructDecl *optionSetDecl,
|
|
ValueDecl *rawDecl) {
|
|
ASTContext &C = Impl.SwiftContext;
|
|
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
|
|
auto rawType = rawDecl->getType();
|
|
|
|
VarDecl *selfDecl = createSelfDecl(optionSetDecl, false);
|
|
Pattern *selfParam = createTypedNamedPattern(selfDecl);
|
|
|
|
Pattern *methodParam = TuplePattern::create(C, SourceLoc(),{},SourceLoc());
|
|
methodParam->setType(TupleType::getEmpty(C));
|
|
Pattern *params[] = {selfParam, methodParam};
|
|
|
|
FuncDecl *getterDecl = FuncDecl::create(
|
|
C, SourceLoc(), StaticSpellingKind::None, SourceLoc(),
|
|
DeclName(), SourceLoc(), SourceLoc(), nullptr, Type(), params,
|
|
TypeLoc::withoutLoc(rawType), optionSetDecl);
|
|
getterDecl->setImplicit();
|
|
|
|
auto toRawArgType = TupleType::getEmpty(C);
|
|
Type toRawType = FunctionType::get(toRawArgType, rawType);
|
|
toRawType = FunctionType::get(optionSetType, toRawType);
|
|
getterDecl->setType(toRawType);
|
|
getterDecl->setBodyResultType(rawType);
|
|
getterDecl->setAccessibility(Accessibility::Public);
|
|
|
|
// Don't bother synthesizing the body if we've already finished type-checking.
|
|
if (Impl.hasFinishedTypeChecking())
|
|
return getterDecl;
|
|
|
|
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/ true);
|
|
auto valueRef = new (C) MemberRefExpr(selfRef, SourceLoc(),
|
|
rawDecl, SourceLoc(),
|
|
/*implicit*/ true);
|
|
auto valueRet = new (C) ReturnStmt(SourceLoc(), valueRef);
|
|
|
|
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(valueRet),
|
|
SourceLoc(),
|
|
/*implicit*/ true);
|
|
getterDecl->setBody(body);
|
|
|
|
// Add as an external definition.
|
|
C.addedExternalDecl(getterDecl);
|
|
|
|
return getterDecl;
|
|
}
|
|
|
|
/// Build the \c rawValue property trivial setter for an unknown enum.
|
|
///
|
|
/// \code
|
|
/// struct SomeRandomCEnum {
|
|
/// var rawValue: Raw
|
|
/// }
|
|
/// \endcode
|
|
static FuncDecl *makeRawValueTrivialSetter(ClangImporter::Implementation &Impl,
|
|
StructDecl *importedDecl,
|
|
ValueDecl *rawDecl) {
|
|
// FIXME: Largely duplicated from the type checker.
|
|
ASTContext &C = Impl.SwiftContext;
|
|
auto selfType = importedDecl->getDeclaredTypeInContext();
|
|
auto rawType = rawDecl->getType();
|
|
|
|
VarDecl *selfDecl = new (C) ParamDecl(/*IsLet*/false, SourceLoc(),
|
|
Identifier(), SourceLoc(),
|
|
C.Id_self, selfType,
|
|
importedDecl);
|
|
selfDecl->setImplicit();
|
|
Pattern *selfParam = createTypedNamedPattern(selfDecl);
|
|
|
|
VarDecl *newValueDecl = new (C) ParamDecl(/*IsLet*/true, SourceLoc(),
|
|
Identifier(), SourceLoc(),
|
|
C.Id_value, rawType, importedDecl);
|
|
newValueDecl->setImplicit();
|
|
Pattern *newValueParam = createTypedNamedPattern(newValueDecl);
|
|
newValueParam = new (C) ParenPattern(SourceLoc(), newValueParam, SourceLoc());
|
|
newValueParam->setType(ParenType::get(C, rawType));
|
|
|
|
Pattern *params[] = {selfParam, newValueParam};
|
|
Type voidTy = TupleType::getEmpty(C);
|
|
|
|
FuncDecl *setterDecl = FuncDecl::create(
|
|
C, SourceLoc(), StaticSpellingKind::None, SourceLoc(),
|
|
DeclName(), SourceLoc(), SourceLoc(), nullptr, Type(), params,
|
|
TypeLoc::withoutLoc(voidTy), importedDecl);
|
|
setterDecl->setImplicit();
|
|
setterDecl->setMutating();
|
|
|
|
Type fnTy = FunctionType::get(newValueParam->getType(), voidTy);
|
|
fnTy = FunctionType::get(selfType, fnTy);
|
|
setterDecl->setType(fnTy);
|
|
setterDecl->setBodyResultType(voidTy);
|
|
setterDecl->setAccessibility(Accessibility::Public);
|
|
|
|
// Don't bother synthesizing the body if we've already finished type-checking.
|
|
if (Impl.hasFinishedTypeChecking())
|
|
return setterDecl;
|
|
|
|
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/ true);
|
|
auto dest = new (C) MemberRefExpr(selfRef, SourceLoc(), rawDecl, SourceLoc(),
|
|
/*implicit*/ true);
|
|
|
|
auto paramRef = new (C) DeclRefExpr(newValueDecl, SourceLoc(),
|
|
/*implicit*/true);
|
|
|
|
auto assign = new (C) AssignExpr(dest, SourceLoc(), paramRef,
|
|
/*implicit*/true);
|
|
|
|
auto body = BraceStmt::create(C, SourceLoc(), { assign }, SourceLoc(),
|
|
/*implicit*/ true);
|
|
setterDecl->setBody(body);
|
|
|
|
// Add as an external definition.
|
|
C.addedExternalDecl(setterDecl);
|
|
|
|
return setterDecl;
|
|
}
|
|
|
|
/// Returns an operator from the standard library that can be used to import
|
|
/// a macro correctly.
|
|
static Expr *
|
|
getOperatorRef(ASTContext &C, Identifier name) {
|
|
// FIXME: This is hideous!
|
|
UnqualifiedLookup lookup(name, C.getStdlibModule(), nullptr,
|
|
/*non-cascading=*/true);
|
|
if (!lookup.isSuccess())
|
|
return nullptr;
|
|
|
|
SmallVector<ValueDecl *, 4> found;
|
|
for (auto &result : lookup.Results) {
|
|
if (!result.hasValueDecl())
|
|
continue;
|
|
|
|
if (!isa<FuncDecl>(result.getValueDecl()))
|
|
continue;
|
|
|
|
found.push_back(result.getValueDecl());
|
|
}
|
|
|
|
if (found.empty())
|
|
return nullptr;
|
|
|
|
if (found.size() == 1) {
|
|
return new (C) DeclRefExpr(found[0], SourceLoc(),
|
|
/*Implicit=*/true);
|
|
} else {
|
|
auto foundCopy = C.AllocateCopy(found);
|
|
return new (C) OverloadedDeclRefExpr(
|
|
foundCopy, SourceLoc(), /*Implicit=*/true);
|
|
}
|
|
}
|
|
|
|
|
|
/// Build the 'allZeros' property for an option set.
|
|
/// \code
|
|
/// struct NSSomeOptionSet : RawOptionSetType {
|
|
/// static var allZeros: NSSomeOptionSet {
|
|
/// return nil
|
|
/// }
|
|
/// }
|
|
/// \endcode
|
|
static void makeOptionSetAllZerosProperty(ClangImporter::Implementation &Impl,
|
|
StructDecl *optionSetDecl,
|
|
SmallVectorImpl<Decl *> &NewDecls) {
|
|
ASTContext &C = Impl.SwiftContext;
|
|
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
|
|
|
|
// Create the getter.
|
|
VarDecl *selfDecl = createSelfDecl(optionSetDecl, /*isStaticMethod=*/true);
|
|
Pattern *selfParam = createTypedNamedPattern(selfDecl);
|
|
Pattern *methodParam = TuplePattern::create(C, SourceLoc(), {}, SourceLoc());
|
|
methodParam->setType(TupleType::getEmpty(C));
|
|
Pattern *params[] = {selfParam, methodParam};
|
|
|
|
Type getterType = FunctionType::get(TupleType::getEmpty(C), optionSetType);
|
|
getterType = FunctionType::get(MetatypeType::get(optionSetType), getterType);
|
|
|
|
auto *getterDecl = FuncDecl::create(C, SourceLoc(),
|
|
StaticSpellingKind::KeywordStatic,
|
|
SourceLoc(), Identifier(), SourceLoc(),
|
|
SourceLoc(), nullptr, getterType, params,
|
|
TypeLoc::withoutLoc(optionSetType),
|
|
optionSetDecl);
|
|
getterDecl->setImplicit();
|
|
getterDecl->setStatic();
|
|
getterDecl->setBodyResultType(optionSetType);
|
|
getterDecl->setAccessibility(Accessibility::Public);
|
|
|
|
// Don't bother synthesizing the body if we've already finished type-checking.
|
|
if (Impl.hasFinishedTypeChecking())
|
|
return;
|
|
|
|
NewDecls.push_back(getterDecl);
|
|
|
|
// Create the property.
|
|
auto *PropertyDecl =
|
|
new (C) VarDecl(/*IsStatic=*/true, /*IsLet=*/false, SourceLoc(),
|
|
C.Id_AllZeros, optionSetType, optionSetDecl);
|
|
PropertyDecl->setInterfaceType(optionSetDecl->getDeclaredInterfaceType());
|
|
PropertyDecl->setImplicit();
|
|
PropertyDecl->makeComputed(SourceLoc(), getterDecl, nullptr, nullptr,
|
|
SourceLoc());
|
|
PropertyDecl->setAccessibility(optionSetDecl->getFormalAccess());
|
|
NewDecls.push_back(PropertyDecl);
|
|
|
|
Pattern *PropertyPattern =
|
|
new (C) NamedPattern(PropertyDecl, /*Implicit=*/true);
|
|
PropertyPattern->setType(optionSetType);
|
|
PropertyPattern = new (C) TypedPattern(
|
|
PropertyPattern, TypeLoc::withoutLoc(optionSetType), /*Implicit=*/true);
|
|
PropertyPattern->setType(optionSetType);
|
|
|
|
auto *PBD = PatternBindingDecl::create(C, SourceLoc(),
|
|
StaticSpellingKind::KeywordStatic,
|
|
SourceLoc(), PropertyPattern, nullptr,
|
|
optionSetDecl);
|
|
PBD->setImplicit();
|
|
NewDecls.push_back(PBD);
|
|
|
|
// Don't bother synthesizing the body if we've already finished type-checking.
|
|
if (Impl.hasFinishedTypeChecking())
|
|
return;
|
|
|
|
// Fill in the body of the getter.
|
|
{
|
|
auto nilLiteral = new (C) NilLiteralExpr(SourceLoc(), /*implicit=*/true);
|
|
auto ret = new (C) ReturnStmt(SourceLoc(), nilLiteral);
|
|
|
|
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(ret), SourceLoc(),
|
|
/*Implicit=*/true);
|
|
getterDecl->setBody(body);
|
|
}
|
|
|
|
// Add as an external definition.
|
|
C.addedExternalDecl(getterDecl);
|
|
|
|
}
|
|
|
|
// Build the NilLiteralConvertible conformance:
|
|
//
|
|
// extension NSSomeOptionSet : NilLiteralConvertible {
|
|
// init(nilLiteral: ())
|
|
// self = S()
|
|
// }
|
|
// }
|
|
static ConstructorDecl *
|
|
makeNilLiteralConformance(ClangImporter::Implementation &Impl,
|
|
StructDecl *optionSetDecl,
|
|
ValueDecl *valueDecl) {
|
|
auto &C = Impl.SwiftContext;
|
|
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
|
|
|
|
VarDecl *selfDecl = createSelfDecl(optionSetDecl, /*staticMethod=*/false);
|
|
Pattern *selfParam = createTypedNamedPattern(selfDecl);
|
|
|
|
VarDecl *nilDecl = new (C) ParamDecl(/*isLet=*/true, SourceLoc(),
|
|
C.Id_NilLiteral, SourceLoc(),
|
|
Identifier(),
|
|
TupleType::getEmpty(C),
|
|
optionSetDecl);
|
|
Pattern *nilParam = createTypedNamedPattern(nilDecl);
|
|
Pattern *methodParam = TuplePattern::create(C, SourceLoc(),
|
|
{ TuplePatternElt(nilParam) },
|
|
SourceLoc());
|
|
methodParam->setType(ParenType::get(C, nilParam->getType()));
|
|
|
|
DeclName initName(C, C.Id_init, { C.Id_NilLiteral });
|
|
auto initDecl = new (C) ConstructorDecl(initName, SourceLoc(), OTK_None,
|
|
SourceLoc(), selfParam, methodParam,
|
|
nullptr, SourceLoc(), optionSetDecl);
|
|
initDecl->setImplicit();
|
|
initDecl->setAccessibility(Accessibility::Public);
|
|
|
|
Type metaType = MetatypeType::get(optionSetType);
|
|
Type paramType = TupleType::get({ TupleTypeElt(methodParam->getType(),
|
|
C.Id_NilLiteral) },
|
|
C);
|
|
Type fnType = FunctionType::get(paramType, optionSetType);
|
|
Type allocFnType = FunctionType::get(metaType, fnType);
|
|
Type initFnType = FunctionType::get(optionSetType, fnType);
|
|
initDecl->setType(allocFnType);
|
|
initDecl->setInitializerType(initFnType);
|
|
|
|
// Don't bother synthesizing the body if we've already finished type-checking.
|
|
if (Impl.hasFinishedTypeChecking())
|
|
return initDecl;
|
|
|
|
// Form the body of the initializer.
|
|
auto *ctorRef = new (C) DeclRefExpr(ConcreteDeclRef(optionSetDecl),
|
|
SourceLoc(), /*implicit*/ true);
|
|
auto *arg = TupleExpr::createEmpty(C, SourceLoc(), SourceLoc(),
|
|
/*implicit*/ true);
|
|
auto *ctorCall = new (C) CallExpr(ctorRef, arg, /*implicit*/ true);
|
|
|
|
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/ true,
|
|
AccessSemantics::Ordinary,
|
|
selfDecl->getType());
|
|
|
|
auto *assign = new (C) AssignExpr(selfRef, SourceLoc(), ctorCall,
|
|
/*implicit*/ true);
|
|
|
|
auto body = BraceStmt::create(C, SourceLoc(),
|
|
ASTNode(assign),
|
|
SourceLoc(),
|
|
/*implicit*/ true);
|
|
|
|
initDecl->setBody(body);
|
|
|
|
// Add as an external definition.
|
|
C.addedExternalDecl(initDecl);
|
|
|
|
return initDecl;
|
|
}
|
|
|
|
// Build the default initializer for an option set.
|
|
// struct NSSomeOptionSet : RawOptionSetType {
|
|
// var value: RawType
|
|
// init() {
|
|
// return 0
|
|
// }
|
|
// }
|
|
static ConstructorDecl *
|
|
makeOptionSetDefaultConstructor(ClangImporter::Implementation &Impl,
|
|
StructDecl *optionSetDecl,
|
|
ValueDecl *valueDecl) {
|
|
ASTContext &C = Impl.SwiftContext;
|
|
auto optionSetType = optionSetDecl->getDeclaredTypeInContext();
|
|
auto metaTy = MetatypeType::get(optionSetType);
|
|
|
|
VarDecl *selfDecl = createSelfDecl(optionSetDecl, false);
|
|
Pattern *selfPattern = createTypedNamedPattern(selfDecl);
|
|
|
|
Pattern *methodParam = TuplePattern::create(C, SourceLoc(),{},SourceLoc());
|
|
methodParam->setType(TupleType::getEmpty(C));
|
|
|
|
DeclName name(C, C.Id_init, { });
|
|
auto *ctorDecl = new (C) ConstructorDecl(name, optionSetDecl->getLoc(),
|
|
OTK_None, SourceLoc(),
|
|
selfPattern, methodParam,
|
|
nullptr, SourceLoc(), optionSetDecl);
|
|
ctorDecl->setImplicit();
|
|
ctorDecl->setAccessibility(Accessibility::Public);
|
|
|
|
auto fnTy = FunctionType::get(TupleType::getEmpty(C), optionSetType);
|
|
auto allocFnTy = FunctionType::get(metaTy, fnTy);
|
|
auto initFnTy = FunctionType::get(optionSetType, fnTy);
|
|
ctorDecl->setType(allocFnTy);
|
|
ctorDecl->setInitializerType(initFnTy);
|
|
|
|
// Don't bother synthesizing the body if we've already finished type-checking.
|
|
if (Impl.hasFinishedTypeChecking())
|
|
return ctorDecl;
|
|
|
|
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/true);
|
|
auto valueRef = new (C) MemberRefExpr(selfRef, SourceLoc(),
|
|
valueDecl, SourceLoc(),
|
|
/*implicit*/ true);
|
|
auto zero = new (C) IntegerLiteralExpr("0", SourceLoc(),
|
|
/*implicit*/ true);
|
|
auto assign = new (C) AssignExpr(valueRef, SourceLoc(), zero,
|
|
/*implicit*/ true);
|
|
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(assign), SourceLoc(),
|
|
/*implicit*/ true);
|
|
|
|
ctorDecl->setBody(body);
|
|
|
|
C.addedExternalDecl(ctorDecl);
|
|
|
|
return ctorDecl;
|
|
}
|
|
|
|
// Build the init(rawValue:) initializer for an imported NS_ENUM.
|
|
// enum NSSomeEnum: RawType {
|
|
// init?(rawValue: RawType) {
|
|
// self = Builtin.reinterpretCast(rawValue)
|
|
// }
|
|
// }
|
|
// Unlike a standard init(rawValue:) enum initializer, this does a reinterpret
|
|
// cast in order to preserve unknown or future cases from C.
|
|
static ConstructorDecl *
|
|
makeEnumRawValueConstructor(ClangImporter::Implementation &Impl,
|
|
EnumDecl *enumDecl) {
|
|
ASTContext &C = Impl.SwiftContext;
|
|
auto enumTy = enumDecl->getDeclaredTypeInContext();
|
|
auto metaTy = MetatypeType::get(enumTy);
|
|
|
|
VarDecl *selfDecl = createSelfDecl(enumDecl, false);
|
|
Pattern *selfPattern = createTypedNamedPattern(selfDecl);
|
|
|
|
auto param = new (C) ParamDecl(/*let*/ true,
|
|
SourceLoc(), C.Id_rawValue,
|
|
SourceLoc(), C.Id_rawValue,
|
|
enumDecl->getRawType(),
|
|
enumDecl);
|
|
Pattern *paramPattern = new (C) NamedPattern(param);
|
|
paramPattern->setType(enumDecl->getRawType());
|
|
paramPattern->setImplicit();
|
|
paramPattern = new (C)
|
|
TypedPattern(paramPattern, TypeLoc::withoutLoc(enumDecl->getRawType()));
|
|
paramPattern->setType(enumDecl->getRawType());
|
|
paramPattern->setImplicit();
|
|
|
|
auto patternElt = TuplePatternElt(paramPattern);
|
|
paramPattern = TuplePattern::create(C, SourceLoc(), patternElt, SourceLoc());
|
|
paramPattern->setImplicit();
|
|
auto typeElt = TupleTypeElt(enumDecl->getRawType(), C.Id_rawValue);
|
|
auto paramTy = TupleType::get(typeElt, C);
|
|
paramPattern->setType(paramTy);
|
|
|
|
DeclName name(C, C.Id_init, C.Id_rawValue);
|
|
auto *ctorDecl = new (C) ConstructorDecl(name, enumDecl->getLoc(),
|
|
OTK_Optional, SourceLoc(),
|
|
selfPattern, paramPattern,
|
|
nullptr, SourceLoc(), enumDecl);
|
|
ctorDecl->setImplicit();
|
|
ctorDecl->setAccessibility(Accessibility::Public);
|
|
|
|
auto optEnumTy = OptionalType::get(enumTy);
|
|
|
|
auto fnTy = FunctionType::get(paramTy, optEnumTy);
|
|
auto allocFnTy = FunctionType::get(metaTy, fnTy);
|
|
auto initFnTy = FunctionType::get(enumTy, fnTy);
|
|
ctorDecl->setType(allocFnTy);
|
|
ctorDecl->setInitializerType(initFnTy);
|
|
|
|
// Don't bother synthesizing the body if we've already finished type-checking.
|
|
if (Impl.hasFinishedTypeChecking())
|
|
return ctorDecl;
|
|
|
|
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/true);
|
|
auto paramRef = new (C) DeclRefExpr(param, SourceLoc(),
|
|
/*implicit*/ true);
|
|
auto reinterpretCast
|
|
= cast<FuncDecl>(getBuiltinValueDecl(C, C.getIdentifier("reinterpretCast")));
|
|
auto reinterpretCastRef
|
|
= new (C) DeclRefExpr(reinterpretCast, SourceLoc(), /*implicit*/ true);
|
|
auto reinterpreted = new (C) CallExpr(reinterpretCastRef, paramRef,
|
|
/*implicit*/ true);
|
|
auto assign = new (C) AssignExpr(selfRef, SourceLoc(), reinterpreted,
|
|
/*implicit*/ true);
|
|
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(assign), SourceLoc(),
|
|
/*implicit*/ true);
|
|
|
|
ctorDecl->setBody(body);
|
|
|
|
C.addedExternalDecl(ctorDecl);
|
|
|
|
return ctorDecl;
|
|
}
|
|
|
|
// Build the rawValue getter for an imported NS_ENUM.
|
|
// enum NSSomeEnum: RawType {
|
|
// var rawValue: RawType {
|
|
// return Builtin.reinterpretCast(self)
|
|
// }
|
|
// }
|
|
// Unlike a standard init(rawValue:) enum initializer, this does a reinterpret
|
|
// cast in order to preserve unknown or future cases from C.
|
|
static FuncDecl *makeEnumRawValueGetter(ClangImporter::Implementation &Impl,
|
|
EnumDecl *enumDecl,
|
|
VarDecl *rawValueDecl) {
|
|
ASTContext &C = Impl.SwiftContext;
|
|
|
|
VarDecl *selfDecl = createSelfDecl(enumDecl, false);
|
|
Pattern *selfPattern = createTypedNamedPattern(selfDecl);
|
|
|
|
Pattern *methodParam = TuplePattern::create(C, SourceLoc(),{},SourceLoc());
|
|
auto unitTy = TupleType::getEmpty(C);
|
|
methodParam->setType(unitTy);
|
|
|
|
Pattern *params[] = {selfPattern, methodParam};
|
|
|
|
auto fnTy = FunctionType::get(unitTy, enumDecl->getRawType());
|
|
fnTy = FunctionType::get(selfDecl->getType(), fnTy);
|
|
|
|
auto getterDecl =
|
|
FuncDecl::create(C, SourceLoc(), StaticSpellingKind::None, SourceLoc(),
|
|
DeclName(), SourceLoc(), SourceLoc(), nullptr,
|
|
Type(), params,
|
|
TypeLoc::withoutLoc(enumDecl->getRawType()), enumDecl);
|
|
getterDecl->setImplicit();
|
|
getterDecl->setType(fnTy);
|
|
getterDecl->setBodyResultType(enumDecl->getRawType());
|
|
getterDecl->setAccessibility(Accessibility::Public);
|
|
|
|
rawValueDecl->makeComputed(SourceLoc(), getterDecl, nullptr, nullptr,
|
|
SourceLoc());
|
|
|
|
// Don't bother synthesizing the body if we've already finished type-checking.
|
|
if (Impl.hasFinishedTypeChecking())
|
|
return getterDecl;
|
|
|
|
auto selfRef = new (C) DeclRefExpr(selfDecl, SourceLoc(), /*implicit*/true);
|
|
auto reinterpretCast
|
|
= cast<FuncDecl>(getBuiltinValueDecl(C, C.getIdentifier("reinterpretCast")));
|
|
auto reinterpretCastRef
|
|
= new (C) DeclRefExpr(reinterpretCast, SourceLoc(), /*implicit*/ true);
|
|
auto reinterpreted = new (C) CallExpr(reinterpretCastRef, selfRef,
|
|
/*implicit*/ true);
|
|
auto ret = new (C) ReturnStmt(SourceLoc(), reinterpreted);
|
|
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(ret), SourceLoc(),
|
|
/*implicit*/ true);
|
|
|
|
getterDecl->setBody(body);
|
|
C.addedExternalDecl(getterDecl);
|
|
return getterDecl;
|
|
}
|
|
|
|
namespace {
|
|
class CFPointeeInfo {
|
|
bool IsValid;
|
|
bool IsConst;
|
|
PointerUnion<const clang::RecordDecl*, const clang::TypedefNameDecl*> Decl;
|
|
CFPointeeInfo() = default;
|
|
|
|
static CFPointeeInfo forRecord(bool isConst,
|
|
const clang::RecordDecl *decl) {
|
|
assert(decl);
|
|
CFPointeeInfo info;
|
|
info.IsValid = true;
|
|
info.IsConst = isConst;
|
|
info.Decl = decl;
|
|
return info;
|
|
}
|
|
|
|
static CFPointeeInfo forTypedef(const clang::TypedefNameDecl *decl) {
|
|
assert(decl);
|
|
CFPointeeInfo info;
|
|
info.IsValid = true;
|
|
info.IsConst = false;
|
|
info.Decl = decl;
|
|
return info;
|
|
}
|
|
|
|
static CFPointeeInfo forConstVoid() {
|
|
CFPointeeInfo info;
|
|
info.IsValid = true;
|
|
info.IsConst = true;
|
|
info.Decl = nullptr;
|
|
return info;
|
|
}
|
|
|
|
static CFPointeeInfo forInvalid() {
|
|
CFPointeeInfo info;
|
|
info.IsValid = false;
|
|
return info;
|
|
}
|
|
|
|
public:
|
|
static CFPointeeInfo classifyTypedef(const clang::TypedefNameDecl *decl);
|
|
|
|
bool isValid() const { return IsValid; }
|
|
explicit operator bool() const { return isValid(); }
|
|
|
|
bool isConst() const { return IsConst; }
|
|
|
|
bool isConstVoid() const {
|
|
assert(isValid());
|
|
return Decl.isNull();
|
|
}
|
|
|
|
bool isRecord() const {
|
|
assert(isValid());
|
|
return !Decl.isNull() && Decl.is<const clang::RecordDecl *>();
|
|
}
|
|
const clang::RecordDecl *getRecord() const {
|
|
assert(isRecord());
|
|
return Decl.get<const clang::RecordDecl *>();
|
|
}
|
|
|
|
bool isTypedef() const {
|
|
assert(isValid());
|
|
return !Decl.isNull() && Decl.is<const clang::TypedefNameDecl *>();
|
|
}
|
|
const clang::TypedefNameDecl *getTypedef() const {
|
|
assert(isTypedef());
|
|
return Decl.get<const clang::TypedefNameDecl *>();
|
|
}
|
|
};
|
|
}
|
|
|
|
/// The maximum length of any particular string in the whitelist.
|
|
const size_t MaxCFWhitelistStringLength = 38;
|
|
namespace {
|
|
struct CFWhitelistEntry {
|
|
unsigned char Length;
|
|
char Data[MaxCFWhitelistStringLength + 1];
|
|
|
|
operator StringRef() const { return StringRef(Data, Length); }
|
|
};
|
|
|
|
// Quasi-lexicographic order: string length first, then string data.
|
|
// Since we don't care about the actual length, we can use this, which
|
|
// lets us ignore the string data a larger proportion of the time.
|
|
struct CFWhitelistComparator {
|
|
bool operator()(StringRef lhs, StringRef rhs) const {
|
|
return (lhs.size() < rhs.size() ||
|
|
(lhs.size() == rhs.size() && lhs < rhs));
|
|
}
|
|
};
|
|
}
|
|
|
|
template <size_t Len>
|
|
static constexpr size_t string_lengthof(const char (&data)[Len]) {
|
|
return Len - 1;
|
|
}
|
|
|
|
/// The CF whitelist. We use 'constexpr' to verify that this is
|
|
/// emitted as a constant. Note that this is expected to be sorted in
|
|
/// quasi-lexicographic order.
|
|
static constexpr const CFWhitelistEntry CFWhitelist[] = {
|
|
#define CF_TYPE(NAME) { string_lengthof(#NAME), #NAME },
|
|
#define NON_CF_TYPE(NAME)
|
|
#include "SortedCFDatabase.def"
|
|
};
|
|
const size_t NumCFWhitelistEntries = sizeof(CFWhitelist) / sizeof(*CFWhitelist);
|
|
|
|
/// Maintain a set of whitelisted CF types.
|
|
static bool isWhitelistedCFTypeName(StringRef name) {
|
|
return std::binary_search(CFWhitelist, CFWhitelist + NumCFWhitelistEntries,
|
|
name, CFWhitelistComparator());
|
|
}
|
|
|
|
/// Classify a potential CF typedef.
|
|
CFPointeeInfo
|
|
CFPointeeInfo::classifyTypedef(const clang::TypedefNameDecl *typedefDecl) {
|
|
clang::QualType type = typedefDecl->getUnderlyingType();
|
|
|
|
if (auto subTypedef = type->getAs<clang::TypedefType>()) {
|
|
if (classifyTypedef(subTypedef->getDecl()))
|
|
return forTypedef(subTypedef->getDecl());
|
|
return forInvalid();
|
|
}
|
|
|
|
if (auto ptr = type->getAs<clang::PointerType>()) {
|
|
auto pointee = ptr->getPointeeType();
|
|
|
|
// Must be 'const' or nothing.
|
|
clang::Qualifiers quals = pointee.getQualifiers();
|
|
bool isConst = quals.hasConst();
|
|
quals.removeConst();
|
|
if (quals.empty()) {
|
|
if (auto record = pointee->getAs<clang::RecordType>()) {
|
|
auto recordDecl = record->getDecl();
|
|
if (recordDecl->hasAttr<clang::ObjCBridgeAttr>() ||
|
|
recordDecl->hasAttr<clang::ObjCBridgeMutableAttr>() ||
|
|
recordDecl->hasAttr<clang::ObjCBridgeRelatedAttr>() ||
|
|
isWhitelistedCFTypeName(typedefDecl->getName())) {
|
|
return forRecord(isConst, record->getDecl());
|
|
}
|
|
} else if (isConst && pointee->isVoidType()) {
|
|
if (typedefDecl->hasAttr<clang::ObjCBridgeAttr>() ||
|
|
isWhitelistedCFTypeName(typedefDecl->getName())) {
|
|
return forConstVoid();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return forInvalid();
|
|
}
|
|
|
|
/// Return the name to import a CF typedef as.
|
|
static StringRef getImportedCFTypeName(StringRef name) {
|
|
// If the name ends in the CF typedef suffix ("Ref"), drop that.
|
|
if (name.endswith(SWIFT_CFTYPE_SUFFIX))
|
|
return name.drop_back(strlen(SWIFT_CFTYPE_SUFFIX));
|
|
return name;
|
|
}
|
|
|
|
static bool isCFTypeDecl(const clang::TypedefNameDecl *Decl) {
|
|
if (auto pointee = CFPointeeInfo::classifyTypedef(Decl))
|
|
return pointee.isValid();
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
typedef ClangImporter::Implementation::EnumKind EnumKind;
|
|
|
|
/// \brief Convert Clang declarations into the corresponding Swift
|
|
/// declarations.
|
|
class SwiftDeclConverter
|
|
: public clang::ConstDeclVisitor<SwiftDeclConverter, Decl *>
|
|
{
|
|
ClangImporter::Implementation &Impl;
|
|
bool forwardDeclaration = false;
|
|
|
|
public:
|
|
explicit SwiftDeclConverter(ClangImporter::Implementation &impl)
|
|
: Impl(impl) { }
|
|
|
|
bool hadForwardDeclaration() const {
|
|
return forwardDeclaration;
|
|
}
|
|
|
|
Decl *VisitDecl(const clang::Decl *decl) {
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitTranslationUnitDecl(const clang::TranslationUnitDecl *decl) {
|
|
// Note: translation units are handled specially by importDeclContext.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitNamespaceDecl(const clang::NamespaceDecl *decl) {
|
|
// FIXME: Implement once Swift has namespaces.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitUsingDirectiveDecl(const clang::UsingDirectiveDecl *decl) {
|
|
// Never imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitNamespaceAliasDecl(const clang::NamespaceAliasDecl *decl) {
|
|
// FIXME: Implement once Swift has namespaces.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitLabelDecl(const clang::LabelDecl *decl) {
|
|
// Labels are function-local, and therefore never imported.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to strip "Mutable" out of a type name.
|
|
clang::IdentifierInfo *
|
|
getImmutableCFSuperclassName(const clang::TypedefNameDecl *decl) {
|
|
StringRef name = decl->getName();
|
|
|
|
// Split at the first occurrence of "Mutable".
|
|
StringRef _mutable = "Mutable";
|
|
auto mutableIndex = camel_case::findWord(name, _mutable);
|
|
if (mutableIndex == StringRef::npos)
|
|
return nullptr;
|
|
|
|
StringRef namePrefix = name.substr(0, mutableIndex);
|
|
StringRef nameSuffix = name.substr(mutableIndex + _mutable.size());
|
|
|
|
// Abort if "Mutable" appears twice.
|
|
if (camel_case::findWord(nameSuffix, _mutable) != StringRef::npos)
|
|
return nullptr;
|
|
|
|
llvm::SmallString<128> buffer;
|
|
buffer += namePrefix;
|
|
buffer += nameSuffix;
|
|
return &Impl.getClangASTContext().Idents.get(buffer.str());
|
|
}
|
|
|
|
/// Check whether this CF typedef is a Mutable type, and if so,
|
|
/// look for a non-Mutable typedef.
|
|
///
|
|
/// If the "subclass" is:
|
|
/// typedef struct __foo *XXXMutableYYY;
|
|
/// then we look for a "superclass" that matches:
|
|
/// typedef const struct __foo *XXXYYY;
|
|
Type findImmutableCFSuperclass(const clang::TypedefNameDecl *decl,
|
|
CFPointeeInfo subclassInfo) {
|
|
// If this type is already immutable, it has no immutable
|
|
// superclass.
|
|
if (subclassInfo.isConst()) return Type();
|
|
|
|
// If this typedef name does not contain "Mutable", it has no
|
|
// immutable superclass.
|
|
auto superclassName = getImmutableCFSuperclassName(decl);
|
|
if (!superclassName) return Type();
|
|
|
|
// Look for a typedef that successfully classifies as a CF
|
|
// typedef with the same underlying record.
|
|
auto superclassTypedef = Impl.lookupTypedef(superclassName);
|
|
if (!superclassTypedef) return Type();
|
|
auto superclassInfo = CFPointeeInfo::classifyTypedef(superclassTypedef);
|
|
if (!superclassInfo || !superclassInfo.isRecord() ||
|
|
!declaresSameEntity(superclassInfo.getRecord(),
|
|
subclassInfo.getRecord()))
|
|
return Type();
|
|
|
|
// Try to import the superclass.
|
|
Decl *importedSuperclassDecl = Impl.importDeclReal(superclassTypedef);
|
|
if (!importedSuperclassDecl) return Type();
|
|
|
|
auto importedSuperclass =
|
|
cast<TypeAliasDecl>(importedSuperclassDecl)->getDeclaredType();
|
|
assert(importedSuperclass->is<ClassType>());
|
|
return importedSuperclass;
|
|
}
|
|
|
|
/// Attempt to find a superclass for the given CF typedef.
|
|
Type findCFSuperclass(const clang::TypedefNameDecl *decl,
|
|
CFPointeeInfo info) {
|
|
if (Type immutable = findImmutableCFSuperclass(decl, info))
|
|
return immutable;
|
|
|
|
// TODO: use NSObject if it exists?
|
|
return Type();
|
|
}
|
|
|
|
Type importCFClassType(const clang::TypedefNameDecl *decl,
|
|
CFPointeeInfo info) {
|
|
// If the name ends in 'Ref', drop that from the imported class name.
|
|
StringRef nameWithoutRef = getImportedCFTypeName(decl->getName());
|
|
Identifier className = Impl.SwiftContext.getIdentifier(nameWithoutRef);
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc) return Type();
|
|
|
|
Type superclass = findCFSuperclass(decl, info);
|
|
|
|
// TODO: maybe use NSObject as the superclass if we can find it?
|
|
// TODO: try to find a non-mutable type to use as the superclass.
|
|
|
|
auto theClass =
|
|
Impl.createDeclWithClangNode<ClassDecl>(decl, SourceLoc(), className,
|
|
SourceLoc(), None,
|
|
nullptr, dc);
|
|
theClass->computeType();
|
|
theClass->setCircularityCheck(CircularityCheck::Checked);
|
|
theClass->setSuperclass(superclass);
|
|
theClass->setCheckedInheritanceClause();
|
|
theClass->setAddedImplicitInitializers(); // suppress all initializers
|
|
theClass->setForeign(true);
|
|
addObjCAttribute(theClass, className);
|
|
Impl.registerExternalDecl(theClass);
|
|
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
theClass->getImplicitProtocols(protocols);
|
|
addObjCProtocolConformances(theClass, protocols);
|
|
|
|
// Look for bridging attributes on the clang record. We can
|
|
// just check the most recent redeclaration, which will inherit
|
|
// any attributes from earlier declarations.
|
|
auto record = info.getRecord()->getMostRecentDecl();
|
|
if (info.isConst()) {
|
|
if (auto attr = record->getAttr<clang::ObjCBridgeAttr>()) {
|
|
// Record the Objective-C class to which this CF type is toll-free
|
|
// bridged.
|
|
if (ClassDecl *objcClass = dyn_cast_or_null<ClassDecl>(
|
|
Impl.importDeclByName(
|
|
attr->getBridgedType()->getName()))) {
|
|
theClass->getAttrs().add(
|
|
new (Impl.SwiftContext) ObjCBridgedAttr(objcClass));
|
|
}
|
|
}
|
|
} else {
|
|
if (auto attr = record->getAttr<clang::ObjCBridgeMutableAttr>()) {
|
|
// Record the Objective-C class to which this CF type is toll-free
|
|
// bridged.
|
|
if (ClassDecl *objcClass = dyn_cast_or_null<ClassDecl>(
|
|
Impl.importDeclByName(
|
|
attr->getBridgedType()->getName()))) {
|
|
theClass->getAttrs().add(
|
|
new (Impl.SwiftContext) ObjCBridgedAttr(objcClass));
|
|
}
|
|
}
|
|
}
|
|
|
|
return theClass->getDeclaredType();
|
|
}
|
|
|
|
Decl *VisitTypedefNameDecl(const clang::TypedefNameDecl *Decl) {
|
|
auto Name = Impl.importName(Decl->getDeclName());
|
|
if (Name.empty())
|
|
return nullptr;
|
|
|
|
Type SwiftType;
|
|
if (Decl->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
|
|
bool IsError;
|
|
StringRef StdlibTypeName;
|
|
MappedTypeNameKind NameMapping;
|
|
std::tie(SwiftType, StdlibTypeName) =
|
|
getSwiftStdlibType(Decl, Name, Impl, &IsError, NameMapping);
|
|
|
|
if (IsError)
|
|
return nullptr;
|
|
|
|
// Import 'typedef struct __Blah *BlahRef;' and
|
|
// 'typedef const void *FooRef;' as CF types if they have the
|
|
// right attributes or match our name whitelist.
|
|
if (!SwiftType) {
|
|
if (auto pointee = CFPointeeInfo::classifyTypedef(Decl)) {
|
|
// If the pointee is a record, consider creating a class type.
|
|
if (pointee.isRecord()) {
|
|
SwiftType = importCFClassType(Decl, pointee);
|
|
if (!SwiftType) return nullptr;
|
|
NameMapping = MappedTypeNameKind::DefineOnly;
|
|
|
|
// If the pointee is another CF typedef, create an extra typealias
|
|
// for the name without "Ref", but not a separate type.
|
|
} else if (pointee.isTypedef()) {
|
|
auto underlying =
|
|
cast_or_null<TypeDecl>(Impl.importDecl(pointee.getTypedef()));
|
|
if (!underlying)
|
|
return nullptr;
|
|
|
|
// Remove one level of "Ref" from the typealias.
|
|
if (auto typealias = dyn_cast<TypeAliasDecl>(underlying))
|
|
SwiftType = typealias->getUnderlyingType();
|
|
else
|
|
SwiftType = underlying->getDeclaredType();
|
|
|
|
auto DC = Impl.importDeclContextOf(Decl);
|
|
if (!DC)
|
|
return nullptr;
|
|
|
|
StringRef nameWithoutRef = getImportedCFTypeName(Name.str());
|
|
Identifier idWithoutRef =
|
|
Impl.SwiftContext.getIdentifier(nameWithoutRef);
|
|
auto aliasWithoutRef =
|
|
Impl.createDeclWithClangNode<TypeAliasDecl>(Decl,
|
|
Impl.importSourceLoc(Decl->getLocStart()),
|
|
idWithoutRef,
|
|
Impl.importSourceLoc(Decl->getLocation()),
|
|
TypeLoc::withoutLoc(SwiftType),
|
|
DC);
|
|
|
|
SwiftType = aliasWithoutRef->getDeclaredType();
|
|
NameMapping = MappedTypeNameKind::DefineOnly;
|
|
|
|
// If the pointee is 'const void',
|
|
// 'CFTypeRef', bring it in specifically as AnyObject.
|
|
} else if (pointee.isConstVoid()) {
|
|
auto proto = Impl.SwiftContext.getProtocol(
|
|
KnownProtocolKind::AnyObject);
|
|
if (!proto)
|
|
return nullptr;
|
|
SwiftType = proto->getDeclaredType();
|
|
NameMapping = MappedTypeNameKind::DefineOnly;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SwiftType) {
|
|
// Note that this typedef-name is special.
|
|
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] = NameMapping;
|
|
|
|
if (NameMapping == MappedTypeNameKind::DoNothing) {
|
|
// Record the remapping using the name of the Clang declaration.
|
|
// This will be useful for type checker diagnostics when
|
|
// a user tries to use the Objective-C/C type instead of the
|
|
// Swift type.
|
|
Impl.SwiftContext.RemappedTypes[Decl->getNameAsString()]
|
|
= SwiftType;
|
|
|
|
// Don't create an extra typealias in the imported module because
|
|
// doing so will cause confusion (or even lookup ambiguity) between
|
|
// the name in the imported module and the same name in the
|
|
// standard library.
|
|
if (auto *NAT = dyn_cast<NameAliasType>(SwiftType.getPointer()))
|
|
return NAT->getDecl();
|
|
|
|
auto *NTD = SwiftType->getAnyNominal();
|
|
assert(NTD);
|
|
return NTD;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto DC = Impl.importDeclContextOf(Decl);
|
|
if (!DC)
|
|
return nullptr;
|
|
|
|
if (!SwiftType)
|
|
SwiftType = Impl.importType(Decl->getUnderlyingType(),
|
|
ImportTypeKind::Abstract,
|
|
isInSystemModule(DC));
|
|
|
|
if (!SwiftType)
|
|
return nullptr;
|
|
|
|
auto Loc = Impl.importSourceLoc(Decl->getLocation());
|
|
auto Result = Impl.createDeclWithClangNode<TypeAliasDecl>(Decl,
|
|
Impl.importSourceLoc(Decl->getLocStart()),
|
|
Name,
|
|
Loc,
|
|
TypeLoc::withoutLoc(SwiftType),
|
|
DC);
|
|
return Result;
|
|
}
|
|
|
|
Decl *
|
|
VisitUnresolvedUsingTypenameDecl(const
|
|
clang::UnresolvedUsingTypenameDecl *decl) {
|
|
// Note: only occurs in templates.
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Create a default constructor that initializes a struct to zero.
|
|
ConstructorDecl *createDefaultConstructor(StructDecl *structDecl) {
|
|
auto &context = Impl.SwiftContext;
|
|
|
|
// Create the 'self' declaration.
|
|
auto selfType = structDecl->getDeclaredTypeInContext();
|
|
auto selfMetatype = MetatypeType::get(selfType);
|
|
auto selfDecl = createSelfDecl(structDecl, false);
|
|
Pattern *selfPattern = createTypedNamedPattern(selfDecl);
|
|
|
|
// The default initializer takes no arguments.
|
|
auto paramPattern = TuplePattern::create(context, SourceLoc(), {},
|
|
SourceLoc());
|
|
auto emptyTy = TupleType::getEmpty(context);
|
|
|
|
// Create the constructor.
|
|
DeclName name(context, context.Id_init, {});
|
|
auto constructor =
|
|
new (context) ConstructorDecl(name, structDecl->getLoc(),
|
|
OTK_None, SourceLoc(),
|
|
selfPattern, paramPattern,
|
|
nullptr, SourceLoc(), structDecl);
|
|
|
|
// Set the constructor's type.
|
|
auto fnTy = FunctionType::get(emptyTy, selfType);
|
|
auto allocFnTy = FunctionType::get(selfMetatype, fnTy);
|
|
auto initFnTy = FunctionType::get(selfType, fnTy);
|
|
constructor->setType(allocFnTy);
|
|
constructor->setInitializerType(initFnTy);
|
|
constructor->setAccessibility(Accessibility::Public);
|
|
|
|
// Use a builtin to produce a zero initializer, and assign it to self.
|
|
constructor->setBodySynthesizer([](AbstractFunctionDecl *constructor) {
|
|
ASTContext &context = constructor->getASTContext();
|
|
|
|
// Construct the left-hand reference to self.
|
|
Expr *lhs =
|
|
new (context) DeclRefExpr(constructor->getImplicitSelfDecl(),
|
|
SourceLoc(), /*implicit=*/true);
|
|
|
|
// Construct the right-hand call to Builtin.zeroInitializer.
|
|
Identifier zeroInitID = context.getIdentifier("zeroInitializer");
|
|
auto zeroInitializerFunc =
|
|
cast<FuncDecl>(getBuiltinValueDecl(context, zeroInitID));
|
|
auto zeroInitializerRef = new (context) DeclRefExpr(zeroInitializerFunc,
|
|
SourceLoc(),
|
|
/*implicit*/ true);
|
|
auto emptyTuple = TupleExpr::createEmpty(context, SourceLoc(),
|
|
SourceLoc(),
|
|
/*implicit*/ true);
|
|
auto call = new (context) CallExpr(zeroInitializerRef, emptyTuple,
|
|
/*implicit*/ true);
|
|
|
|
auto assign = new (context) AssignExpr(lhs, SourceLoc(), call,
|
|
/*implicit*/ true);
|
|
|
|
// Create the function body.
|
|
auto body = BraceStmt::create(context, SourceLoc(), { assign },
|
|
SourceLoc());
|
|
constructor->setBody(body);
|
|
});
|
|
|
|
// Add this as an external definition.
|
|
Impl.registerExternalDecl(constructor);
|
|
|
|
// We're done.
|
|
return constructor;
|
|
}
|
|
|
|
/// \brief Create a constructor that initializes a struct from its members.
|
|
ConstructorDecl *createValueConstructor(StructDecl *structDecl,
|
|
ArrayRef<Decl *> members,
|
|
bool wantCtorParamNames,
|
|
bool wantBody) {
|
|
auto &context = Impl.SwiftContext;
|
|
|
|
// Create the 'self' declaration.
|
|
auto selfType = structDecl->getDeclaredTypeInContext();
|
|
auto selfMetatype = MetatypeType::get(selfType);
|
|
auto selfDecl = createSelfDecl(structDecl, false);
|
|
|
|
Pattern *selfPattern = createTypedNamedPattern(selfDecl);
|
|
|
|
// Construct the set of parameters from the list of members.
|
|
SmallVector<Pattern *, 4> paramPatterns;
|
|
SmallVector<TuplePatternElt, 8> patternElts;
|
|
SmallVector<TupleTypeElt, 8> tupleElts;
|
|
SmallVector<VarDecl *, 8> params;
|
|
SmallVector<Identifier, 4> argNames;
|
|
for (auto member : members) {
|
|
if (auto var = dyn_cast<VarDecl>(member)) {
|
|
if (!var->hasStorage())
|
|
continue;
|
|
|
|
Identifier argName = wantCtorParamNames ? var->getName()
|
|
: Identifier();
|
|
auto param = new (context) ParamDecl(/*IsLet*/ true,
|
|
SourceLoc(), argName,
|
|
SourceLoc(), var->getName(),
|
|
var->getType(), structDecl);
|
|
argNames.push_back(argName);
|
|
params.push_back(param);
|
|
Pattern *pattern = createTypedNamedPattern(param);
|
|
paramPatterns.push_back(pattern);
|
|
patternElts.push_back(TuplePatternElt(pattern));
|
|
tupleElts.push_back(TupleTypeElt(var->getType(), var->getName()));
|
|
}
|
|
}
|
|
auto paramPattern = TuplePattern::create(context, SourceLoc(), patternElts,
|
|
SourceLoc());
|
|
auto paramTy = TupleType::get(tupleElts, context);
|
|
paramPattern->setType(paramTy);
|
|
paramTy = paramTy->getRelabeledType(context, argNames);
|
|
|
|
// Create the constructor
|
|
DeclName name(context, context.Id_init, argNames);
|
|
auto constructor =
|
|
new (context) ConstructorDecl(name, structDecl->getLoc(),
|
|
OTK_None, SourceLoc(),
|
|
selfPattern, paramPattern,
|
|
nullptr, SourceLoc(), structDecl);
|
|
|
|
// Set the constructor's type.
|
|
auto fnTy = FunctionType::get(paramTy, selfType);
|
|
auto allocFnTy = FunctionType::get(selfMetatype, fnTy);
|
|
auto initFnTy = FunctionType::get(selfType, fnTy);
|
|
constructor->setType(allocFnTy);
|
|
constructor->setInitializerType(initFnTy);
|
|
constructor->setAccessibility(Accessibility::Public);
|
|
|
|
if (wantBody) {
|
|
// Assign all of the member variables appropriately.
|
|
SmallVector<ASTNode, 4> stmts;
|
|
unsigned paramIdx = 0;
|
|
for (auto member : members) {
|
|
auto var = dyn_cast<VarDecl>(member);
|
|
if (!var || !var->hasStorage())
|
|
continue;
|
|
|
|
// Construct left-hand side.
|
|
Expr *lhs = new (context) DeclRefExpr(selfDecl, SourceLoc(),
|
|
/*Implicit=*/true);
|
|
lhs = new (context) MemberRefExpr(lhs, SourceLoc(), var, SourceLoc(),
|
|
/*Implicit=*/true);
|
|
|
|
// Construct right-hand side.
|
|
auto param = params[paramIdx++];
|
|
auto rhs = new (context) DeclRefExpr(param, SourceLoc(),
|
|
/*Implicit=*/true);
|
|
|
|
// Add assignment.
|
|
stmts.push_back(new (context) AssignExpr(lhs, SourceLoc(), rhs,
|
|
/*Implicit=*/true));
|
|
}
|
|
|
|
// Create the function body.
|
|
auto body = BraceStmt::create(context, SourceLoc(), stmts, SourceLoc());
|
|
constructor->setBody(body);
|
|
}
|
|
|
|
// Add this as an external definition.
|
|
Impl.registerExternalDecl(constructor);
|
|
|
|
// We're done.
|
|
return constructor;
|
|
}
|
|
|
|
/// Get the Swift name for an enum constant.
|
|
Identifier getEnumConstantName(const clang::EnumConstantDecl *decl,
|
|
const clang::EnumDecl *clangEnum) {
|
|
// Look up the common name prefix for this enum's constants.
|
|
StringRef enumPrefix = "";
|
|
auto foundPrefix = Impl.EnumConstantNamePrefixes.find(clangEnum);
|
|
if (foundPrefix != Impl.EnumConstantNamePrefixes.end()) {
|
|
enumPrefix = foundPrefix->second;
|
|
}
|
|
|
|
return Impl.importName(decl->getDeclName(), /*suffix*/ "", enumPrefix);
|
|
}
|
|
|
|
/// Determine the common prefix to remove from the element names of an
|
|
/// enum. We'll elide this prefix from then names in
|
|
/// the Swift interface because Swift enum cases are naturally namespaced
|
|
/// by the enum type.
|
|
void computeEnumCommonWordPrefix(const clang::EnumDecl *decl,
|
|
Identifier enumName) {
|
|
auto ec = decl->enumerator_begin(), ecEnd = decl->enumerator_end();
|
|
if (ec == ecEnd)
|
|
return;
|
|
|
|
auto isNonDeprecated = [](const clang::EnumConstantDecl *elem) -> bool {
|
|
clang::VersionTuple maxVersion{~0U, ~0U, ~0U};
|
|
switch (elem->getAvailability(nullptr, maxVersion)) {
|
|
case clang::AR_Available:
|
|
case clang::AR_NotYetIntroduced:
|
|
for (auto attr : elem->attrs()) {
|
|
if (auto annotate = dyn_cast<clang::AnnotateAttr>(attr)) {
|
|
if (annotate->getAnnotation() == "swift1_unavailable")
|
|
return false;
|
|
}
|
|
if (auto avail = dyn_cast<clang::AvailabilityAttr>(attr)) {
|
|
if (avail->getPlatform()->getName() == "swift")
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
case clang::AR_Deprecated:
|
|
case clang::AR_Unavailable:
|
|
return false;
|
|
}
|
|
};
|
|
|
|
auto firstNonDeprecated = std::find_if(ec, ecEnd, isNonDeprecated);
|
|
bool hasNonDeprecated = (firstNonDeprecated != ecEnd);
|
|
if (hasNonDeprecated)
|
|
ec = firstNonDeprecated;
|
|
|
|
StringRef commonPrefix = (*ec)->getName();
|
|
bool followedByNonIdentifier = false;
|
|
for (++ec; ec != ecEnd; ++ec) {
|
|
if (hasNonDeprecated)
|
|
if (!isNonDeprecated(*ec))
|
|
continue;
|
|
|
|
commonPrefix = getCommonWordPrefix(commonPrefix, (*ec)->getName(),
|
|
followedByNonIdentifier);
|
|
if (commonPrefix.empty())
|
|
break;
|
|
}
|
|
|
|
if (!commonPrefix.empty()) {
|
|
StringRef checkPrefix = commonPrefix;
|
|
size_t droppedFromBack = 0;
|
|
|
|
// Account for the 'EnumName_Constant' convention on enumerators.
|
|
if (checkPrefix.back() == '_' && !followedByNonIdentifier) {
|
|
checkPrefix = checkPrefix.drop_back();
|
|
++droppedFromBack;
|
|
}
|
|
|
|
// Account for the 'kConstant' naming convention on enumerators.
|
|
if (checkPrefix[0] == 'k' &&
|
|
((checkPrefix.size() >= 2 && clang::isUppercase(checkPrefix[1])) ||
|
|
!followedByNonIdentifier)) {
|
|
checkPrefix = checkPrefix.drop_front();
|
|
}
|
|
|
|
StringRef commonWithEnum = getCommonPluralPrefix(checkPrefix,
|
|
enumName.str());
|
|
size_t delta = commonPrefix.size() - checkPrefix.size();
|
|
if (commonWithEnum.size() < checkPrefix.size())
|
|
delta -= droppedFromBack;
|
|
commonPrefix = commonPrefix.slice(0, commonWithEnum.size() + delta);
|
|
}
|
|
Impl.EnumConstantNamePrefixes.insert({decl, commonPrefix});
|
|
}
|
|
|
|
/// Import an NS_ENUM constant as a case of a Swift enum.
|
|
Decl *importEnumCase(const clang::EnumConstantDecl *decl,
|
|
const clang::EnumDecl *clangEnum,
|
|
EnumDecl *theEnum) {
|
|
auto &context = Impl.SwiftContext;
|
|
auto name = getEnumConstantName(decl, clangEnum);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
// Use the constant's underlying value as its raw value in Swift.
|
|
bool negative = false;
|
|
llvm::APSInt rawValue = decl->getInitVal();
|
|
|
|
// Did we already import an enum constant for this enum with the
|
|
// same value? If so, import it as a standalone constant.
|
|
if (!Impl.EnumConstantValues.insert({clangEnum, rawValue}).second)
|
|
return importOptionConstant(decl, clangEnum, theEnum);
|
|
|
|
if (clangEnum->getIntegerType()->isSignedIntegerOrEnumerationType()
|
|
&& rawValue.slt(0)) {
|
|
rawValue = -rawValue;
|
|
negative = true;
|
|
}
|
|
llvm::SmallString<12> rawValueText;
|
|
rawValue.toString(rawValueText, 10, /*signed*/ false);
|
|
StringRef rawValueTextC
|
|
= context.AllocateCopy(StringRef(rawValueText));
|
|
auto rawValueExpr = new (context) IntegerLiteralExpr(rawValueTextC,
|
|
SourceLoc(),
|
|
/*implicit*/ false);
|
|
if (negative)
|
|
rawValueExpr->setNegative(SourceLoc());
|
|
|
|
auto element
|
|
= Impl.createDeclWithClangNode<EnumElementDecl>(decl, SourceLoc(),
|
|
name, TypeLoc(),
|
|
SourceLoc(), rawValueExpr,
|
|
theEnum);
|
|
|
|
// Give the enum element the appropriate type.
|
|
auto argTy = MetatypeType::get(theEnum->getDeclaredType());
|
|
element->overwriteType(FunctionType::get(argTy,
|
|
theEnum->getDeclaredType()));
|
|
|
|
Impl.importAttributes(decl, element);
|
|
|
|
return element;
|
|
}
|
|
|
|
/// Import an NS_OPTIONS constant as a static property of a Swift struct.
|
|
///
|
|
/// This is also used to import enum case aliases.
|
|
Decl *importOptionConstant(const clang::EnumConstantDecl *decl,
|
|
const clang::EnumDecl *clangEnum,
|
|
NominalTypeDecl *theStruct) {
|
|
auto name = getEnumConstantName(decl, clangEnum);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
// Create the constant.
|
|
auto convertKind = ConstantConvertKind::Construction;
|
|
if (isa<EnumDecl>(theStruct))
|
|
convertKind = ConstantConvertKind::ConstructionWithUnwrap;
|
|
Decl *CD = Impl.createConstant(name, theStruct,
|
|
theStruct->getDeclaredTypeInContext(),
|
|
clang::APValue(decl->getInitVal()),
|
|
convertKind, /*isStatic*/ true, decl);
|
|
Impl.importAttributes(decl, CD);
|
|
return CD;
|
|
}
|
|
|
|
NominalTypeDecl *importAsOptionSetType(DeclContext *dc,
|
|
Identifier name,
|
|
const clang::EnumDecl *decl) {
|
|
ASTContext &cxt = Impl.SwiftContext;
|
|
|
|
// Compute the underlying type.
|
|
auto underlyingType = Impl.importType(decl->getIntegerType(),
|
|
ImportTypeKind::Enum,
|
|
isInSystemModule(dc));
|
|
if (!underlyingType)
|
|
return nullptr;
|
|
|
|
auto Loc = Impl.importSourceLoc(decl->getLocation());
|
|
|
|
// Create a struct with the underlying type as a field.
|
|
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(decl,
|
|
Loc, name, Loc, None, nullptr, dc);
|
|
structDecl->computeType();
|
|
|
|
// Note that this is a raw option set type.
|
|
structDecl->getAttrs().add(
|
|
new (Impl.SwiftContext) SynthesizedProtocolAttr(
|
|
KnownProtocolKind::_OptionSetType));
|
|
|
|
|
|
// Create a field to store the underlying value.
|
|
auto varName = Impl.SwiftContext.Id_rawValue;
|
|
auto var = new (Impl.SwiftContext) VarDecl(/*static*/ false,
|
|
/*IsLet*/ true,
|
|
SourceLoc(), varName,
|
|
underlyingType,
|
|
structDecl);
|
|
var->setImplicit();
|
|
var->setAccessibility(Accessibility::Public);
|
|
var->setSetterAccessibility(Accessibility::Private);
|
|
|
|
// Create a pattern binding to describe the variable.
|
|
Pattern *varPattern = createTypedNamedPattern(var);
|
|
|
|
auto patternBinding =
|
|
PatternBindingDecl::create(Impl.SwiftContext, SourceLoc(),
|
|
StaticSpellingKind::None, SourceLoc(),
|
|
varPattern, nullptr, structDecl);
|
|
|
|
// Create the init(rawValue:) constructor.
|
|
Decl *varDecl = var;
|
|
auto labeledValueConstructor = createValueConstructor(
|
|
structDecl, varDecl,
|
|
/*wantCtorParamNames=*/true,
|
|
/*wantBody=*/!Impl.hasFinishedTypeChecking());
|
|
|
|
// Build an OptionSetType conformance for the type.
|
|
ProtocolDecl *protocols[]
|
|
= {cxt.getProtocol(KnownProtocolKind::_OptionSetType)};
|
|
structDecl->setProtocols(Impl.SwiftContext.AllocateCopy(protocols));
|
|
|
|
structDecl->addMember(labeledValueConstructor);
|
|
structDecl->addMember(patternBinding);
|
|
structDecl->addMember(var);
|
|
computeEnumCommonWordPrefix(decl, name);
|
|
return structDecl;
|
|
}
|
|
|
|
NominalTypeDecl *importAsRawOptionSet(DeclContext *dc,
|
|
Identifier name,
|
|
const clang::EnumDecl *decl) {
|
|
ASTContext &cxt = Impl.SwiftContext;
|
|
|
|
// Compute the underlying type.
|
|
auto underlyingType = Impl.importType(decl->getIntegerType(),
|
|
ImportTypeKind::Enum,
|
|
isInSystemModule(dc));
|
|
if (!underlyingType)
|
|
return nullptr;
|
|
|
|
auto Loc = Impl.importSourceLoc(decl->getLocation());
|
|
|
|
// Create a struct with the underlying type as a field.
|
|
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(decl,
|
|
Loc, name, Loc, None, nullptr, dc);
|
|
structDecl->computeType();
|
|
|
|
// Note that this is a raw option set type.
|
|
structDecl->getAttrs().add(
|
|
new (Impl.SwiftContext) SynthesizedProtocolAttr(
|
|
KnownProtocolKind::RawOptionSetType));
|
|
|
|
// Create a field to store the underlying value.
|
|
auto varName = Impl.SwiftContext.Id_rawValue;
|
|
auto var = new (Impl.SwiftContext) VarDecl(/*static*/ false,
|
|
/*IsLet*/ true,
|
|
SourceLoc(), varName,
|
|
underlyingType,
|
|
structDecl);
|
|
var->setImplicit();
|
|
var->setAccessibility(Accessibility::Public);
|
|
var->setSetterAccessibility(Accessibility::Private);
|
|
|
|
// Create a pattern binding to describe the variable.
|
|
Pattern *varPattern = createTypedNamedPattern(var);
|
|
|
|
auto patternBinding =
|
|
PatternBindingDecl::create(Impl.SwiftContext, SourceLoc(),
|
|
StaticSpellingKind::None, SourceLoc(),
|
|
varPattern, nullptr, structDecl);
|
|
|
|
// Create a default initializer to get the value with no options set.
|
|
auto defaultConstructor = makeOptionSetDefaultConstructor(Impl,
|
|
structDecl,
|
|
var);
|
|
|
|
// Create a constructor to initialize that value from a value of the
|
|
// underlying type. We need both an unlabeled conversion form and
|
|
// a labeled form to satisfy RawRepresentable's requirements.
|
|
Decl *varDecl = var;
|
|
auto valueConstructor = createValueConstructor(
|
|
structDecl, varDecl,
|
|
/*wantCtorParamNames=*/false,
|
|
/*wantBody=*/!Impl.hasFinishedTypeChecking());
|
|
auto labeledValueConstructor = createValueConstructor(
|
|
structDecl, varDecl,
|
|
/*wantCtorParamNames=*/true,
|
|
/*wantBody=*/!Impl.hasFinishedTypeChecking());
|
|
|
|
// Build a RawOptionSetType conformance for the type.
|
|
ProtocolDecl *protocols[]
|
|
= {cxt.getProtocol(KnownProtocolKind::RawOptionSetType)};
|
|
structDecl->setProtocols(
|
|
Impl.SwiftContext.AllocateCopy(protocols));
|
|
|
|
// Add delayed implicit members to the type.
|
|
auto &Impl = this->Impl;
|
|
DelayedDecl delayedMembers[] = {
|
|
[=, &Impl](SmallVectorImpl<Decl *> &NewDecls) {
|
|
makeOptionSetAllZerosProperty(Impl, structDecl, NewDecls);
|
|
NewDecls.push_back(makeNilLiteralConformance(Impl, structDecl,
|
|
var));
|
|
auto rawGetter = makeRawValueTrivialGetter(Impl, structDecl, var);
|
|
NewDecls.push_back(rawGetter);
|
|
var->addTrivialAccessors(rawGetter, nullptr, nullptr);
|
|
}
|
|
};
|
|
|
|
structDecl->setDelayedMemberDecls(
|
|
Impl.SwiftContext.AllocateCopy(delayedMembers));
|
|
|
|
// Set the members of the struct.
|
|
structDecl->addMember(defaultConstructor);
|
|
structDecl->addMember(valueConstructor);
|
|
structDecl->addMember(labeledValueConstructor);
|
|
structDecl->addMember(patternBinding);
|
|
structDecl->addMember(var);
|
|
computeEnumCommonWordPrefix(decl, name);
|
|
return structDecl;
|
|
}
|
|
|
|
Decl *VisitEnumDecl(const clang::EnumDecl *decl) {
|
|
decl = decl->getDefinition();
|
|
if (!decl) {
|
|
forwardDeclaration = true;
|
|
return nullptr;
|
|
}
|
|
|
|
Identifier name;
|
|
if (decl->getDeclName())
|
|
name = Impl.importName(decl->getDeclName());
|
|
else if (decl->getTypedefNameForAnonDecl())
|
|
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
|
|
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
ASTContext &cxt = Impl.SwiftContext;
|
|
|
|
// Create the enum declaration and record it.
|
|
NominalTypeDecl *result;
|
|
auto enumKind = Impl.classifyEnum(decl);
|
|
switch (enumKind) {
|
|
case EnumKind::Constants: {
|
|
// There is no declaration. Rather, the type is mapped to the
|
|
// underlying type.
|
|
return nullptr;
|
|
}
|
|
|
|
case EnumKind::Unknown: {
|
|
// Compute the underlying type of the enumeration.
|
|
auto underlyingType = Impl.importType(decl->getIntegerType(),
|
|
ImportTypeKind::Enum,
|
|
isInSystemModule(dc));
|
|
if (!underlyingType)
|
|
return nullptr;
|
|
|
|
auto Loc = Impl.importSourceLoc(decl->getLocation());
|
|
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(decl,
|
|
Loc, name, Loc, None, nullptr, dc);
|
|
structDecl->computeType();
|
|
|
|
ProtocolDecl *protocols[]
|
|
= {cxt.getProtocol(KnownProtocolKind::RawRepresentable)};
|
|
auto protoList = Impl.SwiftContext.AllocateCopy(protocols);
|
|
structDecl->setProtocols(protoList);
|
|
|
|
// Note that this is a raw representable type.
|
|
structDecl->getAttrs().add(
|
|
new (Impl.SwiftContext) SynthesizedProtocolAttr(
|
|
KnownProtocolKind::RawRepresentable));
|
|
|
|
// Create a variable to store the underlying value.
|
|
auto varName = Impl.SwiftContext.Id_rawValue;
|
|
auto var = new (Impl.SwiftContext) VarDecl(/*static*/ false,
|
|
/*IsLet*/ false,
|
|
SourceLoc(), varName,
|
|
underlyingType,
|
|
structDecl);
|
|
var->setAccessibility(Accessibility::Public);
|
|
var->setSetterAccessibility(Accessibility::Public);
|
|
|
|
// Create a pattern binding to describe the variable.
|
|
Pattern *varPattern = createTypedNamedPattern(var);
|
|
|
|
auto patternBinding =
|
|
PatternBindingDecl::create(Impl.SwiftContext, SourceLoc(),
|
|
StaticSpellingKind::None, SourceLoc(),
|
|
varPattern, nullptr, structDecl);
|
|
|
|
// Create a constructor to initialize that value from a value of the
|
|
// underlying type.
|
|
auto valueConstructor =
|
|
createValueConstructor(structDecl, var,
|
|
/*wantCtorParamNames=*/false,
|
|
/*wantBody=*/!Impl.hasFinishedTypeChecking());
|
|
auto labeledValueConstructor =
|
|
createValueConstructor( structDecl, var,
|
|
/*wantCtorParamNames=*/true,
|
|
/*wantBody=*/!Impl.hasFinishedTypeChecking());
|
|
|
|
// Add delayed implicit members to the type.
|
|
auto &Impl = this->Impl;
|
|
DelayedDecl delayedMembers[] = {
|
|
[=, &Impl](SmallVectorImpl<Decl *> &NewDecls) {
|
|
auto rawGetter = makeRawValueTrivialGetter(Impl, structDecl, var);
|
|
NewDecls.push_back(rawGetter);
|
|
auto rawSetter = makeRawValueTrivialSetter(Impl, structDecl, var);
|
|
NewDecls.push_back(rawSetter);
|
|
// FIXME: MaterializeForSet?
|
|
var->addTrivialAccessors(rawGetter, rawSetter, nullptr);
|
|
}
|
|
};
|
|
|
|
structDecl->setDelayedMemberDecls(
|
|
Impl.SwiftContext.AllocateCopy(delayedMembers));
|
|
|
|
// Set the members of the struct.
|
|
structDecl->addMember(valueConstructor);
|
|
structDecl->addMember(labeledValueConstructor);
|
|
structDecl->addMember(patternBinding);
|
|
structDecl->addMember(var);
|
|
|
|
result = structDecl;
|
|
break;
|
|
}
|
|
|
|
case EnumKind::Enum: {
|
|
EnumDecl *nativeDecl;
|
|
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
|
|
if (declaredNative && nativeDecl)
|
|
return nativeDecl;
|
|
|
|
// Compute the underlying type.
|
|
auto underlyingType = Impl.importType(decl->getIntegerType(),
|
|
ImportTypeKind::Enum,
|
|
isInSystemModule(dc));
|
|
if (!underlyingType)
|
|
return nullptr;
|
|
|
|
auto enumDecl = Impl.createDeclWithClangNode<EnumDecl>(decl,
|
|
Impl.importSourceLoc(decl->getLocStart()),
|
|
name, Impl.importSourceLoc(decl->getLocation()),
|
|
None, nullptr, dc);
|
|
enumDecl->computeType();
|
|
|
|
// Set up the C underlying type as its Swift raw type.
|
|
enumDecl->setRawType(underlyingType);
|
|
|
|
// Add protocol declarations to the enum declaration.
|
|
ProtocolDecl *protocols[] = {
|
|
cxt.getProtocol(KnownProtocolKind::RawRepresentable),
|
|
cxt.getProtocol(KnownProtocolKind::Hashable),
|
|
cxt.getProtocol(KnownProtocolKind::Equatable),
|
|
};
|
|
auto protoList = Impl.SwiftContext.AllocateCopy(protocols);
|
|
enumDecl->setProtocols(protoList);
|
|
|
|
// Provide custom implementations of the init(rawValue:) and rawValue
|
|
// conversions that just do a bitcast. We can't reliably filter a
|
|
// C enum without additional knowledge that the type has no
|
|
// undeclared values, and won't ever add cases.
|
|
auto rawValueConstructor = makeEnumRawValueConstructor(Impl, enumDecl);
|
|
|
|
auto varName = Impl.SwiftContext.Id_rawValue;
|
|
auto rawValue = new (Impl.SwiftContext) VarDecl(/*static*/ false,
|
|
/*IsLet*/ false,
|
|
SourceLoc(), varName,
|
|
underlyingType,
|
|
enumDecl);
|
|
rawValue->setImplicit();
|
|
rawValue->setAccessibility(Accessibility::Public);
|
|
rawValue->setSetterAccessibility(Accessibility::Private);
|
|
|
|
// Create a pattern binding to describe the variable.
|
|
Pattern *varPattern = createTypedNamedPattern(rawValue);
|
|
|
|
auto rawValueBinding =
|
|
PatternBindingDecl::create(Impl.SwiftContext, SourceLoc(),
|
|
StaticSpellingKind::None, SourceLoc(),
|
|
varPattern, nullptr, enumDecl);
|
|
|
|
auto rawValueGetter = makeEnumRawValueGetter(Impl, enumDecl, rawValue);
|
|
|
|
enumDecl->addMember(rawValueConstructor);
|
|
enumDecl->addMember(rawValueGetter);
|
|
enumDecl->addMember(rawValue);
|
|
enumDecl->addMember(rawValueBinding);
|
|
|
|
result = enumDecl;
|
|
computeEnumCommonWordPrefix(decl, name);
|
|
|
|
break;
|
|
}
|
|
|
|
case EnumKind::Options: {
|
|
if (Impl.SwiftContext.LangOpts.ImportNSOptionsAsOptionSetType)
|
|
result = importAsOptionSetType(dc, name, decl);
|
|
else
|
|
result = importAsRawOptionSet(dc, name, decl);
|
|
if (!result)
|
|
return nullptr;
|
|
|
|
break;
|
|
}
|
|
}
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
|
|
|
|
// Import each of the enumerators.
|
|
|
|
bool addEnumeratorsAsMembers;
|
|
switch (enumKind) {
|
|
case EnumKind::Constants:
|
|
case EnumKind::Unknown:
|
|
addEnumeratorsAsMembers = false;
|
|
break;
|
|
case EnumKind::Options:
|
|
case EnumKind::Enum:
|
|
addEnumeratorsAsMembers = true;
|
|
break;
|
|
}
|
|
|
|
for (auto ec = decl->enumerator_begin(), ecEnd = decl->enumerator_end();
|
|
ec != ecEnd; ++ec) {
|
|
Decl *enumeratorDecl;
|
|
switch (enumKind) {
|
|
case EnumKind::Constants:
|
|
case EnumKind::Unknown:
|
|
enumeratorDecl = Impl.importDecl(*ec);
|
|
break;
|
|
case EnumKind::Options:
|
|
enumeratorDecl = importOptionConstant(*ec, decl, result);
|
|
break;
|
|
case EnumKind::Enum:
|
|
enumeratorDecl = importEnumCase(*ec, decl, cast<EnumDecl>(result));
|
|
break;
|
|
}
|
|
if (!enumeratorDecl)
|
|
continue;
|
|
|
|
if (addEnumeratorsAsMembers) {
|
|
result->addMember(enumeratorDecl);
|
|
if (auto *var = dyn_cast<VarDecl>(enumeratorDecl))
|
|
result->addMember(var->getGetter());
|
|
}
|
|
}
|
|
|
|
// Add the type decl to ExternalDefinitions so that we can type-check
|
|
// raw values and IRGen can emit metadata for it.
|
|
// FIXME: There might be better ways to do this.
|
|
Impl.registerExternalDecl(result);
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitRecordDecl(const clang::RecordDecl *decl) {
|
|
// Track whether this record contains fields we can't reference in Swift
|
|
// yet.
|
|
bool hasUnreferenceableStorage = false;
|
|
|
|
// Track whether this record contains fields that can't be zero-
|
|
// initialized.
|
|
bool hasZeroInitializableStorage = true;
|
|
|
|
if (decl->isUnion())
|
|
// Import the union, but don't make its storage accessible for now.
|
|
hasUnreferenceableStorage = true;
|
|
|
|
// FIXME: Skip Microsoft __interfaces.
|
|
if (decl->isInterface())
|
|
return nullptr;
|
|
|
|
// The types of anonymous structs or unions are never imported; their
|
|
// fields are dumped directly into the enclosing class.
|
|
if (decl->isAnonymousStructOrUnion())
|
|
return nullptr;
|
|
|
|
// FIXME: Figure out how to deal with incomplete types, since that
|
|
// notion doesn't exist in Swift.
|
|
decl = decl->getDefinition();
|
|
if (!decl) {
|
|
forwardDeclaration = true;
|
|
return nullptr;
|
|
}
|
|
|
|
Identifier name;
|
|
if (decl->getDeclName())
|
|
name = Impl.importName(decl->getDeclName());
|
|
else if (decl->getTypedefNameForAnonDecl())
|
|
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
|
|
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
|
|
m != mEnd; ++m) {
|
|
if (auto FD = dyn_cast<clang::FieldDecl>(*m))
|
|
if (FD->isBitField())
|
|
// We don't make bitfields accessible in Swift yet.
|
|
hasUnreferenceableStorage = true;
|
|
}
|
|
|
|
// Create the struct declaration and record it.
|
|
auto result = Impl.createDeclWithClangNode<StructDecl>(decl,
|
|
Impl.importSourceLoc(decl->getLocStart()),
|
|
name,
|
|
Impl.importSourceLoc(decl->getLocation()),
|
|
None, nullptr, dc);
|
|
result->computeType();
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
|
|
|
|
// FIXME: Figure out what to do with superclasses in C++. One possible
|
|
// solution would be to turn them into members and add conversion
|
|
// functions.
|
|
|
|
// Import each of the members.
|
|
// TODO: Implement union members.
|
|
SmallVector<Decl *, 4> members;
|
|
if (!decl->isUnion()) {
|
|
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
|
|
m != mEnd; ++m) {
|
|
auto nd = dyn_cast<clang::NamedDecl>(*m);
|
|
if (!nd) {
|
|
// We couldn't import the member, so we can't reference it in Swift.
|
|
hasUnreferenceableStorage = true;
|
|
continue;
|
|
}
|
|
|
|
// Skip anonymous structs or unions; they'll be dealt with via the
|
|
// IndirectFieldDecls.
|
|
if (auto field = dyn_cast<clang::FieldDecl>(nd)) {
|
|
if (field->isAnonymousStructOrUnion())
|
|
continue;
|
|
// Non-nullable pointers can't be zero-initialized.
|
|
if (auto nullability = field->getType()
|
|
->getNullability(Impl.getClangASTContext())) {
|
|
if (*nullability == clang::NullabilityKind::NonNull)
|
|
hasZeroInitializableStorage = false;
|
|
}
|
|
|
|
// TODO: If we had the notion of a closed enum with no private
|
|
// cases or resilience concerns, then complete NS_ENUMs with
|
|
// no case corresponding to zero would also not be zero-
|
|
// initializable.
|
|
|
|
}
|
|
|
|
auto member = Impl.importDecl(nd);
|
|
if (!member || !isa<VarDecl>(member)) {
|
|
// We don't import nested struct decls from C as nested structs,
|
|
// which wouldn't match C or ObjC semantics. It's OK to skip these.
|
|
// TODO: For C++ types we *would* want to preserve the nesting.
|
|
if (dyn_cast_or_null<TypeDecl>(member))
|
|
continue;
|
|
|
|
// Otherwise, we don't know what this field is. Assume it may be
|
|
// important in C.
|
|
hasUnreferenceableStorage = true;
|
|
continue;
|
|
}
|
|
|
|
members.push_back(member);
|
|
}
|
|
}
|
|
|
|
bool hasReferenceableFields = !members.empty();
|
|
|
|
if (hasZeroInitializableStorage) {
|
|
// Add constructors for the struct.
|
|
members.push_back(createDefaultConstructor(result));
|
|
if (hasReferenceableFields && !hasUnreferenceableStorage) {
|
|
// The default zero initializer suppresses the implicit value
|
|
// constructor that would normally be formed, so we have to add that
|
|
// explicitly as well. We leave the body implicit in order to match
|
|
// the behavior of the implicit constructor native structs receive.
|
|
auto valueCtor = createValueConstructor(result, members,
|
|
/*want param names*/true,
|
|
/*want body*/false);
|
|
valueCtor->setIsMemberwiseInitializer();
|
|
members.push_back(valueCtor);
|
|
}
|
|
}
|
|
|
|
for (auto member : members) {
|
|
result->addMember(member);
|
|
}
|
|
|
|
result->setHasUnreferenceableStorage(hasUnreferenceableStorage);
|
|
|
|
// Add the struct decl to ExternalDefinitions so that IRGen can emit
|
|
// metadata for it.
|
|
// FIXME: There might be better ways to do this.
|
|
Impl.registerExternalDecl(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitClassTemplateSpecializationDecl(
|
|
const clang::ClassTemplateSpecializationDecl *decl) {
|
|
// FIXME: We could import specializations, but perhaps only as unnamed
|
|
// structural types.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitClassTemplatePartialSpecializationDecl(
|
|
const clang::ClassTemplatePartialSpecializationDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitTemplateTypeParmDecl(const clang::TemplateTypeParmDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitEnumConstantDecl(const clang::EnumConstantDecl *decl) {
|
|
auto clangEnum = cast<clang::EnumDecl>(decl->getDeclContext());
|
|
|
|
auto name = getEnumConstantName(decl, clangEnum);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
switch (Impl.classifyEnum(clangEnum)) {
|
|
case EnumKind::Constants: {
|
|
// The enumeration was simply mapped to an integral type. Create a
|
|
// constant with that integral type.
|
|
|
|
// The context where the constant will be introduced.
|
|
auto dc = Impl.importDeclContextOf(clangEnum);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// Enumeration type.
|
|
auto &clangContext = Impl.getClangASTContext();
|
|
auto type = Impl.importType(clangContext.getTagDeclType(clangEnum),
|
|
ImportTypeKind::Value,
|
|
isInSystemModule(dc));
|
|
if (!type)
|
|
return nullptr;
|
|
// FIXME: Importing the type will recursively revisit this same
|
|
// EnumConstantDecl. Short-circuit out if we already emitted the import
|
|
// for this decl.
|
|
if (auto Known = Impl.importDeclCached(decl))
|
|
return Known;
|
|
|
|
// Create the global constant.
|
|
auto result = Impl.createConstant(name, dc, type,
|
|
clang::APValue(decl->getInitVal()),
|
|
ConstantConvertKind::Coerce,
|
|
/*static*/ false, decl);
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
|
|
return result;
|
|
}
|
|
|
|
case EnumKind::Unknown: {
|
|
// The enumeration was mapped to a struct containining the integral
|
|
// type. Create a constant with that struct type.
|
|
|
|
auto dc = Impl.importDeclContextOf(clangEnum);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// Import the enumeration type.
|
|
auto enumType = Impl.importType(
|
|
Impl.getClangASTContext().getTagDeclType(clangEnum),
|
|
ImportTypeKind::Value,
|
|
isInSystemModule(dc));
|
|
if (!enumType)
|
|
return nullptr;
|
|
// FIXME: Importing the type will can recursively revisit this same
|
|
// EnumConstantDecl. Short-circuit out if we already emitted the import
|
|
// for this decl.
|
|
if (auto Known = Impl.importDeclCached(decl))
|
|
return Known;
|
|
|
|
// Create the global constant.
|
|
auto result = Impl.createConstant(name, dc, enumType,
|
|
clang::APValue(decl->getInitVal()),
|
|
ConstantConvertKind::Construction,
|
|
/*static*/ false, decl);
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
|
|
return result;
|
|
}
|
|
|
|
case EnumKind::Enum:
|
|
case EnumKind::Options: {
|
|
// The enumeration was mapped to a high-level Swift type, and its
|
|
// elements were created as children of that enum. They aren't available
|
|
// independently.
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Decl *
|
|
VisitUnresolvedUsingValueDecl(const clang::UnresolvedUsingValueDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitIndirectFieldDecl(const clang::IndirectFieldDecl *decl) {
|
|
// Check whether the context of any of the fields in the chain is a
|
|
// union. If so, don't import this field.
|
|
for (auto f = decl->chain_begin(), fEnd = decl->chain_end(); f != fEnd;
|
|
++f) {
|
|
if (auto record = dyn_cast<clang::RecordDecl>((*f)->getDeclContext())) {
|
|
if (record->isUnion())
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
auto name = Impl.importName(decl->getDeclName());
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
auto type = Impl.importType(decl->getType(),
|
|
ImportTypeKind::Variable,
|
|
isInSystemModule(dc));
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
// Map this indirect field to a Swift variable.
|
|
auto result = Impl.createDeclWithClangNode<VarDecl>(decl,
|
|
/*static*/ false, /*IsLet*/ false,
|
|
Impl.importSourceLoc(decl->getLocStart()),
|
|
name, type, dc);
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitFunctionDecl(const clang::FunctionDecl *decl) {
|
|
decl = decl->getMostRecentDecl();
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// Import the function type. If we have parameters, make sure their names
|
|
// get into the resulting function type.
|
|
SmallVector<Pattern *, 4> bodyPatterns;
|
|
Type type = Impl.importFunctionType(decl,
|
|
decl->getReturnType(),
|
|
{ decl->param_begin(),
|
|
decl->param_size() },
|
|
decl->isVariadic(),
|
|
decl->isNoReturn(),
|
|
isInSystemModule(dc),
|
|
bodyPatterns);
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
auto resultTy = type->castTo<FunctionType>()->getResult();
|
|
auto loc = Impl.importSourceLoc(decl->getLocation());
|
|
|
|
// Form the name of the function.
|
|
// FIXME: Allow remapping of the name.
|
|
auto baseName = Impl.importName(decl->getDeclName());
|
|
if (baseName.empty())
|
|
return nullptr;
|
|
|
|
llvm::SmallVector<Identifier, 2>
|
|
argNames(bodyPatterns[0]->numTopLevelVariables(), Identifier());
|
|
DeclName name(Impl.SwiftContext, baseName, argNames);
|
|
|
|
// FIXME: Poor location info.
|
|
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
|
|
auto result = FuncDecl::create(
|
|
Impl.SwiftContext, SourceLoc(), StaticSpellingKind::None, loc,
|
|
name, nameLoc, SourceLoc(),
|
|
/*GenericParams=*/nullptr, type, bodyPatterns,
|
|
TypeLoc::withoutLoc(resultTy), dc, decl);
|
|
|
|
result->setBodyResultType(resultTy);
|
|
|
|
result->setAccessibility(Accessibility::Public);
|
|
|
|
if (decl->isNoReturn())
|
|
result->getAttrs().add(
|
|
new (Impl.SwiftContext) NoReturnAttr(/*IsImplicit=*/false));
|
|
|
|
// Keep track of inline function bodies so that we can generate
|
|
// IR from them using Clang's IR generator.
|
|
if ((decl->isInlined() || decl->hasAttr<clang::AlwaysInlineAttr>())
|
|
&& decl->hasBody()) {
|
|
Impl.registerExternalDecl(result);
|
|
}
|
|
|
|
// Set availability.
|
|
auto knownFnInfo = Impl.getKnownGlobalFunction(decl);
|
|
if (knownFnInfo && knownFnInfo->Unavailable) {
|
|
Impl.markUnavailable(result, knownFnInfo->UnavailableMsg);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitCXXMethodDecl(const clang::CXXMethodDecl *decl) {
|
|
// FIXME: Import C++ member functions as methods.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitFieldDecl(const clang::FieldDecl *decl) {
|
|
// We don't import bitfields because we can not layout them correctly in
|
|
// IRGen.
|
|
if (decl->isBitField())
|
|
return nullptr;
|
|
|
|
// Fields are imported as variables.
|
|
auto name = Impl.importName(decl->getDeclName());
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
auto type = Impl.importType(decl->getType(),
|
|
ImportTypeKind::RecordField,
|
|
isInSystemModule(dc));
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
auto result =
|
|
Impl.createDeclWithClangNode<VarDecl>(decl,
|
|
/*static*/ false, /*IsLet*/ false,
|
|
Impl.importSourceLoc(decl->getLocation()),
|
|
name, type, dc);
|
|
|
|
// Handle attributes.
|
|
if (decl->hasAttr<clang::IBOutletAttr>())
|
|
result->getAttrs().add(
|
|
new (Impl.SwiftContext) IBOutletAttr(/*IsImplicit=*/false));
|
|
// FIXME: Handle IBOutletCollection.
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitObjCIvarDecl(const clang::ObjCIvarDecl *decl) {
|
|
// Disallow direct ivar access (and avoid conflicts with property names).
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitObjCAtDefsFieldDecl(const clang::ObjCAtDefsFieldDecl *decl) {
|
|
// @defs is an anachronism; ignore it.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitVarDecl(const clang::VarDecl *decl) {
|
|
// FIXME: Swift does not have static variables in structs/classes yet.
|
|
if (decl->getDeclContext()->isRecord())
|
|
return nullptr;
|
|
|
|
// Variables are imported as... variables.
|
|
auto name = Impl.importName(decl->getDeclName());
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
Type type;
|
|
|
|
// HACK: Special-case badly-typed constants in <Security/SecItem.h>.
|
|
if (name.str().startswith("kSec") &&
|
|
dc->getParentModule()->Name.str().equals("Security")) {
|
|
auto typedefTy = decl->getType()->getAs<clang::TypedefType>();
|
|
if (typedefTy && typedefTy->getDecl()->getName() == "CFTypeRef") {
|
|
auto &clangSrcMgr = Impl.getClangASTContext().getSourceManager();
|
|
StringRef headerName = clangSrcMgr.getBufferName(decl->getLocation());
|
|
if (llvm::sys::path::filename(headerName) == "SecItem.h")
|
|
type = Impl.getCFStringRefType();
|
|
}
|
|
}
|
|
|
|
auto knownVarInfo = Impl.getKnownGlobalVariable(decl);
|
|
|
|
if (!type) {
|
|
// Lookup nullability info.
|
|
OptionalTypeKind optionality = OTK_ImplicitlyUnwrappedOptional;
|
|
if (knownVarInfo) {
|
|
if (auto nullability = knownVarInfo->getNullability())
|
|
optionality = Impl.translateNullability(*nullability);
|
|
}
|
|
|
|
// If the declaration is const, consider it audited.
|
|
// We can assume that loading a const global variable doesn't
|
|
// involve an ownership transfer.
|
|
bool isAudited = decl->getType().isConstQualified();
|
|
|
|
type = Impl.importType(decl->getType(),
|
|
(isAudited ? ImportTypeKind::AuditedVariable
|
|
: ImportTypeKind::Variable),
|
|
isInSystemModule(dc));
|
|
}
|
|
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
auto result = Impl.createDeclWithClangNode<VarDecl>(decl,
|
|
/*static*/ false,
|
|
Impl.shouldImportGlobalAsLet(decl->getType()),
|
|
Impl.importSourceLoc(decl->getLocation()),
|
|
name, type, dc);
|
|
|
|
// Check availability.
|
|
if (knownVarInfo && knownVarInfo->Unavailable) {
|
|
Impl.markUnavailable(result, knownVarInfo->UnavailableMsg);
|
|
}
|
|
|
|
if (!decl->hasExternalStorage())
|
|
Impl.registerExternalDecl(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitImplicitParamDecl(const clang::ImplicitParamDecl *decl) {
|
|
// Parameters are never directly imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitParmVarDecl(const clang::ParmVarDecl *decl) {
|
|
// Parameters are never directly imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *
|
|
VisitNonTypeTemplateParmDecl(const clang::NonTypeTemplateParmDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitTemplateDecl(const clang::TemplateDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitUsingDecl(const clang::UsingDecl *decl) {
|
|
// Using declarations are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitUsingShadowDecl(const clang::UsingShadowDecl *decl) {
|
|
// Using shadow declarations are not imported; rather, name lookup just
|
|
// looks through them.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Add an @objc(name) attribute with the given, optional name expressed as
|
|
/// selector.
|
|
///
|
|
/// The importer should use this rather than adding the attribute directly.
|
|
void addObjCAttribute(ValueDecl *decl, Optional<ObjCSelector> name) {
|
|
auto &ctx = Impl.SwiftContext;
|
|
decl->getAttrs().add(ObjCAttr::create(ctx, name, /*implicit=*/true));
|
|
|
|
// If the declaration we attached the 'objc' attribute to is within a
|
|
// class, record it in the class.
|
|
if (auto contextTy = decl->getDeclContext()->getDeclaredInterfaceType()) {
|
|
if (auto classDecl = contextTy->getClassOrBoundGenericClass()) {
|
|
if (auto method = dyn_cast<AbstractFunctionDecl>(decl)) {
|
|
classDecl->recordObjCMethod(method);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Add an @objc(name) attribute with the given, optional name expressed as
|
|
/// selector.
|
|
///
|
|
/// The importer should use this rather than adding the attribute directly.
|
|
void addObjCAttribute(ValueDecl *decl, Identifier name) {
|
|
addObjCAttribute(decl, ObjCSelector(Impl.SwiftContext, 0, name));
|
|
}
|
|
|
|
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl) {
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// While importing the DeclContext, we might have imported the decl
|
|
// itself.
|
|
if (auto Known = Impl.importDeclCached(decl))
|
|
return Known;
|
|
|
|
return VisitObjCMethodDecl(decl, dc);
|
|
}
|
|
|
|
/// Check whether we have already imported a method with the given
|
|
/// selector in the given context.
|
|
bool methodAlreadyImported(ObjCSelector selector, bool isInstance,
|
|
DeclContext *dc) {
|
|
// We only need to perform this check for classes.
|
|
auto classDecl
|
|
= dc->getDeclaredInterfaceType()->getClassOrBoundGenericClass();
|
|
if (!classDecl)
|
|
return false;
|
|
|
|
// Make sure we don't search in Clang modules for this method.
|
|
++Impl.ActiveSelectors[{selector, isInstance}];
|
|
|
|
// Look for a matching imported or deserialized member.
|
|
bool result = false;
|
|
for (auto decl : classDecl->lookupDirect(selector, isInstance)) {
|
|
if (decl->getClangDecl()
|
|
|| !decl->getDeclContext()->getParentSourceFile()) {
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Restore the previous active count in the active-selector mapping.
|
|
auto activeCount = Impl.ActiveSelectors.find({selector, isInstance});
|
|
--activeCount->second;
|
|
if (activeCount->second == 0)
|
|
Impl.ActiveSelectors.erase(activeCount);
|
|
|
|
return result;
|
|
}
|
|
|
|
/// If the given method is a factory method, import it as a constructor
|
|
Optional<ConstructorDecl *>
|
|
importFactoryMethodAsConstructor(Decl *member,
|
|
const clang::ObjCMethodDecl *decl,
|
|
ObjCSelector selector,
|
|
DeclContext *dc) {
|
|
// Only class methods can be mapped to constructors.
|
|
if (!decl->isClassMethod())
|
|
return None;
|
|
|
|
// Said class methods must be in an actual class.
|
|
auto objcClass = decl->getClassInterface();
|
|
if (!objcClass)
|
|
return None;
|
|
|
|
// Check whether we're allowed to try.
|
|
switch (Impl.getFactoryAsInit(objcClass, decl)) {
|
|
case FactoryAsInitKind::Infer:
|
|
break;
|
|
|
|
case FactoryAsInitKind::AsInitializer:
|
|
// FIXME: Should allow this to provide the name of the
|
|
// initializer, since we'll almost surely need remapping for
|
|
// this to work.
|
|
break;
|
|
|
|
case FactoryAsInitKind::AsClassMethod:
|
|
return None;
|
|
}
|
|
|
|
// Check whether the name fits the pattern.
|
|
DeclName initName
|
|
= Impl.mapFactorySelectorToInitializerName(selector,
|
|
objcClass->getName());
|
|
if (!initName)
|
|
return None;
|
|
|
|
// Check the result type to determine what kind of initializer we can
|
|
// create (if any).
|
|
CtorInitializerKind initKind;
|
|
if (decl->hasRelatedResultType()) {
|
|
// instancetype factory methods become convenience factory initializers.
|
|
initKind = CtorInitializerKind::ConvenienceFactory;
|
|
} else if (auto objcPtr = decl->getReturnType()
|
|
->getAs<clang::ObjCObjectPointerType>()) {
|
|
if (objcPtr->getInterfaceDecl() == objcClass) {
|
|
initKind = CtorInitializerKind::Factory;
|
|
} else {
|
|
// FIXME: Could allow a subclass here, but the rest of the compiler
|
|
// isn't prepared for that yet.
|
|
// Not a factory method.
|
|
++NumFactoryMethodsWrongResult;
|
|
return None;
|
|
}
|
|
} else {
|
|
// Not a factory method.
|
|
++NumFactoryMethodsWrongResult;
|
|
return None;
|
|
}
|
|
|
|
bool redundant = false;
|
|
auto result = importConstructor(decl, dc, false, initKind,
|
|
/*required=*/false, selector, initName,
|
|
{decl->param_begin(), decl->param_size()},
|
|
decl->isVariadic(), redundant);
|
|
if (result)
|
|
Impl.importAttributes(decl, result);
|
|
|
|
if ((result || redundant) && member) {
|
|
++NumFactoryMethodsAsInitializers;
|
|
|
|
// Mark the imported class method "unavailable", with a useful error
|
|
// message.
|
|
// TODO: Could add a replacement string?
|
|
llvm::SmallString<64> message;
|
|
llvm::raw_svector_ostream os(message);
|
|
os << "use object construction '" << objcClass->getName() << "(";
|
|
for (auto arg : initName.getArgumentNames()) {
|
|
os << arg << ":";
|
|
}
|
|
os << ")'";
|
|
member->getAttrs().add(
|
|
AvailabilityAttr::createUnconditional(
|
|
Impl.SwiftContext,
|
|
Impl.SwiftContext.AllocateCopy(os.str())));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl,
|
|
DeclContext *dc,
|
|
bool forceClassMethod = false) {
|
|
// If we have an init method, import it as an initializer.
|
|
if (decl->getMethodFamily() == clang::OMF_init &&
|
|
isReallyInitMethod(decl)) {
|
|
// Cannot force initializers into class methods.
|
|
if (forceClassMethod)
|
|
return nullptr;
|
|
|
|
return importConstructor(decl, dc, /*isImplicit=*/false, None,
|
|
/*required=*/false);
|
|
}
|
|
|
|
// Check whether we already imported this method.
|
|
if (!forceClassMethod && dc == Impl.importDeclContextOf(decl)) {
|
|
// FIXME: Should also be able to do this for forced class
|
|
// methods.
|
|
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
|
|
if (known != Impl.ImportedDecls.end())
|
|
return known->second;
|
|
}
|
|
|
|
// Check whether another method with the same selector has already been
|
|
// imported into this context.
|
|
ObjCSelector selector = Impl.importSelector(decl->getSelector());
|
|
bool isInstance = decl->isInstanceMethod() && !forceClassMethod;
|
|
if (methodAlreadyImported(selector, isInstance, dc))
|
|
return nullptr;
|
|
|
|
DeclName name = Impl.mapSelectorToDeclName(selector,
|
|
/*isInitializer=*/false);
|
|
if (!name)
|
|
return nullptr;
|
|
|
|
assert(dc->getDeclaredTypeOfContext() && "Method in non-type context?");
|
|
assert(isa<ClangModuleUnit>(dc->getModuleScopeContext()) &&
|
|
"Clang method in Swift context?");
|
|
|
|
// FIXME: We should support returning "Self.Type" for a root class
|
|
// instance method mirrored as a class method, but it currently causes
|
|
// problems for the type checker.
|
|
if (forceClassMethod && decl->hasRelatedResultType())
|
|
return nullptr;
|
|
|
|
// Add the implicit 'self' parameter patterns.
|
|
SmallVector<Pattern *, 4> bodyPatterns;
|
|
auto selfVar =
|
|
createSelfDecl(dc, decl->isClassMethod() || forceClassMethod);
|
|
Pattern *selfPat = createTypedNamedPattern(selfVar);
|
|
bodyPatterns.push_back(selfPat);
|
|
|
|
SpecialMethodKind kind = SpecialMethodKind::Regular;
|
|
// FIXME: This doesn't handle implicit properties.
|
|
if (decl->isPropertyAccessor())
|
|
kind = SpecialMethodKind::PropertyAccessor;
|
|
else if (isNSDictionaryMethod(decl, Impl.objectForKeyedSubscript))
|
|
kind = SpecialMethodKind::NSDictionarySubscriptGetter;
|
|
|
|
// Import the type that this method will have.
|
|
Optional<ForeignErrorConvention> errorConvention;
|
|
auto type = Impl.importMethodType(decl,
|
|
decl->getReturnType(),
|
|
{ decl->param_begin(),
|
|
decl->param_size() },
|
|
decl->isVariadic(),
|
|
decl->hasAttr<clang::NoReturnAttr>(),
|
|
isInSystemModule(dc),
|
|
bodyPatterns,
|
|
name,
|
|
errorConvention,
|
|
kind);
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
// Check whether we recursively imported this method
|
|
if (!forceClassMethod && dc == Impl.importDeclContextOf(decl)) {
|
|
// FIXME: Should also be able to do this for forced class
|
|
// methods.
|
|
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
|
|
if (known != Impl.ImportedDecls.end())
|
|
return known->second;
|
|
}
|
|
|
|
auto result = FuncDecl::create(
|
|
Impl.SwiftContext, SourceLoc(), StaticSpellingKind::None,
|
|
SourceLoc(), name, SourceLoc(), SourceLoc(),
|
|
/*GenericParams=*/nullptr, Type(),
|
|
bodyPatterns, TypeLoc(), dc, decl);
|
|
|
|
result->setAccessibility(Accessibility::Public);
|
|
|
|
auto resultTy = type->castTo<FunctionType>()->getResult();
|
|
Type interfaceType;
|
|
|
|
// If the method has a related result type that is representable
|
|
// in Swift as DynamicSelf, do so.
|
|
if (decl->hasRelatedResultType()) {
|
|
result->setDynamicSelf(true);
|
|
resultTy = result->getDynamicSelf();
|
|
assert(resultTy && "failed to get dynamic self");
|
|
|
|
Type interfaceSelfTy = result->getDynamicSelfInterface();
|
|
OptionalTypeKind nullability = OTK_ImplicitlyUnwrappedOptional;
|
|
if (auto typeNullability = decl->getReturnType()->getNullability(
|
|
Impl.getClangASTContext())) {
|
|
// If the return type has nullability, use it.
|
|
nullability = Impl.translateNullability(*typeNullability);
|
|
} else if (auto known = Impl.getKnownObjCMethod(decl)) {
|
|
// If the method is known to have nullability information for
|
|
// its return type, use that.
|
|
if (known->NullabilityAudited) {
|
|
nullability = Impl.translateNullability(known->getReturnTypeInfo());
|
|
}
|
|
}
|
|
if (nullability != OTK_None) {
|
|
resultTy = OptionalType::get(nullability, resultTy);
|
|
interfaceSelfTy = OptionalType::get(nullability, interfaceSelfTy);
|
|
}
|
|
|
|
// Update the method type with the new result type.
|
|
auto methodTy = type->castTo<FunctionType>();
|
|
type = FunctionType::get(methodTy->getInput(), resultTy,
|
|
methodTy->getExtInfo());
|
|
|
|
// Create the interface type of the method.
|
|
interfaceType = FunctionType::get(methodTy->getInput(), interfaceSelfTy,
|
|
methodTy->getExtInfo());
|
|
interfaceType = FunctionType::get(selfVar->getType(), interfaceType);
|
|
}
|
|
|
|
// Add the 'self' parameter to the function type.
|
|
type = FunctionType::get(selfVar->getType(), type);
|
|
|
|
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
|
|
std::tie(type, interfaceType)
|
|
= getProtocolMethodType(proto, type->castTo<AnyFunctionType>());
|
|
}
|
|
|
|
result->setBodyResultType(resultTy);
|
|
result->setType(type);
|
|
result->setInterfaceType(interfaceType);
|
|
|
|
// Optional methods in protocols.
|
|
if (decl->getImplementationControl() == clang::ObjCMethodDecl::Optional &&
|
|
isa<ProtocolDecl>(dc))
|
|
result->getAttrs().add(new (Impl.SwiftContext)
|
|
OptionalAttr(/*implicit*/false));
|
|
|
|
// Mark class methods as static.
|
|
if (decl->isClassMethod() || forceClassMethod)
|
|
result->setStatic();
|
|
if (forceClassMethod)
|
|
result->setImplicit();
|
|
|
|
// Mark this method @objc.
|
|
addObjCAttribute(result, selector);
|
|
|
|
// If this method overrides another method, mark it as such.
|
|
recordObjCOverride(result);
|
|
|
|
// Record the error convention.
|
|
if (errorConvention) {
|
|
result->setForeignErrorConvention(*errorConvention);
|
|
}
|
|
|
|
// Handle attributes.
|
|
if (decl->hasAttr<clang::IBActionAttr>())
|
|
result->getAttrs().add(
|
|
new (Impl.SwiftContext) IBActionAttr(/*IsImplicit=*/false));
|
|
|
|
// Check whether there's some special method to import.
|
|
if (!forceClassMethod) {
|
|
if (dc == Impl.importDeclContextOf(decl) &&
|
|
!Impl.ImportedDecls[decl->getCanonicalDecl()])
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
|
|
|
|
importSpecialMethod(result, dc);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
/// Check whether the given name starts with the given word.
|
|
static bool startsWithWord(StringRef name, StringRef word) {
|
|
if (name.size() < word.size()) return false;
|
|
return ((name.size() == word.size() || !islower(name[word.size()])) &&
|
|
name.startswith(word));
|
|
}
|
|
|
|
/// Determine whether the given Objective-C method, which Clang classifies
|
|
/// as an init method, is considered an init method in Swift.
|
|
static bool isReallyInitMethod(const clang::ObjCMethodDecl *method) {
|
|
if (!method->isInstanceMethod())
|
|
return false;
|
|
|
|
auto selector = method->getSelector();
|
|
auto first = selector.getIdentifierInfoForSlot(0);
|
|
if (!first) return false;
|
|
|
|
return startsWithWord(first->getName(), "init");
|
|
}
|
|
|
|
public:
|
|
/// \brief Given an imported method, try to import it as some kind of
|
|
/// special declaration, e.g., a constructor or subscript.
|
|
Decl *importSpecialMethod(Decl *decl, DeclContext *dc) {
|
|
// Check whether there's a method associated with this declaration.
|
|
auto objcMethod
|
|
= dyn_cast_or_null<clang::ObjCMethodDecl>(decl->getClangDecl());
|
|
if (!objcMethod)
|
|
return nullptr;
|
|
|
|
// Only consider Objective-C methods...
|
|
switch (objcMethod->getMethodFamily()) {
|
|
case clang::OMF_None:
|
|
// Check for one of the subscripting selectors.
|
|
if (objcMethod->isInstanceMethod() &&
|
|
(objcMethod->getSelector() == Impl.objectAtIndexedSubscript ||
|
|
objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript ||
|
|
objcMethod->getSelector() == Impl.objectForKeyedSubscript ||
|
|
objcMethod->getSelector() == Impl.setObjectForKeyedSubscript))
|
|
return importSubscript(decl, objcMethod, dc);
|
|
|
|
return nullptr;
|
|
|
|
case clang::OMF_init:
|
|
case clang::OMF_initialize:
|
|
case clang::OMF_new:
|
|
case clang::OMF_alloc:
|
|
case clang::OMF_autorelease:
|
|
case clang::OMF_copy:
|
|
case clang::OMF_dealloc:
|
|
case clang::OMF_finalize:
|
|
case clang::OMF_mutableCopy:
|
|
case clang::OMF_performSelector:
|
|
case clang::OMF_release:
|
|
case clang::OMF_retain:
|
|
case clang::OMF_retainCount:
|
|
case clang::OMF_self:
|
|
// None of these methods have special consideration.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Record the function or initializer overridden by the given Swift method.
|
|
void recordObjCOverride(AbstractFunctionDecl *decl) {
|
|
// Figure out the class in which this method occurs.
|
|
auto classTy = decl->getExtensionType()->getAs<ClassType>();
|
|
if (!classTy)
|
|
return;
|
|
|
|
auto superTy = classTy->getSuperclass(nullptr);
|
|
if (!superTy)
|
|
return;
|
|
|
|
// Dig out the Objective-C superclass.
|
|
auto superDecl = superTy->getAnyNominal();
|
|
SmallVector<ValueDecl *, 4> results;
|
|
superDecl->lookupQualified(superTy, decl->getFullName(),
|
|
NL_QualifiedDefault | NL_KnownNoDependency,
|
|
Impl.getTypeResolver(),
|
|
results);
|
|
|
|
for (auto member : results) {
|
|
if (member->getKind() != decl->getKind() ||
|
|
member->isInstanceMember() != decl->isInstanceMember())
|
|
continue;
|
|
|
|
// Set function override.
|
|
// FIXME: Proper type checking here!
|
|
if (auto func = dyn_cast<FuncDecl>(decl)) {
|
|
func->setOverriddenDecl(cast<FuncDecl>(member));
|
|
return;
|
|
}
|
|
|
|
// Set constructor override.
|
|
auto ctor = cast<ConstructorDecl>(decl);
|
|
auto memberCtor = cast<ConstructorDecl>(member);
|
|
ctor->setOverriddenDecl(memberCtor);
|
|
|
|
// Propagate 'required' to subclass initializers.
|
|
if (memberCtor->isRequired() &&
|
|
!ctor->getAttrs().hasAttribute<RequiredAttr>()) {
|
|
ctor->getAttrs().add(
|
|
new (Impl.SwiftContext) RequiredAttr(/*implicit=*/true));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Map an init method to a Swift declaration name.
|
|
///
|
|
/// Some special cased remappings also change the parameter signature of the
|
|
/// imported initializer, such as to drop vararg parameters.
|
|
///
|
|
/// All parameters are in/out parameters.
|
|
DeclName
|
|
mapInitSelectorToDeclName(ObjCSelector &selector,
|
|
ArrayRef<const clang::ParmVarDecl *> &args,
|
|
bool &variadic) {
|
|
auto &C = Impl.SwiftContext;
|
|
|
|
// Map a few initializers to non-variadic versions that drop the
|
|
// variadic parameter.
|
|
if (variadic && shouldMakeSelectorNonVariadic(selector)) {
|
|
selector = ObjCSelector(C, selector.getNumArgs() - 1,
|
|
selector.getSelectorPieces().slice(0,
|
|
selector.getSelectorPieces().size() - 1));
|
|
args = args.slice(0, args.size() - 1);
|
|
variadic = false;
|
|
}
|
|
|
|
return Impl.mapSelectorToDeclName(selector, /*initializer*/true);
|
|
}
|
|
|
|
static bool shouldMakeSelectorNonVariadic(ObjCSelector selector) {
|
|
// This is UIActionSheet's designated initializer.
|
|
if (selector.isNonNullarySelector({ "initWithTitle",
|
|
"delegate",
|
|
"cancelButtonTitle",
|
|
"destructiveButtonTitle",
|
|
"otherButtonTitles" }))
|
|
return true;
|
|
|
|
// This is UIAlertView's designated initializer.
|
|
if (selector.isNonNullarySelector({ "initWithTitle",
|
|
"message",
|
|
"delegate",
|
|
"cancelButtonTitle",
|
|
"otherButtonTitles" }))
|
|
return true;
|
|
|
|
// Nothing else for now.
|
|
return false;
|
|
}
|
|
|
|
/// \brief Given an imported method, try to import it as a constructor.
|
|
///
|
|
/// Objective-C methods in the 'init' family are imported as
|
|
/// constructors in Swift, enabling object construction syntax, e.g.,
|
|
///
|
|
/// \code
|
|
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
|
|
/// NSArray(capacity: 1024)
|
|
/// \endcode
|
|
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
|
|
DeclContext *dc,
|
|
bool implicit,
|
|
Optional<CtorInitializerKind> kind,
|
|
bool required) {
|
|
// Only methods in the 'init' family can become constructors.
|
|
assert(objcMethod->getMethodFamily() == clang::OMF_init &&
|
|
"Not an init method");
|
|
assert(isReallyInitMethod(objcMethod) && "Not a real init method");
|
|
|
|
// Check whether we've already created the constructor.
|
|
auto known = Impl.Constructors.find({objcMethod, dc});
|
|
if (known != Impl.Constructors.end())
|
|
return known->second;
|
|
|
|
// Check whether there is already a method with this selector.
|
|
auto selector = Impl.importSelector(objcMethod->getSelector());
|
|
if (methodAlreadyImported(selector, /*isInstance=*/true, dc))
|
|
return nullptr;
|
|
|
|
// Map the name and complete the import.
|
|
ArrayRef<const clang::ParmVarDecl *> params{
|
|
objcMethod->param_begin(),
|
|
objcMethod->param_end()
|
|
};
|
|
bool variadic = objcMethod->isVariadic();
|
|
DeclName name = mapInitSelectorToDeclName(selector, params, variadic);
|
|
|
|
bool redundant;
|
|
return importConstructor(objcMethod, dc, implicit, kind, required,
|
|
selector, name, params, variadic, redundant);
|
|
}
|
|
|
|
/// \brief Given an imported method, try to import it as a constructor.
|
|
///
|
|
/// Objective-C methods in the 'init' family are imported as
|
|
/// constructors in Swift, enabling object construction syntax, e.g.,
|
|
///
|
|
/// \code
|
|
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
|
|
/// NSArray(capacity: 1024)
|
|
/// \endcode
|
|
///
|
|
/// This variant of the function is responsible for actually binding the
|
|
/// constructor declaration appropriately.
|
|
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
|
|
DeclContext *dc,
|
|
bool implicit,
|
|
Optional<CtorInitializerKind> kindIn,
|
|
bool required,
|
|
ObjCSelector selector,
|
|
DeclName name,
|
|
ArrayRef<const clang::ParmVarDecl*> args,
|
|
bool variadic,
|
|
bool &redundant) {
|
|
redundant = false;
|
|
|
|
// Figure out the type of the container.
|
|
auto containerTy = dc->getDeclaredTypeOfContext();
|
|
assert(containerTy && "Method in non-type context?");
|
|
auto nominalOwner = containerTy->getAnyNominal();
|
|
|
|
// Find the interface, if we can.
|
|
const clang::ObjCInterfaceDecl *interface = nullptr;
|
|
if (auto classDecl = containerTy->getClassOrBoundGenericClass()) {
|
|
interface = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
|
|
classDecl->getClangDecl());
|
|
}
|
|
|
|
// If we weren't told what kind of initializer this should be,
|
|
// figure it out now.
|
|
CtorInitializerKind kind;
|
|
|
|
if (kindIn) {
|
|
kind = *kindIn;
|
|
|
|
// If we know this is a designated initializer, mark it as such.
|
|
if (interface && Impl.hasDesignatedInitializers(interface) &&
|
|
Impl.isDesignatedInitializer(interface, objcMethod))
|
|
kind = CtorInitializerKind::Designated;
|
|
} else {
|
|
// If the owning Objective-C class has designated initializers and this
|
|
// is not one of them, treat it as a convenience initializer.
|
|
if (interface && Impl.hasDesignatedInitializers(interface) &&
|
|
!Impl.isDesignatedInitializer(interface, objcMethod)) {
|
|
kind = CtorInitializerKind::Convenience;
|
|
} else {
|
|
kind = CtorInitializerKind::Designated;
|
|
}
|
|
}
|
|
|
|
// Add the implicit 'self' parameter patterns.
|
|
SmallVector<Pattern *, 4> bodyPatterns;
|
|
auto selfTy = getSelfTypeForContext(dc);
|
|
auto selfMetaVar = createSelfDecl(dc, true);
|
|
Pattern *selfPat = createTypedNamedPattern(selfMetaVar);
|
|
bodyPatterns.push_back(selfPat);
|
|
|
|
// Import the type that this method will have.
|
|
Optional<ForeignErrorConvention> errorConvention;
|
|
auto type = Impl.importMethodType(objcMethod,
|
|
objcMethod->getReturnType(),
|
|
args,
|
|
variadic,
|
|
objcMethod->hasAttr<clang::NoReturnAttr>(),
|
|
isInSystemModule(dc),
|
|
bodyPatterns,
|
|
name,
|
|
errorConvention,
|
|
SpecialMethodKind::Constructor);
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
// Determine the failability of this initializer.
|
|
OptionalTypeKind failability = OTK_ImplicitlyUnwrappedOptional;
|
|
auto fnType = type->getAs<AnyFunctionType>();
|
|
|
|
// If the function throws, it cannot be failable.
|
|
if (!fnType->throws()) {
|
|
// If the return type provides nullability inforomation, map it
|
|
// to failability information.
|
|
if (auto nullability = objcMethod->getReturnType()->getNullability(
|
|
Impl.getClangASTContext())) {
|
|
failability = Impl.translateNullability(*nullability);
|
|
} else {
|
|
// If the method is known to have nullability information for
|
|
// its return type, use that.
|
|
if (auto known = Impl.getKnownObjCMethod(objcMethod)) {
|
|
if (known->NullabilityAudited) {
|
|
failability = Impl.translateNullability(known->getReturnTypeInfo());
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
failability = OTK_None;
|
|
}
|
|
|
|
// Determine the type of the result.
|
|
Type resultTy = selfTy;
|
|
if (failability != OTK_None &&
|
|
(!errorConvention || !errorConvention->stripsResultOptionality())) {
|
|
resultTy = OptionalType::get(failability, resultTy);
|
|
}
|
|
|
|
// A constructor returns an object of the type, not 'id'.
|
|
auto oldFnType = type->castTo<FunctionType>();
|
|
type = FunctionType::get(oldFnType->getInput(), resultTy,
|
|
oldFnType->getExtInfo());
|
|
|
|
// Add the 'self' parameter to the function types.
|
|
Type allocType = FunctionType::get(selfMetaVar->getType(), type);
|
|
Type initType = FunctionType::get(selfTy, type);
|
|
|
|
// Look for other imported constructors that occur in this context with
|
|
// the same name.
|
|
Type allocParamType = allocType->castTo<AnyFunctionType>()->getResult()
|
|
->castTo<AnyFunctionType>()->getInput();
|
|
for (auto other : nominalOwner->lookupDirect(name)) {
|
|
auto ctor = dyn_cast<ConstructorDecl>(other);
|
|
if (!ctor || ctor->isInvalid() ||
|
|
ctor->getAttrs().isUnavailable(Impl.SwiftContext) ||
|
|
!ctor->getClangDecl())
|
|
continue;
|
|
|
|
// Resolve the type of the constructor.
|
|
if (!ctor->hasType())
|
|
Impl.getTypeResolver()->resolveDeclSignature(ctor);
|
|
|
|
// If the types don't match, this is a different constructor with
|
|
// the same selector. This can happen when an overlay overloads an
|
|
// existing selector with a Swift-only signature.
|
|
Type ctorParamType = ctor->getType()->castTo<AnyFunctionType>()
|
|
->getResult()->castTo<AnyFunctionType>()
|
|
->getInput();
|
|
if (!ctorParamType->isEqual(allocParamType)) {
|
|
continue;
|
|
}
|
|
|
|
// If the existing constructor has a less-desirable kind, mark
|
|
// the existing constructor unavailable.
|
|
if (static_cast<unsigned>(kind) <
|
|
static_cast<unsigned>(ctor->getInitKind())) {
|
|
// Show exactly where this constructor came from.
|
|
llvm::SmallString<32> errorStr;
|
|
errorStr += "superseded by import of ";
|
|
if (objcMethod->isClassMethod())
|
|
errorStr += "+[";
|
|
else
|
|
errorStr += "-[";
|
|
|
|
auto objcDC = objcMethod->getDeclContext();
|
|
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(objcDC)) {
|
|
errorStr += objcClass->getName();
|
|
errorStr += ' ';
|
|
} else if (auto objcCat = dyn_cast<clang::ObjCCategoryDecl>(objcDC)) {
|
|
errorStr += objcCat->getClassInterface()->getName();
|
|
auto catName = objcCat->getName();
|
|
if (!catName.empty()) {
|
|
errorStr += '(';
|
|
errorStr += catName;
|
|
errorStr += ')';
|
|
}
|
|
errorStr += ' ';
|
|
} else if (auto objcProto=dyn_cast<clang::ObjCProtocolDecl>(objcDC)) {
|
|
errorStr += objcProto->getName();
|
|
errorStr += ' ';
|
|
}
|
|
|
|
errorStr += objcMethod->getSelector().getAsString();
|
|
errorStr += ']';
|
|
|
|
auto attr
|
|
= AvailabilityAttr::createUnconditional(
|
|
Impl.SwiftContext,
|
|
Impl.SwiftContext.AllocateCopy(errorStr.str()));
|
|
ctor->getAttrs().add(attr);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we shouldn't create a new constructor, because
|
|
// it will be no better than the existing one.
|
|
redundant = true;
|
|
return nullptr;
|
|
}
|
|
|
|
// Check whether we've already created the constructor.
|
|
auto known = Impl.Constructors.find({objcMethod, dc});
|
|
if (known != Impl.Constructors.end())
|
|
return known->second;
|
|
|
|
VarDecl *selfVar = createSelfDecl(dc, false);
|
|
selfPat = createTypedNamedPattern(selfVar);
|
|
|
|
// Create the actual constructor.
|
|
auto result = Impl.createDeclWithClangNode<ConstructorDecl>(objcMethod,
|
|
name, SourceLoc(), failability, SourceLoc(), selfPat,
|
|
bodyPatterns.back(), /*GenericParams=*/nullptr,
|
|
SourceLoc(), dc);
|
|
|
|
// Make the constructor declaration immediately visible in its
|
|
// class or protocol type.
|
|
nominalOwner->makeMemberVisible(result);
|
|
|
|
addObjCAttribute(result, selector);
|
|
|
|
// Fix the types when we've imported into a protocol.
|
|
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
|
|
Type interfaceAllocType;
|
|
Type interfaceInitType;
|
|
std::tie(allocType, interfaceAllocType)
|
|
= getProtocolMethodType(proto, allocType->castTo<AnyFunctionType>());
|
|
std::tie(initType, interfaceInitType)
|
|
= getProtocolMethodType(proto, initType->castTo<AnyFunctionType>());
|
|
|
|
result->setInitializerInterfaceType(interfaceInitType);
|
|
result->setInterfaceType(interfaceAllocType);
|
|
}
|
|
|
|
result->setType(allocType);
|
|
result->setInitializerType(initType);
|
|
|
|
if (implicit)
|
|
result->setImplicit();
|
|
|
|
// Set the kind of initializer.
|
|
result->setInitKind(kind);
|
|
|
|
// Consult API notes to determine whether this initializer is required.
|
|
if (!required && Impl.isRequiredInitializer(objcMethod))
|
|
required = true;
|
|
|
|
// Check whether this initializer satisfies a requirement in a protocol.
|
|
if (!required && !isa<ProtocolDecl>(dc) &&
|
|
objcMethod->isInstanceMethod()) {
|
|
auto objcParent = cast<clang::ObjCContainerDecl>(
|
|
objcMethod->getDeclContext());
|
|
|
|
if (isa<clang::ObjCProtocolDecl>(objcParent)) {
|
|
// An initializer declared in a protocol is required.
|
|
required = true;
|
|
} else {
|
|
// If the class in which this initializer was declared conforms to a
|
|
// protocol that requires this initializer, then this initializer is
|
|
// required.
|
|
SmallPtrSet<clang::ObjCProtocolDecl *, 8> objcProtocols;
|
|
objcParent->getASTContext().CollectInheritedProtocols(objcParent,
|
|
objcProtocols);
|
|
for (auto objcProto : objcProtocols) {
|
|
for (auto decl : objcProto->lookup(objcMethod->getSelector())) {
|
|
if (cast<clang::ObjCMethodDecl>(decl)->isInstanceMethod()) {
|
|
required = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (required)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this initializer is required, add the appropriate attribute.
|
|
if (required) {
|
|
result->getAttrs().add(
|
|
new (Impl.SwiftContext) RequiredAttr(/*implicit=*/true));
|
|
}
|
|
|
|
// Record the error convention.
|
|
if (errorConvention) {
|
|
result->setForeignErrorConvention(*errorConvention);
|
|
}
|
|
|
|
// Record the constructor for future re-use.
|
|
Impl.Constructors[{objcMethod, dc}] = result;
|
|
|
|
// If this constructor overrides another constructor, mark it as such.
|
|
recordObjCOverride(result);
|
|
|
|
// Inform the context that we have external definitions.
|
|
Impl.registerExternalDecl(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/// \brief Retrieve the single variable described in the given pattern.
|
|
///
|
|
/// This routine assumes that the pattern is something very simple
|
|
/// like (x : type) or (x).
|
|
VarDecl *getSingleVar(Pattern *pattern) {
|
|
pattern = pattern->getSemanticsProvidingPattern();
|
|
if (auto tuple = dyn_cast<TuplePattern>(pattern)) {
|
|
pattern = tuple->getElement(0).getPattern()
|
|
->getSemanticsProvidingPattern();
|
|
}
|
|
|
|
return cast<NamedPattern>(pattern)->getDecl();
|
|
}
|
|
|
|
/// Retrieves the type and interface type for a protocol or
|
|
/// protocol extension method given the computed type of that
|
|
/// method.
|
|
std::pair<Type, Type> getProtocolMethodType(DeclContext *dc,
|
|
AnyFunctionType *fnType) {
|
|
Type type = PolymorphicFunctionType::get(fnType->getInput(),
|
|
fnType->getResult(),
|
|
dc->getGenericParamsOfContext());
|
|
|
|
// Figure out the curried 'self' type for the interface type. It's always
|
|
// either the generic parameter type 'Self' or a metatype thereof.
|
|
auto selfDecl = dc->getProtocolSelf();
|
|
auto selfTy = selfDecl->getDeclaredType();
|
|
auto interfaceInputTy = selfTy;
|
|
auto inputTy = fnType->getInput();
|
|
if (auto tupleTy = inputTy->getAs<TupleType>()) {
|
|
if (tupleTy->getNumElements() == 1)
|
|
inputTy = tupleTy->getElementType(0);
|
|
}
|
|
if (inputTy->is<MetatypeType>())
|
|
interfaceInputTy = MetatypeType::get(interfaceInputTy);
|
|
|
|
auto selfArchetype = selfDecl->getArchetype();
|
|
auto interfaceResultTy = fnType->getResult().transform(
|
|
[&](Type type) -> Type {
|
|
if (type->is<DynamicSelfType>() || type->isEqual(selfArchetype)) {
|
|
return DynamicSelfType::get(selfTy, Impl.SwiftContext);
|
|
}
|
|
|
|
return type;
|
|
});
|
|
|
|
Type interfaceType = GenericFunctionType::get(
|
|
dc->getGenericSignatureOfContext(),
|
|
interfaceInputTy,
|
|
interfaceResultTy,
|
|
AnyFunctionType::ExtInfo());
|
|
return { type, interfaceType };
|
|
}
|
|
|
|
/// Build a declaration for an Objective-C subscript getter.
|
|
FuncDecl *buildSubscriptGetterDecl(const FuncDecl *getter, Type elementTy,
|
|
DeclContext *dc, Pattern *indices) {
|
|
auto &context = Impl.SwiftContext;
|
|
auto loc = getter->getLoc();
|
|
|
|
// Form the argument patterns.
|
|
SmallVector<Pattern *, 3> getterArgs;
|
|
|
|
// 'self'
|
|
getterArgs.push_back(createTypedNamedPattern(createSelfDecl(dc, false)));
|
|
|
|
// index, for subscript operations.
|
|
assert(indices);
|
|
indices = indices->clone(context);
|
|
auto pat = TuplePattern::create(context, loc, TuplePatternElt(indices),
|
|
loc);
|
|
pat->setType(TupleType::get(TupleTypeElt(indices->getType()),
|
|
context));
|
|
getterArgs.push_back(pat);
|
|
|
|
// Form the type of the getter.
|
|
auto getterType = elementTy;
|
|
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
|
|
it != itEnd; ++it) {
|
|
getterType = FunctionType::get(
|
|
(*it)->getType()->getUnlabeledType(context),
|
|
getterType);
|
|
}
|
|
|
|
// If we're in a protocol, the getter thunk will be polymorphic.
|
|
Type interfaceType;
|
|
if (dc->isProtocolOrProtocolExtensionContext()) {
|
|
std::tie(getterType, interfaceType)
|
|
= getProtocolMethodType(dc, getterType->castTo<AnyFunctionType>());
|
|
}
|
|
|
|
// Create the getter thunk.
|
|
FuncDecl *thunk = FuncDecl::create(
|
|
context, SourceLoc(), StaticSpellingKind::None, loc,
|
|
Identifier(), SourceLoc(), SourceLoc(), nullptr, getterType,
|
|
getterArgs, TypeLoc::withoutLoc(elementTy), dc,
|
|
getter->getClangNode());
|
|
thunk->setBodyResultType(elementTy);
|
|
thunk->setInterfaceType(interfaceType);
|
|
thunk->setAccessibility(Accessibility::Public);
|
|
|
|
auto objcAttr = getter->getAttrs().getAttribute<ObjCAttr>();
|
|
assert(objcAttr);
|
|
thunk->getAttrs().add(objcAttr->clone(context));
|
|
// FIXME: Should we record thunks?
|
|
|
|
return thunk;
|
|
}
|
|
|
|
/// Build a declaration for an Objective-C subscript setter.
|
|
FuncDecl *buildSubscriptSetterDecl(const FuncDecl *setter, Type elementTy,
|
|
DeclContext *dc, Pattern *indices) {
|
|
auto &context = Impl.SwiftContext;
|
|
auto loc = setter->getLoc();
|
|
auto tuple = cast<TuplePattern>(setter->getBodyParamPatterns()[1]);
|
|
|
|
// Objective-C subscript setters are imported with a function type
|
|
// such as:
|
|
//
|
|
// (self) -> (value, index) -> ()
|
|
//
|
|
// Build a setter thunk with the latter signature that maps to the
|
|
// former.
|
|
|
|
// Form the argument patterns.
|
|
SmallVector<Pattern *, 2> setterArgs;
|
|
|
|
// 'self'
|
|
setterArgs.push_back(createTypedNamedPattern(createSelfDecl(dc, false)));
|
|
|
|
|
|
SmallVector<TuplePatternElt, 2> ValueElts;
|
|
SmallVector<TupleTypeElt, 2> ValueEltTys;
|
|
|
|
auto paramVarDecl = new (context) ParamDecl(
|
|
/*isLet=*/false, SourceLoc(), Identifier(), loc,
|
|
tuple->getElement(0).getPattern()->getSingleVar()->getName(),
|
|
elementTy, dc);
|
|
auto valuePattern = createTypedNamedPattern(paramVarDecl);
|
|
ValueElts.push_back(TuplePatternElt(valuePattern));
|
|
ValueEltTys.push_back(TupleTypeElt(valuePattern->getType()));
|
|
|
|
// Clone the indices for the thunk.
|
|
assert(indices);
|
|
indices = indices->clone(context);
|
|
ValueElts.push_back(TuplePatternElt(indices));
|
|
ValueEltTys.push_back(TupleTypeElt(indices->getType()));
|
|
|
|
// value
|
|
setterArgs.push_back(TuplePattern::create(context, loc, ValueElts, loc));
|
|
setterArgs.back()->setType(TupleType::get(ValueEltTys, context));
|
|
|
|
// Form the type of the setter.
|
|
Type setterType = TupleType::getEmpty(context);
|
|
for (auto it = setterArgs.rbegin(), itEnd = setterArgs.rend();
|
|
it != itEnd; ++it) {
|
|
setterType = FunctionType::get(
|
|
(*it)->getType()->getUnlabeledType(context),
|
|
setterType);
|
|
}
|
|
|
|
// If we're in a protocol or extension thereof, the setter thunk
|
|
// will be polymorphic.
|
|
Type interfaceType;
|
|
if (dc->isProtocolOrProtocolExtensionContext()) {
|
|
std::tie(setterType, interfaceType)
|
|
= getProtocolMethodType(dc, setterType->castTo<AnyFunctionType>());
|
|
}
|
|
|
|
// Create the setter thunk.
|
|
FuncDecl *thunk = FuncDecl::create(
|
|
context, SourceLoc(), StaticSpellingKind::None, setter->getLoc(),
|
|
Identifier(), SourceLoc(), SourceLoc(), nullptr, setterType,
|
|
setterArgs, TypeLoc::withoutLoc(TupleType::getEmpty(context)), dc,
|
|
setter->getClangNode());
|
|
thunk->setBodyResultType(TupleType::getEmpty(context));
|
|
thunk->setInterfaceType(interfaceType);
|
|
thunk->setAccessibility(Accessibility::Public);
|
|
|
|
auto objcAttr = setter->getAttrs().getAttribute<ObjCAttr>();
|
|
assert(objcAttr);
|
|
thunk->getAttrs().add(objcAttr->clone(context));
|
|
|
|
return thunk;
|
|
}
|
|
|
|
/// Hack: Handle the case where a subscript is read-only in the
|
|
/// main class interface (either explicitly or because of an adopted
|
|
/// protocol) and then the setter is added in a category/extension.
|
|
///
|
|
/// \see importSubscript
|
|
// FIXME: This is basically the same as handlePropertyRedeclaration below.
|
|
void handleSubscriptRedeclaration(SubscriptDecl *original,
|
|
const SubscriptDecl *redecl) {
|
|
// If the subscript isn't from Clang, we can't safely update it.
|
|
if (!original->hasClangNode())
|
|
return;
|
|
|
|
// If the original declaration was implicit, we may want to change that.
|
|
if (original->isImplicit() && !redecl->isImplicit() &&
|
|
!redecl->getDeclContext()->isProtocolOrProtocolExtensionContext())
|
|
original->setImplicit(false);
|
|
|
|
// The only other transformation we know how to do safely is add a
|
|
// setter. If the subscript is already settable, we're done.
|
|
if (original->isSettable())
|
|
return;
|
|
|
|
auto setter = redecl->getSetter();
|
|
if (!setter)
|
|
return;
|
|
|
|
original->setComputedSetter(setter);
|
|
}
|
|
|
|
/// \brief Given either the getter or setter for a subscript operation,
|
|
/// create the Swift subscript declaration.
|
|
SubscriptDecl *importSubscript(Decl *decl,
|
|
const clang::ObjCMethodDecl *objcMethod,
|
|
DeclContext *dc) {
|
|
assert(objcMethod->isInstanceMethod() && "Caller must filter");
|
|
|
|
const clang::ObjCInterfaceDecl *interface = nullptr;
|
|
const clang::ObjCProtocolDecl *protocol =
|
|
dyn_cast<clang::ObjCProtocolDecl>(objcMethod->getDeclContext());
|
|
if (!protocol)
|
|
interface = objcMethod->getClassInterface();
|
|
auto lookupInstanceMethod = [&](clang::Selector Sel) ->
|
|
clang::ObjCMethodDecl * {
|
|
if (interface)
|
|
return interface->lookupInstanceMethod(Sel);
|
|
else
|
|
return protocol->lookupInstanceMethod(Sel);
|
|
};
|
|
|
|
bool optionalMethods = true;
|
|
FuncDecl *getter = nullptr, *setter = nullptr;
|
|
if (objcMethod->getSelector() == Impl.objectAtIndexedSubscript) {
|
|
getter = cast<FuncDecl>(decl);
|
|
|
|
// Find the setter
|
|
if (auto objcSetter = lookupInstanceMethod(
|
|
Impl.setObjectAtIndexedSubscript)) {
|
|
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
|
|
|
|
// Don't allow static setters.
|
|
if (setter && setter->isStatic())
|
|
setter = nullptr;
|
|
|
|
if (setter) {
|
|
optionalMethods = optionalMethods &&
|
|
objcSetter->getImplementationControl()
|
|
== clang::ObjCMethodDecl::Optional;
|
|
}
|
|
}
|
|
} else if (objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript){
|
|
setter = cast<FuncDecl>(decl);
|
|
|
|
// Find the getter.
|
|
if (auto objcGetter = lookupInstanceMethod(
|
|
Impl.objectAtIndexedSubscript)) {
|
|
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
|
|
|
|
// Don't allow static getters.
|
|
if (getter && getter->isStatic())
|
|
return nullptr;
|
|
|
|
if (getter) {
|
|
optionalMethods = optionalMethods &&
|
|
objcGetter->getImplementationControl()
|
|
== clang::ObjCMethodDecl::Optional;
|
|
}
|
|
}
|
|
|
|
// FIXME: Swift doesn't have write-only subscripting.
|
|
if (!getter)
|
|
return nullptr;
|
|
} else if (objcMethod->getSelector() == Impl.objectForKeyedSubscript) {
|
|
getter = cast<FuncDecl>(decl);
|
|
|
|
// Find the setter
|
|
if (auto objcSetter = lookupInstanceMethod(
|
|
Impl.setObjectForKeyedSubscript)) {
|
|
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
|
|
|
|
// Don't allow static setters.
|
|
if (setter && setter->isStatic())
|
|
setter = nullptr;
|
|
|
|
if (setter) {
|
|
optionalMethods = optionalMethods &&
|
|
objcSetter->getImplementationControl()
|
|
== clang::ObjCMethodDecl::Optional;
|
|
}
|
|
|
|
}
|
|
} else if (objcMethod->getSelector() == Impl.setObjectForKeyedSubscript) {
|
|
setter = cast<FuncDecl>(decl);
|
|
|
|
// Find the getter.
|
|
if (auto objcGetter = lookupInstanceMethod(
|
|
Impl.objectForKeyedSubscript)) {
|
|
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
|
|
|
|
// Don't allow static getters.
|
|
if (getter && getter->isStatic())
|
|
return nullptr;
|
|
|
|
if (getter) {
|
|
optionalMethods = optionalMethods &&
|
|
objcGetter->getImplementationControl()
|
|
== clang::ObjCMethodDecl::Optional;
|
|
}
|
|
}
|
|
|
|
// FIXME: Swift doesn't have write-only subscripting.
|
|
if (!getter)
|
|
return nullptr;
|
|
} else {
|
|
llvm_unreachable("Unknown getter/setter selector");
|
|
}
|
|
|
|
// Check whether we've already created a subscript operation for
|
|
// this getter/setter pair.
|
|
if (auto subscript = Impl.Subscripts[{getter, setter}])
|
|
return subscript->getDeclContext() == dc? subscript : nullptr;
|
|
|
|
// Compute the element type, looking through the implicit 'self'
|
|
// parameter and the normal function parameters.
|
|
auto elementTy
|
|
= getter->getType()->castTo<AnyFunctionType>()->getResult()
|
|
->castTo<AnyFunctionType>()->getResult();
|
|
|
|
// Check the form of the getter.
|
|
FuncDecl *getterThunk = nullptr;
|
|
Pattern *getterIndices = nullptr;
|
|
auto &context = Impl.SwiftContext;
|
|
|
|
// Find the getter indices and make sure they match.
|
|
{
|
|
auto tuple = dyn_cast<TuplePattern>(getter->getBodyParamPatterns()[1]);
|
|
if (tuple && tuple->getNumElements() != 1)
|
|
return nullptr;
|
|
|
|
getterIndices = tuple->getElement(0).getPattern();
|
|
}
|
|
|
|
// Check the form of the setter.
|
|
FuncDecl *setterThunk = nullptr;
|
|
Pattern *setterIndices = nullptr;
|
|
if (setter) {
|
|
auto tuple = dyn_cast<TuplePattern>(setter->getBodyParamPatterns()[1]);
|
|
if (!tuple)
|
|
return nullptr;
|
|
|
|
if (tuple->getNumElements() != 2)
|
|
return nullptr;
|
|
|
|
// The setter must accept elements of the same type as the getter
|
|
// returns.
|
|
// FIXME: Adjust C++ references?
|
|
auto setterElementTy = tuple->getElement(0).getPattern()->getType();
|
|
if (!elementTy->isEqual(setterElementTy)) {
|
|
auto nonOptionalElementTy = elementTy->getAnyOptionalObjectType();
|
|
if (nonOptionalElementTy.isNull())
|
|
nonOptionalElementTy = elementTy;
|
|
|
|
auto nonOptionalSetterElementTy =
|
|
setterElementTy->getAnyOptionalObjectType();
|
|
if (nonOptionalSetterElementTy.isNull())
|
|
nonOptionalSetterElementTy = setterElementTy;
|
|
|
|
if (!nonOptionalElementTy->isEqual(nonOptionalSetterElementTy))
|
|
return nullptr;
|
|
|
|
elementTy =
|
|
ImplicitlyUnwrappedOptionalType::get(nonOptionalElementTy);
|
|
}
|
|
|
|
setterIndices = tuple->getElement(1).getPattern();
|
|
|
|
// The setter must use the same indices as the getter.
|
|
// FIXME: Adjust C++ references?
|
|
if (!setterIndices->getType()->isEqual(getterIndices->getType())) {
|
|
setter = nullptr;
|
|
setterIndices = nullptr;
|
|
|
|
// Check whether we've already created a subscript operation for
|
|
// this getter.
|
|
if (auto subscript = Impl.Subscripts[{getter, nullptr}])
|
|
return subscript->getDeclContext() == dc? subscript : nullptr;
|
|
}
|
|
}
|
|
|
|
getterThunk = buildSubscriptGetterDecl(getter, elementTy, dc,
|
|
getterIndices);
|
|
if (setter)
|
|
setterThunk = buildSubscriptSetterDecl(setter, elementTy, dc,
|
|
setterIndices);
|
|
|
|
// Build the subscript declaration.
|
|
auto bodyPatterns =
|
|
getterThunk->getBodyParamPatterns()[1]->clone(context);
|
|
DeclName name(context, context.Id_subscript, { Identifier() });
|
|
auto subscript
|
|
= Impl.createDeclWithClangNode<SubscriptDecl>(getter->getClangNode(),
|
|
name, decl->getLoc(), bodyPatterns,
|
|
decl->getLoc(),
|
|
TypeLoc::withoutLoc(elementTy), dc);
|
|
subscript->makeComputed(SourceLoc(), getterThunk, setterThunk, nullptr,
|
|
SourceLoc());
|
|
auto indicesType = bodyPatterns->getType();
|
|
indicesType = indicesType->getRelabeledType(context,
|
|
name.getArgumentNames());
|
|
|
|
subscript->setType(FunctionType::get(indicesType,
|
|
subscript->getElementType()));
|
|
addObjCAttribute(subscript, None);
|
|
|
|
// Optional subscripts in protocols.
|
|
if (optionalMethods && isa<ProtocolDecl>(dc))
|
|
subscript->getAttrs().add(new (Impl.SwiftContext)
|
|
OptionalAttr(true));
|
|
|
|
// Note that we've created this subscript.
|
|
Impl.Subscripts[{getter, setter}] = subscript;
|
|
Impl.Subscripts[{getterThunk, nullptr}] = subscript;
|
|
|
|
// Make the getter/setter methods unavailable.
|
|
if (!getter->getAttrs().isUnavailable(Impl.SwiftContext))
|
|
Impl.markUnavailable(getter, "use subscripting");
|
|
if (setter && !setter->getAttrs().isUnavailable(Impl.SwiftContext))
|
|
Impl.markUnavailable(setter, "use subscripting");
|
|
|
|
// Determine whether this subscript operation overrides another subscript
|
|
// operation.
|
|
// FIXME: This ends up looking in the superclass for entirely bogus
|
|
// reasons. Fix it.
|
|
auto containerTy = dc->getDeclaredTypeInContext();
|
|
SmallVector<ValueDecl *, 2> lookup;
|
|
dc->lookupQualified(containerTy, name,
|
|
NL_QualifiedDefault | NL_KnownNoDependency,
|
|
Impl.getTypeResolver(), lookup);
|
|
Type unlabeledIndices;
|
|
for (auto result : lookup) {
|
|
auto parentSub = dyn_cast<SubscriptDecl>(result);
|
|
if (!parentSub)
|
|
continue;
|
|
|
|
// Compute the type of indices for our own subscript operation, lazily.
|
|
if (!unlabeledIndices) {
|
|
unlabeledIndices = subscript->getIndices()->getType()
|
|
->getUnlabeledType(Impl.SwiftContext);
|
|
}
|
|
|
|
// Compute the type of indices for the subscript we found.
|
|
auto parentUnlabeledIndices = parentSub->getIndices()->getType()
|
|
->getUnlabeledType(Impl.SwiftContext);
|
|
if (!unlabeledIndices->isEqual(parentUnlabeledIndices))
|
|
continue;
|
|
|
|
if (parentSub == subscript)
|
|
continue;
|
|
|
|
const DeclContext *overrideContext = parentSub->getDeclContext();
|
|
assert(dc != overrideContext && "subscript already exists");
|
|
|
|
if (overrideContext->getDeclaredTypeInContext()->isEqual(containerTy)) {
|
|
// We've encountered a redeclaration of the subscript.
|
|
// HACK: Just update the original declaration instead of importing a
|
|
// second subscript.
|
|
handleSubscriptRedeclaration(parentSub, subscript);
|
|
Impl.Subscripts[{getter, setter}] = parentSub;
|
|
return nullptr;
|
|
}
|
|
|
|
// The index types match. This is an override, so mark it as such.
|
|
subscript->setOverriddenDecl(parentSub);
|
|
getterThunk->setOverriddenDecl(parentSub->getGetter());
|
|
if (auto parentSetter = parentSub->getSetter()) {
|
|
if (setterThunk)
|
|
setterThunk->setOverriddenDecl(parentSetter);
|
|
}
|
|
|
|
// FIXME: Eventually, deal with multiple overrides.
|
|
break;
|
|
}
|
|
|
|
return subscript;
|
|
}
|
|
|
|
/// Import the the accessor and its attributes.
|
|
FuncDecl *importAccessor(clang::ObjCMethodDecl *clangAccessor,
|
|
DeclContext *dc) {
|
|
auto *accessor =
|
|
cast_or_null<FuncDecl>(VisitObjCMethodDecl(clangAccessor, dc));
|
|
if (!accessor) {
|
|
return nullptr;
|
|
}
|
|
|
|
Impl.importAttributes(clangAccessor, accessor);
|
|
|
|
return accessor;
|
|
}
|
|
|
|
public:
|
|
|
|
/// Recursively add the given protocol and its inherited protocols to the
|
|
/// given vector, guarded by the known set of protocols.
|
|
void addProtocols(ProtocolDecl *protocol,
|
|
SmallVectorImpl<ProtocolDecl *> &protocols,
|
|
llvm::SmallPtrSet<ProtocolDecl *, 4> &known) {
|
|
if (!known.insert(protocol).second)
|
|
return;
|
|
|
|
protocols.push_back(protocol);
|
|
for (auto inherited : protocol->getInheritedProtocols(
|
|
Impl.getTypeResolver()))
|
|
addProtocols(inherited, protocols, known);
|
|
}
|
|
|
|
// Import the given Objective-C protocol list, along with any
|
|
// implicitly-provided protocols, and attach them to the given
|
|
// declaration.
|
|
void importObjCProtocols(Decl *decl,
|
|
const clang::ObjCProtocolList &clangProtocols) {
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
llvm::SmallPtrSet<ProtocolDecl *, 4> knownProtocols;
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
|
|
nominal->getImplicitProtocols(protocols);
|
|
knownProtocols.insert(protocols.begin(), protocols.end());
|
|
}
|
|
|
|
for (auto cp = clangProtocols.begin(), cpEnd = clangProtocols.end();
|
|
cp != cpEnd; ++cp) {
|
|
if (auto proto = cast_or_null<ProtocolDecl>(Impl.importDecl(*cp))) {
|
|
addProtocols(proto, protocols, knownProtocols);
|
|
}
|
|
}
|
|
|
|
addObjCProtocolConformances(decl, protocols);
|
|
}
|
|
|
|
/// Add conformances to the given Objective-C protocols to the
|
|
/// given declaration.
|
|
void addObjCProtocolConformances(Decl *decl,
|
|
ArrayRef<ProtocolDecl*> protocols) {
|
|
// Copy the list of protocols.
|
|
MutableArrayRef<ProtocolDecl *> allProtocols
|
|
= Impl.SwiftContext.AllocateCopy(protocols);
|
|
|
|
// Set the protocols.
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
|
|
if (auto proto = dyn_cast<ProtocolDecl>(nominal))
|
|
proto->setDirectlyInheritedProtocols(allProtocols);
|
|
else
|
|
nominal->setProtocols(allProtocols);
|
|
} else {
|
|
auto ext = cast<ExtensionDecl>(decl);
|
|
ext->setProtocols(allProtocols);
|
|
}
|
|
|
|
// Protocols don't require conformances.
|
|
if (isa<ProtocolDecl>(decl))
|
|
return;
|
|
|
|
Impl.recordImportedProtocols(decl, protocols);
|
|
|
|
// Synthesize trivial conformances for each of the protocols.
|
|
SmallVector<ProtocolConformance *, 4> conformances;
|
|
;
|
|
auto dc = decl->getInnermostDeclContext();
|
|
auto &ctx = Impl.SwiftContext;
|
|
for (unsigned i = 0, n = allProtocols.size(); i != n; ++i) {
|
|
// FIXME: Build a superclass conformance if the superclass
|
|
// conforms.
|
|
auto conformance
|
|
= ctx.getConformance(dc->getDeclaredTypeOfContext(),
|
|
allProtocols[i], SourceLoc(),
|
|
dc,
|
|
ProtocolConformanceState::Incomplete);
|
|
Impl.scheduleFinishProtocolConformance(conformance);
|
|
conformances.push_back(conformance);
|
|
}
|
|
|
|
// Set the conformances.
|
|
// FIXME: This could be lazier.
|
|
unsigned id = Impl.allocateDelayedConformance(std::move(conformances));
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
|
|
nominal->setConformanceLoader(&Impl, id);
|
|
} else {
|
|
auto ext = cast<ExtensionDecl>(decl);
|
|
ext->setConformanceLoader(&Impl, id);
|
|
}
|
|
}
|
|
|
|
/// Finds the counterpart accessor method for \p MD, if one exists, in the
|
|
/// same lexical context.
|
|
const clang::ObjCMethodDecl *
|
|
findImplicitPropertyAccessor(const clang::ObjCMethodDecl *MD) {
|
|
// FIXME: Do we want to infer class properties?
|
|
if (!MD->isInstanceMethod())
|
|
return nullptr;
|
|
|
|
// First, collect information about the method we have.
|
|
clang::Selector sel = MD->getSelector();
|
|
llvm::SmallString<64> counterpartName;
|
|
auto numArgs = sel.getNumArgs();
|
|
clang::QualType propTy;
|
|
|
|
if (numArgs > 1)
|
|
return nullptr;
|
|
|
|
if (numArgs == 0) {
|
|
clang::IdentifierInfo *getterID = sel.getIdentifierInfoForSlot(0);
|
|
if (!getterID)
|
|
return nullptr;
|
|
counterpartName =
|
|
clang::SelectorTable::constructSetterName(getterID->getName());
|
|
propTy = MD->getReturnType();
|
|
|
|
} else {
|
|
if (!MD->getReturnType()->isVoidType())
|
|
return nullptr;
|
|
|
|
clang::IdentifierInfo *setterID = sel.getIdentifierInfoForSlot(0);
|
|
if (!setterID || !setterID->getName().startswith("set"))
|
|
return nullptr;
|
|
counterpartName = setterID->getName().substr(3);
|
|
counterpartName[0] = tolower(counterpartName[0]);
|
|
propTy = MD->parameters().front()->getType();
|
|
}
|
|
|
|
// Next, look for its counterpart.
|
|
const clang::ASTContext &clangCtx = Impl.getClangASTContext();
|
|
auto container = cast<clang::ObjCContainerDecl>(MD->getDeclContext());
|
|
for (auto method : make_range(container->instmeth_begin(),
|
|
container->instmeth_end())) {
|
|
// Condition 1: it must be a getter if we have a setter, and vice versa.
|
|
clang::Selector nextSel = method->getSelector();
|
|
if (nextSel.getNumArgs() != (1 - numArgs))
|
|
continue;
|
|
|
|
// Condition 2: it must have the name we expect.
|
|
clang::IdentifierInfo *nextID = nextSel.getIdentifierInfoForSlot(0);
|
|
if (!nextID)
|
|
continue;
|
|
if (nextID->getName() != counterpartName)
|
|
continue;
|
|
|
|
// Condition 3: it must have the right type signature.
|
|
if (numArgs == 0) {
|
|
if (!method->getReturnType()->isVoidType())
|
|
continue;
|
|
clang::QualType paramTy = method->parameters().front()->getType();
|
|
if (!clangCtx.hasSameUnqualifiedType(propTy, paramTy))
|
|
continue;
|
|
} else {
|
|
clang::QualType returnTy = method->getReturnType();
|
|
if (!clangCtx.hasSameUnqualifiedType(propTy, returnTy))
|
|
continue;
|
|
}
|
|
|
|
return method;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Creates a computed property VarDecl from the given getter and
|
|
/// optional setter.
|
|
Decl *makeImplicitPropertyDecl(Decl *opaqueGetter,
|
|
Decl *opaqueSetter,
|
|
DeclContext *dc) {
|
|
auto getter = cast<FuncDecl>(opaqueGetter);
|
|
auto setter = cast_or_null<FuncDecl>(opaqueSetter);
|
|
assert(!setter || setter->getResultType()->isVoid());
|
|
|
|
auto name = getter->getName();
|
|
|
|
// Check whether there is a function with the same name as this
|
|
// property. If so, suppress the property; the user will have to use
|
|
// the methods directly, to avoid ambiguities.
|
|
auto containerTy = dc->getDeclaredTypeInContext();
|
|
VarDecl *overridden = nullptr;
|
|
SmallVector<ValueDecl *, 2> lookup;
|
|
dc->lookupQualified(containerTy, name,
|
|
NL_QualifiedDefault | NL_KnownNoDependency,
|
|
nullptr, lookup);
|
|
for (auto result : lookup) {
|
|
if (isa<FuncDecl>(result))
|
|
return nullptr;
|
|
|
|
if (auto var = dyn_cast<VarDecl>(result))
|
|
overridden = var;
|
|
}
|
|
|
|
// Re-import the type as a property type.
|
|
auto clangGetter = cast<clang::ObjCMethodDecl>(getter->getClangDecl());
|
|
auto type = Impl.importType(clangGetter->getReturnType(),
|
|
ImportTypeKind::Property,
|
|
isInSystemModule(dc));
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
auto result = Impl.createDeclWithClangNode<VarDecl>(clangGetter,
|
|
/*static*/ false, /*IsLet*/ false,
|
|
Impl.importSourceLoc(clangGetter->getLocation()),
|
|
name, type, dc);
|
|
|
|
// Turn this into a computed property.
|
|
// FIXME: Fake locations for '{' and '}'?
|
|
result->makeComputed(SourceLoc(), getter, setter, nullptr, SourceLoc());
|
|
addObjCAttribute(result, None);
|
|
|
|
if (overridden)
|
|
result->setOverriddenDecl(overridden);
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool
|
|
isPotentiallyConflictingSetter(const clang::ObjCProtocolDecl *proto,
|
|
const clang::ObjCMethodDecl *method) {
|
|
auto sel = method->getSelector();
|
|
if (sel.getNumArgs() != 1)
|
|
return false;
|
|
|
|
clang::IdentifierInfo *setterID = sel.getIdentifierInfoForSlot(0);
|
|
if (!setterID || !setterID->getName().startswith("set"))
|
|
return false;
|
|
|
|
for (auto *prop : proto->properties()) {
|
|
if (prop->getSetterName() == sel)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Import members of the given Objective-C container and add them to the
|
|
/// list of corresponding Swift members.
|
|
void importObjCMembers(const clang::ObjCContainerDecl *decl,
|
|
DeclContext *swiftContext,
|
|
SmallVectorImpl<Decl *> &members,
|
|
bool &hasMissingRequiredMember) {
|
|
llvm::SmallPtrSet<Decl *, 4> knownMembers;
|
|
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
|
|
m != mEnd; ++m) {
|
|
auto nd = dyn_cast<clang::NamedDecl>(*m);
|
|
if (!nd || nd != nd->getCanonicalDecl())
|
|
continue;
|
|
|
|
auto member = Impl.importDecl(nd);
|
|
if (!member) {
|
|
if (auto method = dyn_cast<clang::ObjCMethodDecl>(nd)) {
|
|
if (method->getImplementationControl() ==
|
|
clang::ObjCMethodDecl::Required)
|
|
hasMissingRequiredMember = true;
|
|
} else if (auto prop = dyn_cast<clang::ObjCPropertyDecl>(nd)) {
|
|
if (prop->getPropertyImplementation() ==
|
|
clang::ObjCPropertyDecl::Required)
|
|
hasMissingRequiredMember = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(nd)) {
|
|
// If there is a special declaration associated with this member,
|
|
// add it now.
|
|
if (auto special = importSpecialMethod(member, swiftContext)) {
|
|
if (knownMembers.insert(special).second)
|
|
members.push_back(special);
|
|
}
|
|
|
|
// If this is a factory method, try to import it as a constructor.
|
|
if (auto factory = importFactoryMethodAsConstructor(
|
|
member,
|
|
objcMethod,
|
|
Impl.importSelector(objcMethod->getSelector()),
|
|
swiftContext)) {
|
|
if (*factory)
|
|
members.push_back(*factory);
|
|
}
|
|
|
|
// Objective-C root class instance methods are reflected on the
|
|
// metatype as well.
|
|
if (objcMethod->isInstanceMethod()) {
|
|
Type swiftTy = swiftContext->getDeclaredTypeInContext();
|
|
auto swiftClass = swiftTy->getClassOrBoundGenericClass();
|
|
if (swiftClass && !swiftClass->getSuperclass() &&
|
|
!decl->getClassMethod(objcMethod->getSelector(),
|
|
/*AllowHidden=*/true)) {
|
|
auto classMember = VisitObjCMethodDecl(objcMethod, swiftContext,
|
|
true);
|
|
if (classMember)
|
|
members.push_back(classMember);
|
|
}
|
|
}
|
|
|
|
// Import explicit properties as instance properties, not as separate
|
|
// getter and setter methods.
|
|
if (!Impl.isAccessibilityDecl(objcMethod)) {
|
|
// If this member is a method that is a getter or setter for a
|
|
// propertythat was imported, don't add it to the list of members
|
|
// so it won't be found by name lookup. This eliminates the
|
|
// ambiguity between property names and getter names (by choosing
|
|
// to only have a variable).
|
|
if (objcMethod->isPropertyAccessor()) {
|
|
auto prop = objcMethod->findPropertyDecl(/*checkOverrides=*/false);
|
|
assert(prop);
|
|
(void)Impl.importDecl(const_cast<clang::ObjCPropertyDecl *>(prop));
|
|
// We may have attached this member to an existing property even
|
|
// if we've failed to import a new property.
|
|
if (cast<FuncDecl>(member)->isAccessor())
|
|
continue;
|
|
} else if (Impl.InferImplicitProperties) {
|
|
// Try to infer properties for matched getter/setter pairs.
|
|
// Be careful to only do this once per matched pair.
|
|
if (auto counterpart = findImplicitPropertyAccessor(objcMethod)) {
|
|
if (auto counterpartImported = Impl.importDecl(counterpart)) {
|
|
if (objcMethod->getReturnType()->isVoidType()) {
|
|
if (auto prop = makeImplicitPropertyDecl(counterpartImported,
|
|
member,
|
|
swiftContext)) {
|
|
members.push_back(prop);
|
|
} else {
|
|
// If we fail to import the implicit property, fall back to
|
|
// adding the accessors as members. We have to add BOTH
|
|
// accessors here because we already skipped over the other
|
|
// one.
|
|
members.push_back(member);
|
|
members.push_back(counterpartImported);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
} else if (auto *proto = dyn_cast<clang::ObjCProtocolDecl>(decl)) {
|
|
if (isPotentiallyConflictingSetter(proto, objcMethod))
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
members.push_back(member);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
classImplementsProtocol(const clang::ObjCInterfaceDecl *constInterface,
|
|
const clang::ObjCProtocolDecl *constProto,
|
|
bool checkCategories) {
|
|
auto interface = const_cast<clang::ObjCInterfaceDecl *>(constInterface);
|
|
auto proto = const_cast<clang::ObjCProtocolDecl *>(constProto);
|
|
return interface->ClassImplementsProtocol(proto, checkCategories);
|
|
}
|
|
|
|
/// \brief Import the members of all of the protocols to which the given
|
|
/// Objective-C class, category, or extension explicitly conforms into
|
|
/// the given list of members, so long as the the method was not already
|
|
/// declared in the class.
|
|
///
|
|
/// FIXME: This whole thing is a hack, because name lookup should really
|
|
/// just find these members when it looks in the protocol. Unfortunately,
|
|
/// that's not something the name lookup code can handle right now, and
|
|
/// it may still be necessary when the protocol's instance methods become
|
|
/// class methods on a root class (e.g. NSObject-the-protocol's instance
|
|
/// methods become class methods on NSObject).
|
|
void importMirroredProtocolMembers(const clang::ObjCContainerDecl *decl,
|
|
DeclContext *dc,
|
|
ArrayRef<ProtocolDecl *> protocols,
|
|
SmallVectorImpl<Decl *> &members,
|
|
ASTContext &Ctx) {
|
|
Type swiftTy = dc->getDeclaredTypeInContext();
|
|
auto swiftClass = swiftTy->getClassOrBoundGenericClass();
|
|
bool isRoot = swiftClass && !swiftClass->getSuperclass();
|
|
|
|
const clang::ObjCInterfaceDecl *interfaceDecl = nullptr;
|
|
const ClangModuleUnit *declModule;
|
|
const ClangModuleUnit *interfaceModule;
|
|
|
|
for (auto proto : protocols) {
|
|
auto clangProto =
|
|
cast_or_null<clang::ObjCProtocolDecl>(proto->getClangDecl());
|
|
if (!clangProto)
|
|
continue;
|
|
|
|
if (!interfaceDecl) {
|
|
declModule = Impl.getClangModuleForDecl(decl);
|
|
if ((interfaceDecl = dyn_cast<clang::ObjCInterfaceDecl>(decl))) {
|
|
interfaceModule = declModule;
|
|
} else {
|
|
auto category = cast<clang::ObjCCategoryDecl>(decl);
|
|
interfaceDecl = category->getClassInterface();
|
|
interfaceModule = Impl.getClangModuleForDecl(interfaceDecl);
|
|
}
|
|
}
|
|
|
|
// Don't import a protocol's members if the superclass already adopts
|
|
// the protocol, or (for categories) if the class itself adopts it
|
|
// in its main @interface.
|
|
if (decl != interfaceDecl)
|
|
if (classImplementsProtocol(interfaceDecl, clangProto, false))
|
|
continue;
|
|
if (auto superInterface = interfaceDecl->getSuperClass())
|
|
if (classImplementsProtocol(superInterface, clangProto, true))
|
|
continue;
|
|
|
|
for (auto member : proto->getMembers()) {
|
|
if (auto prop = dyn_cast<VarDecl>(member)) {
|
|
auto objcProp =
|
|
dyn_cast_or_null<clang::ObjCPropertyDecl>(prop->getClangDecl());
|
|
if (!objcProp)
|
|
continue;
|
|
|
|
// We can't import a property if there's already a method with this
|
|
// name. (This also covers other properties with that same name.)
|
|
// FIXME: We should still mirror the setter as a method if it's
|
|
// not already there.
|
|
clang::Selector sel = objcProp->getGetterName();
|
|
if (interfaceDecl->getInstanceMethod(sel))
|
|
continue;
|
|
|
|
bool inNearbyCategory =
|
|
std::any_of(interfaceDecl->visible_categories_begin(),
|
|
interfaceDecl->visible_categories_end(),
|
|
[=](const clang::ObjCCategoryDecl *category)->bool {
|
|
if (category != decl) {
|
|
auto *categoryModule = Impl.getClangModuleForDecl(category);
|
|
if (categoryModule != declModule &&
|
|
categoryModule != interfaceModule) {
|
|
return false;
|
|
}
|
|
}
|
|
return category->getInstanceMethod(sel);
|
|
});
|
|
if (inNearbyCategory)
|
|
continue;
|
|
|
|
if (auto imported = Impl.importMirroredDecl(objcProp, dc)) {
|
|
members.push_back(imported);
|
|
// FIXME: We should mirror properties of the root class onto the
|
|
// metatype.
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
auto afd = dyn_cast<AbstractFunctionDecl>(member);
|
|
if (!afd)
|
|
continue;
|
|
|
|
if (auto func = dyn_cast<FuncDecl>(afd))
|
|
if (func->isAccessor())
|
|
continue;
|
|
|
|
auto objcMethod =
|
|
dyn_cast_or_null<clang::ObjCMethodDecl>(member->getClangDecl());
|
|
if (!objcMethod)
|
|
continue;
|
|
|
|
// When mirroring an initializer, make it designated and required.
|
|
if (objcMethod->getMethodFamily() == clang::OMF_init &&
|
|
isReallyInitMethod(objcMethod)) {
|
|
// Import the constructor.
|
|
if (auto imported = importConstructor(
|
|
objcMethod, dc, /*implicit=*/true,
|
|
CtorInitializerKind::Designated,
|
|
/*required=*/true)){
|
|
members.push_back(imported);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Import the method.
|
|
if (auto imported = Impl.importMirroredDecl(objcMethod, dc)) {
|
|
members.push_back(imported);
|
|
}
|
|
|
|
// Import instance methods of a root class also as class methods.
|
|
if (isRoot && objcMethod->isInstanceMethod()) {
|
|
if (auto classImport = Impl.importMirroredDecl(objcMethod,
|
|
dc, true))
|
|
members.push_back(classImport);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Import constructors from our superclasses (and their
|
|
/// categories/extensions), effectively "inheriting" constructors.
|
|
void importInheritedConstructors(ClassDecl *classDecl,
|
|
SmallVectorImpl<Decl *> &newMembers) {
|
|
if (!classDecl->hasSuperclass())
|
|
return;
|
|
|
|
DeclContext *dc = classDecl;
|
|
auto inheritConstructors = [&](DeclRange members,
|
|
Optional<CtorInitializerKind> kind) {
|
|
for (auto member : members) {
|
|
auto ctor = dyn_cast<ConstructorDecl>(member);
|
|
if (!ctor)
|
|
continue;
|
|
|
|
// Don't inherit (non-convenience) factory initializers.
|
|
// Note that convenience factories return instancetype and can be
|
|
// inherited.
|
|
switch (ctor->getInitKind()) {
|
|
case CtorInitializerKind::Factory:
|
|
continue;
|
|
case CtorInitializerKind::ConvenienceFactory:
|
|
case CtorInitializerKind::Convenience:
|
|
case CtorInitializerKind::Designated:
|
|
break;
|
|
}
|
|
|
|
auto objcMethod
|
|
= dyn_cast_or_null<clang::ObjCMethodDecl>(ctor->getClangDecl());
|
|
if (!objcMethod)
|
|
continue;
|
|
|
|
// If this initializer came from a factory method, inherit
|
|
// it as an initializer.
|
|
if (objcMethod->isClassMethod()) {
|
|
assert(ctor->getInitKind() ==
|
|
CtorInitializerKind::ConvenienceFactory);
|
|
|
|
// Re-import the declaration name so that we can re-apply
|
|
// the transformations done by importMethodType.
|
|
ObjCSelector selector = ctor->getObjCSelector();
|
|
auto objcClass = objcMethod->getClassInterface();
|
|
assert(objcClass && "imported factory initializer from protocol?");
|
|
DeclName name = Impl.mapFactorySelectorToInitializerName(selector,
|
|
objcClass->getName());
|
|
assert(name && "reimporting factory selector failed?");
|
|
|
|
bool redundant;
|
|
if (auto newCtor = importConstructor(objcMethod, dc,
|
|
/*implicit=*/true,
|
|
ctor->getInitKind(),
|
|
/*required=*/false,
|
|
selector,
|
|
name,
|
|
objcMethod->parameters(),
|
|
objcMethod->isVariadic(),
|
|
redundant))
|
|
newMembers.push_back(newCtor);
|
|
continue;
|
|
}
|
|
|
|
// Figure out what kind of constructor this will be.
|
|
CtorInitializerKind myKind;
|
|
bool isRequired = false;
|
|
if (ctor->isRequired()) {
|
|
// Required initializers are always considered designated.
|
|
isRequired = true;
|
|
myKind = CtorInitializerKind::Designated;
|
|
} else if (kind) {
|
|
myKind = *kind;
|
|
} else {
|
|
myKind = ctor->getInitKind();
|
|
}
|
|
|
|
// Import the constructor into this context.
|
|
if (auto newCtor = importConstructor(objcMethod, dc,
|
|
/*implicit=*/true,
|
|
myKind,
|
|
isRequired)) {
|
|
newMembers.push_back(newCtor);
|
|
}
|
|
}
|
|
};
|
|
|
|
// The kind of initializer to import. If this class has designated
|
|
// initializers, everything it imports is a convenience initializer.
|
|
Optional<CtorInitializerKind> kind;
|
|
auto curObjCClass
|
|
= cast<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
|
|
if (Impl.hasDesignatedInitializers(curObjCClass))
|
|
kind = CtorInitializerKind::Convenience;
|
|
|
|
auto superclass
|
|
= cast<ClassDecl>(classDecl->getSuperclass()->getAnyNominal());
|
|
|
|
// If we we have a superclass, import from it.
|
|
if (auto superclassClangDecl = superclass->getClangDecl()) {
|
|
if (isa<clang::ObjCInterfaceDecl>(superclassClangDecl)) {
|
|
inheritConstructors(superclass->getMembers(), kind);
|
|
|
|
for (auto ext : superclass->getExtensions())
|
|
inheritConstructors(ext->getMembers(), kind);
|
|
}
|
|
}
|
|
}
|
|
|
|
Decl *VisitObjCCategoryDecl(const clang::ObjCCategoryDecl *decl) {
|
|
// Objective-C categories and extensions map to Swift extensions.
|
|
clang::SourceLocation categoryNameLoc = decl->getCategoryNameLoc();
|
|
if (categoryNameLoc.isMacroID()) {
|
|
// Climb up to the top-most macro invocation.
|
|
clang::Preprocessor &PP = Impl.getClangPreprocessor();
|
|
clang::SourceManager &SM = PP.getSourceManager();
|
|
clang::SourceLocation macroCaller =
|
|
SM.getImmediateMacroCallerLoc(categoryNameLoc);
|
|
while (macroCaller.isMacroID()) {
|
|
categoryNameLoc = macroCaller;
|
|
macroCaller = SM.getImmediateMacroCallerLoc(categoryNameLoc);
|
|
}
|
|
if (PP.getImmediateMacroName(categoryNameLoc) == "SWIFT_EXTENSION")
|
|
return nullptr;
|
|
}
|
|
|
|
// Find the Swift class being extended.
|
|
auto objcClass
|
|
= cast_or_null<ClassDecl>(Impl.importDecl(decl->getClassInterface()));
|
|
if (!objcClass)
|
|
return nullptr;
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// Create the extension declaration and record it.
|
|
auto loc = Impl.importSourceLoc(decl->getLocStart());
|
|
auto TyR = new (Impl.SwiftContext) SimpleIdentTypeRepr(SourceLoc(),
|
|
objcClass->getName());
|
|
ExtensionDecl::RefComponent refComponent{TyR, nullptr};
|
|
auto result = ExtensionDecl::create(Impl.SwiftContext, loc,
|
|
refComponent, { }, dc, nullptr,
|
|
decl);
|
|
result->setExtendedType(objcClass->getDeclaredType());
|
|
objcClass->addExtension(result);
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
|
|
importObjCProtocols(result, decl->getReferencedProtocols());
|
|
result->setValidated();
|
|
result->setCheckedInheritanceClause();
|
|
result->setMemberLoader(&Impl, 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
T *resolveSwiftDeclImpl(const U *decl, Identifier name, Module *adapter) {
|
|
SmallVector<ValueDecl *, 4> results;
|
|
adapter->lookupValue({}, name, NLKind::QualifiedLookup, results);
|
|
if (results.size() == 1) {
|
|
if (auto singleResult = dyn_cast<T>(results.front())) {
|
|
if (auto typeResolver = Impl.getTypeResolver())
|
|
typeResolver->resolveDeclSignature(singleResult);
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = singleResult;
|
|
return singleResult;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
T *resolveSwiftDecl(const U *decl, Identifier name,
|
|
ClangModuleUnit *clangModule) {
|
|
if (auto adapter = clangModule->getAdapterModule())
|
|
return resolveSwiftDeclImpl<T>(decl, name, adapter);
|
|
if (clangModule == Impl.ImportedHeaderUnit) {
|
|
// Use an index-based loop because new owners can come in as we're
|
|
// iterating.
|
|
for (size_t i = 0; i < Impl.ImportedHeaderOwners.size(); ++i) {
|
|
Module *owner = Impl.ImportedHeaderOwners[i];
|
|
if (T *result = resolveSwiftDeclImpl<T>(decl, name, owner))
|
|
return result;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename U>
|
|
bool hasNativeSwiftDecl(const U *decl) {
|
|
using clang::AnnotateAttr;
|
|
for (auto annotation : decl->template specific_attrs<AnnotateAttr>()) {
|
|
if (annotation->getAnnotation() == SWIFT_NATIVE_ANNOTATION_STRING) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool hasNativeSwiftDecl(const U *decl, Identifier name,
|
|
const DeclContext *dc, T *&swiftDecl) {
|
|
if (!hasNativeSwiftDecl(decl))
|
|
return false;
|
|
auto wrapperUnit = cast<ClangModuleUnit>(dc->getModuleScopeContext());
|
|
swiftDecl = resolveSwiftDecl<T>(decl, name, wrapperUnit);
|
|
return true;
|
|
}
|
|
|
|
void markMissingSwiftDecl(ValueDecl *VD) {
|
|
const char *message;
|
|
if (isa<ClassDecl>(VD))
|
|
message = "cannot find Swift declaration for this class";
|
|
else if (isa<ProtocolDecl>(VD))
|
|
message = "cannot find Swift declaration for this protocol";
|
|
else
|
|
llvm_unreachable("unknown bridged decl kind");
|
|
auto attr = AvailabilityAttr::createUnconditional(Impl.SwiftContext,
|
|
message);
|
|
VD->getAttrs().add(attr);
|
|
}
|
|
|
|
Decl *VisitObjCProtocolDecl(const clang::ObjCProtocolDecl *decl) {
|
|
clang::DeclarationName clangName = decl->getDeclName();
|
|
Identifier name = Impl.importName(clangName);
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
// FIXME: Figure out how to deal with incomplete protocols, since that
|
|
// notion doesn't exist in Swift.
|
|
if (!decl->hasDefinition()) {
|
|
// Check if this protocol is implemented in its adapter.
|
|
if (auto clangModule = Impl.getClangModuleForDecl(decl, true))
|
|
if (auto native = resolveSwiftDecl<ProtocolDecl>(decl, name,
|
|
clangModule))
|
|
return native;
|
|
|
|
forwardDeclaration = true;
|
|
return nullptr;
|
|
}
|
|
|
|
decl = decl->getDefinition();
|
|
|
|
// Test to see if there is a value with the same name as the protocol
|
|
// in the same module.
|
|
// FIXME: This will miss macros.
|
|
auto clangModule = Impl.getClangSubmoduleForDecl(decl);
|
|
if (clangModule.hasValue() && clangModule.getValue())
|
|
clangModule = clangModule.getValue()->getTopLevelModule();
|
|
|
|
auto isInSameModule = [&](const clang::Decl *D) -> bool {
|
|
auto declModule = Impl.getClangSubmoduleForDecl(D);
|
|
if (!declModule.hasValue())
|
|
return false;
|
|
// Handle the bridging header case. This is pretty nasty since things
|
|
// can get added to it *later*, but there's not much we can do.
|
|
if (!declModule.getValue())
|
|
return *clangModule == nullptr;
|
|
return *clangModule == declModule.getValue()->getTopLevelModule();
|
|
};
|
|
|
|
|
|
bool hasConflict = false;
|
|
clang::LookupResult lookupResult(Impl.getClangSema(), clangName,
|
|
clang::SourceLocation(),
|
|
clang::Sema::LookupOrdinaryName);
|
|
if (Impl.getClangSema().LookupName(lookupResult, /*scope=*/nullptr)) {
|
|
hasConflict = std::any_of(lookupResult.begin(), lookupResult.end(),
|
|
isInSameModule);
|
|
}
|
|
if (!hasConflict) {
|
|
lookupResult.clear(clang::Sema::LookupTagName);
|
|
if (Impl.getClangSema().LookupName(lookupResult, /*scope=*/nullptr)) {
|
|
hasConflict = std::any_of(lookupResult.begin(), lookupResult.end(),
|
|
isInSameModule);
|
|
}
|
|
}
|
|
|
|
Identifier origName = name;
|
|
if (hasConflict) {
|
|
SmallString<64> nameBuf{name.str()};
|
|
nameBuf += SWIFT_PROTOCOL_SUFFIX;
|
|
name = Impl.SwiftContext.getIdentifier(nameBuf.str());
|
|
}
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
ProtocolDecl *nativeDecl;
|
|
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
|
|
if (declaredNative && nativeDecl)
|
|
return nativeDecl;
|
|
|
|
// Create the protocol declaration and record it.
|
|
auto result = Impl.createDeclWithClangNode<ProtocolDecl>(decl,
|
|
dc,
|
|
Impl.importSourceLoc(decl->getLocStart()),
|
|
Impl.importSourceLoc(decl->getLocation()),
|
|
name,
|
|
None);
|
|
result->computeType();
|
|
addObjCAttribute(result, origName);
|
|
|
|
if (declaredNative)
|
|
markMissingSwiftDecl(result);
|
|
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
|
|
|
|
// Create the archetype for the implicit 'Self'.
|
|
auto selfId = Impl.SwiftContext.Id_Self;
|
|
auto selfDecl = result->getProtocolSelf();
|
|
ArchetypeType *selfArchetype =
|
|
ArchetypeType::getNew(Impl.SwiftContext, nullptr,
|
|
result, selfId,
|
|
Type(result->getDeclaredType()),
|
|
Type(), false);
|
|
selfDecl->setArchetype(selfArchetype);
|
|
|
|
// Set AllArchetypes of the protocol. ObjC protocols don't have associated
|
|
// types so only the Self archetype is present.
|
|
|
|
result->getGenericParams()->setAllArchetypes(
|
|
Impl.SwiftContext.AllocateCopy(llvm::makeArrayRef(selfArchetype)));
|
|
|
|
// Set the generic parameters and requirements.
|
|
auto genericParam = selfDecl->getDeclaredType()
|
|
->castTo<GenericTypeParamType>();
|
|
Requirement genericRequirements[2] = {
|
|
Requirement(RequirementKind::WitnessMarker, genericParam, Type()),
|
|
Requirement(RequirementKind::Conformance, genericParam,
|
|
result->getDeclaredType())
|
|
};
|
|
auto sig = GenericSignature::get(genericParam, genericRequirements);
|
|
result->setGenericSignature(sig);
|
|
|
|
result->setCircularityCheck(CircularityCheck::Checked);
|
|
|
|
// Import protocols this protocol conforms to.
|
|
importObjCProtocols(result, decl->getReferencedProtocols());
|
|
result->setCheckedInheritanceClause();
|
|
|
|
result->setMemberLoader(&Impl, 0);
|
|
|
|
// Add the protocol decl to ExternalDefinitions so that IRGen can emit
|
|
// metadata for it.
|
|
// FIXME: There might be better ways to do this.
|
|
Impl.registerExternalDecl(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
// Add inferred attributes.
|
|
void addInferredAttributes(Decl *decl, unsigned attributes) {
|
|
using namespace inferred_attributes;
|
|
if (attributes & requires_stored_property_inits) {
|
|
auto a = new (Impl.SwiftContext)
|
|
RequiresStoredPropertyInitsAttr(/*IsImplicit=*/true);
|
|
decl->getAttrs().add(a);
|
|
cast<ClassDecl>(decl)->setRequiresStoredPropertyInits(true);
|
|
}
|
|
}
|
|
|
|
Decl *VisitObjCInterfaceDecl(const clang::ObjCInterfaceDecl *decl) {
|
|
auto name = Impl.importName(decl->getDeclName());
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
auto createRootClass = [=](DeclContext *dc = nullptr) -> ClassDecl * {
|
|
if (!dc) {
|
|
dc = Impl.getClangModuleForDecl(decl->getCanonicalDecl(),
|
|
/*forwardDeclaration=*/true);
|
|
}
|
|
|
|
auto result = Impl.createDeclWithClangNode<ClassDecl>(decl,
|
|
SourceLoc(), name,
|
|
SourceLoc(), None,
|
|
nullptr, dc);
|
|
result->computeType();
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
|
|
result->setCircularityCheck(CircularityCheck::Checked);
|
|
result->setSuperclass(Type());
|
|
result->setCheckedInheritanceClause();
|
|
result->setAddedImplicitInitializers(); // suppress all initializers
|
|
addObjCAttribute(result, name);
|
|
Impl.registerExternalDecl(result);
|
|
return result;
|
|
};
|
|
|
|
// Special case for Protocol, which gets forward-declared as an ObjC
|
|
// class which is hidden in modern Objective-C runtimes.
|
|
// We treat it as a foreign class (like a CF type) because it doesn't
|
|
// have a real public class object.
|
|
clang::ASTContext &clangCtx = Impl.getClangASTContext();
|
|
if (decl->getCanonicalDecl() ==
|
|
clangCtx.getObjCProtocolDecl()->getCanonicalDecl()) {
|
|
Type nsObjectTy = Impl.getNSObjectType();
|
|
if (!nsObjectTy)
|
|
return nullptr;
|
|
const ClassDecl *nsObjectDecl =
|
|
nsObjectTy->getClassOrBoundGenericClass();
|
|
|
|
auto result = createRootClass(nsObjectDecl->getDeclContext());
|
|
result->setForeign(true);
|
|
return result;
|
|
}
|
|
|
|
if (!decl->hasDefinition()) {
|
|
// Check if this class is implemented in its adapter.
|
|
if (auto clangModule = Impl.getClangModuleForDecl(decl, true)) {
|
|
if (auto native = resolveSwiftDecl<ClassDecl>(decl, name,
|
|
clangModule)) {
|
|
return native;
|
|
}
|
|
}
|
|
|
|
if (Impl.ImportForwardDeclarations) {
|
|
// Fake it by making an unavailable opaque @objc root class.
|
|
auto result = createRootClass();
|
|
result->setImplicit();
|
|
auto attr = AvailabilityAttr::createUnconditional(Impl.SwiftContext,
|
|
"This Objective-C class has only been forward-declared; "
|
|
"import its owning module to use it");
|
|
result->getAttrs().add(attr);
|
|
return result;
|
|
}
|
|
|
|
forwardDeclaration = true;
|
|
return nullptr;
|
|
}
|
|
|
|
decl = decl->getDefinition();
|
|
assert(decl);
|
|
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
ClassDecl *nativeDecl;
|
|
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
|
|
if (declaredNative && nativeDecl)
|
|
return nativeDecl;
|
|
|
|
// Create the class declaration and record it.
|
|
auto result = Impl.createDeclWithClangNode<ClassDecl>(decl,
|
|
Impl.importSourceLoc(decl->getLocStart()),
|
|
name,
|
|
Impl.importSourceLoc(decl->getLocation()),
|
|
None, nullptr, dc);
|
|
result->computeType();
|
|
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
|
|
result->setCircularityCheck(CircularityCheck::Checked);
|
|
result->setAddedImplicitInitializers();
|
|
addObjCAttribute(result, name);
|
|
|
|
if (declaredNative)
|
|
markMissingSwiftDecl(result);
|
|
|
|
// If this Objective-C class has a supertype, import it.
|
|
if (auto objcSuper = decl->getSuperClass()) {
|
|
auto super = cast_or_null<ClassDecl>(Impl.importDecl(objcSuper));
|
|
if (!super)
|
|
return nullptr;
|
|
|
|
result->setSuperclass(super->getDeclaredType());
|
|
}
|
|
|
|
// Import protocols this class conforms to.
|
|
importObjCProtocols(result, decl->getReferencedProtocols());
|
|
result->setCheckedInheritanceClause();
|
|
|
|
// Add inferred attributes.
|
|
#define INFERRED_ATTRIBUTES(ModuleName, ClassName, AttributeSet) \
|
|
if (name.str().equals(#ClassName) && \
|
|
result->getParentModule()->Name.str().equals(#ModuleName)) { \
|
|
using namespace inferred_attributes; \
|
|
addInferredAttributes(result, AttributeSet); \
|
|
}
|
|
#include "InferredAttributes.def"
|
|
|
|
result->setMemberLoader(&Impl, 0);
|
|
|
|
// Pass the class to the type checker to create an implicit destructor.
|
|
Impl.registerExternalDecl(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *VisitObjCImplDecl(const clang::ObjCImplDecl *decl) {
|
|
// Implementations of Objective-C classes and categories are not
|
|
// reflected into Swift.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl) {
|
|
auto dc = Impl.importDeclContextOf(decl);
|
|
if (!dc)
|
|
return nullptr;
|
|
|
|
// While importing the DeclContext, we might have imported the decl
|
|
// itself.
|
|
if (auto Known = Impl.importDeclCached(decl))
|
|
return Known;
|
|
|
|
return VisitObjCPropertyDecl(decl, dc);
|
|
}
|
|
|
|
void applyPropertyOwnership(
|
|
VarDecl *prop, clang::ObjCPropertyDecl::PropertyAttributeKind attrs) {
|
|
Type ty = prop->getType();
|
|
if (auto innerTy = ty->getAnyOptionalObjectType())
|
|
ty = innerTy;
|
|
if (!ty->isAnyClassReferenceType())
|
|
return;
|
|
|
|
ASTContext &ctx = prop->getASTContext();
|
|
if (attrs & clang::ObjCPropertyDecl::OBJC_PR_copy) {
|
|
prop->getAttrs().add(new (ctx) NSCopyingAttr(false));
|
|
return;
|
|
}
|
|
if (attrs & clang::ObjCPropertyDecl::OBJC_PR_weak) {
|
|
prop->getAttrs().add(new (ctx) OwnershipAttr(Ownership::Weak));
|
|
prop->overwriteType(WeakStorageType::get(prop->getType(), ctx));
|
|
return;
|
|
}
|
|
if ((attrs & clang::ObjCPropertyDecl::OBJC_PR_assign) ||
|
|
(attrs & clang::ObjCPropertyDecl::OBJC_PR_unsafe_unretained)) {
|
|
prop->getAttrs().add(new (ctx) OwnershipAttr(Ownership::Unmanaged));
|
|
prop->overwriteType(UnmanagedStorageType::get(prop->getType(), ctx));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Hack: Handle the case where a property is declared \c readonly in the
|
|
/// main class interface (either explicitly or because of an adopted
|
|
/// protocol) and then \c readwrite in a category/extension.
|
|
///
|
|
/// \see VisitObjCPropertyDecl
|
|
void handlePropertyRedeclaration(VarDecl *original,
|
|
const clang::ObjCPropertyDecl *redecl) {
|
|
// If the property isn't from Clang, we can't safely update it.
|
|
if (!original->hasClangNode())
|
|
return;
|
|
|
|
// If the original declaration was implicit, we may want to change that.
|
|
if (original->isImplicit() && !redecl->isImplicit() &&
|
|
!isa<clang::ObjCProtocolDecl>(redecl->getDeclContext()))
|
|
original->setImplicit(false);
|
|
|
|
if (!original->getAttrs().hasAttribute<OwnershipAttr>() &&
|
|
!original->getAttrs().hasAttribute<NSCopyingAttr>()) {
|
|
applyPropertyOwnership(original,
|
|
redecl->getPropertyAttributesAsWritten());
|
|
}
|
|
|
|
auto clangSetter = redecl->getSetterMethodDecl();
|
|
if (!clangSetter)
|
|
return;
|
|
|
|
// The only other transformation we know how to do safely is add a
|
|
// setter. If the property is already settable, we're done.
|
|
if (original->isSettable(nullptr))
|
|
return;
|
|
|
|
FuncDecl *setter = importAccessor(clangSetter,
|
|
original->getDeclContext());
|
|
if (!setter)
|
|
return;
|
|
|
|
original->setComputedSetter(setter);
|
|
}
|
|
|
|
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl,
|
|
DeclContext *dc) {
|
|
auto name = Impl.importName(decl->getDeclName());
|
|
if (name.empty())
|
|
return nullptr;
|
|
|
|
if (Impl.isAccessibilityDecl(decl))
|
|
return nullptr;
|
|
|
|
// Check whether there is a function with the same name as this
|
|
// property. If so, suppress the property; the user will have to use
|
|
// the methods directly, to avoid ambiguities.
|
|
auto containerTy = dc->getDeclaredTypeInContext();
|
|
VarDecl *overridden = nullptr;
|
|
SmallVector<ValueDecl *, 2> lookup;
|
|
dc->lookupQualified(containerTy, name,
|
|
NL_QualifiedDefault | NL_KnownNoDependency,
|
|
Impl.getTypeResolver(), lookup);
|
|
for (auto result : lookup) {
|
|
if (isa<FuncDecl>(result) && result->isInstanceMember() &&
|
|
result->getFullName().getArgumentNames().empty())
|
|
return nullptr;
|
|
|
|
if (auto var = dyn_cast<VarDecl>(result))
|
|
overridden = var;
|
|
}
|
|
|
|
if (overridden) {
|
|
const DeclContext *overrideContext = overridden->getDeclContext();
|
|
if (overrideContext != dc &&
|
|
overrideContext->getDeclaredTypeInContext()->isEqual(containerTy)) {
|
|
// We've encountered a redeclaration of the property.
|
|
// HACK: Just update the original declaration instead of importing a
|
|
// second property.
|
|
handlePropertyRedeclaration(overridden, decl);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
Type type = Impl.importPropertyType(decl, isInSystemModule(dc));
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
// Import the getter.
|
|
FuncDecl *getter = nullptr;
|
|
if (auto clangGetter = decl->getGetterMethodDecl()) {
|
|
getter = importAccessor(clangGetter, dc);
|
|
if (!getter)
|
|
return nullptr;
|
|
}
|
|
|
|
// Import the setter, if there is one.
|
|
FuncDecl *setter = nullptr;
|
|
if (auto clangSetter = decl->getSetterMethodDecl()) {
|
|
setter = importAccessor(clangSetter, dc);
|
|
if (!setter)
|
|
return nullptr;
|
|
}
|
|
|
|
// Check whether the property already got imported.
|
|
if (dc == Impl.importDeclContextOf(decl)) {
|
|
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
|
|
if (known != Impl.ImportedDecls.end())
|
|
return known->second;
|
|
}
|
|
|
|
auto result = Impl.createDeclWithClangNode<VarDecl>(decl,
|
|
/*static*/ false, /*IsLet*/ false,
|
|
Impl.importSourceLoc(decl->getLocation()),
|
|
name, type, dc);
|
|
|
|
// Turn this into a computed property.
|
|
// FIXME: Fake locations for '{' and '}'?
|
|
result->makeComputed(SourceLoc(), getter, setter, nullptr, SourceLoc());
|
|
addObjCAttribute(result, None);
|
|
applyPropertyOwnership(result, decl->getPropertyAttributesAsWritten());
|
|
|
|
// Handle attributes.
|
|
if (decl->hasAttr<clang::IBOutletAttr>())
|
|
result->getAttrs().add(
|
|
new (Impl.SwiftContext) IBOutletAttr(/*IsImplicit=*/false));
|
|
if (decl->getPropertyImplementation() == clang::ObjCPropertyDecl::Optional
|
|
&& isa<ProtocolDecl>(dc) &&
|
|
!result->getAttrs().hasAttribute<OptionalAttr>())
|
|
result->getAttrs().add(new (Impl.SwiftContext)
|
|
OptionalAttr(/*implicit*/false));
|
|
// FIXME: Handle IBOutletCollection.
|
|
|
|
if (overridden)
|
|
result->setOverriddenDecl(overridden);
|
|
|
|
return result;
|
|
}
|
|
|
|
Decl *
|
|
VisitObjCCompatibleAliasDecl(const clang::ObjCCompatibleAliasDecl *decl) {
|
|
// Like C++ using declarations, name lookup simply looks through
|
|
// Objective-C compatibility aliases. They are not imported directly.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitLinkageSpecDecl(const clang::LinkageSpecDecl *decl) {
|
|
// Linkage specifications are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitObjCPropertyImplDecl(const clang::ObjCPropertyImplDecl *decl) {
|
|
// @synthesize and @dynamic are not imported, since they are not part
|
|
// of the interface to a class.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitFileScopeAsmDecl(const clang::FileScopeAsmDecl *decl) {
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitAccessSpecDecl(const clang::AccessSpecDecl *decl) {
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitFriendDecl(const clang::FriendDecl *decl) {
|
|
// Friends are not imported; Swift has a different access control
|
|
// mechanism.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitFriendTemplateDecl(const clang::FriendTemplateDecl *decl) {
|
|
// Friends are not imported; Swift has a different access control
|
|
// mechanism.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitStaticAssertDecl(const clang::StaticAssertDecl *decl) {
|
|
// Static assertions are an implementation detail.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitBlockDecl(const clang::BlockDecl *decl) {
|
|
// Blocks are not imported (although block types can be imported).
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitClassScopeFunctionSpecializationDecl(
|
|
const clang::ClassScopeFunctionSpecializationDecl *decl) {
|
|
// Note: templates are not imported.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *VisitImportDecl(const clang::ImportDecl *decl) {
|
|
// Transitive module imports are not handled at the declaration level.
|
|
// Rather, they are understood from the module itself.
|
|
return nullptr;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Classify the given Clang enumeration to describe how to import it.
|
|
EnumKind ClangImporter::Implementation::
|
|
classifyEnum(const clang::EnumDecl *decl) {
|
|
Identifier name;
|
|
if (decl->getDeclName())
|
|
name = importName(decl->getDeclName());
|
|
else if (decl->getTypedefNameForAnonDecl())
|
|
name = importName(decl->getTypedefNameForAnonDecl()->getDeclName());
|
|
|
|
// Anonymous enumerations simply get mapped to constants of the
|
|
// underlying type of the enum, because there is no way to conjure up a
|
|
// name for the Swift type.
|
|
if (name.empty())
|
|
return EnumKind::Constants;
|
|
|
|
// Was the enum declared using *_ENUM or *_OPTIONS?
|
|
// FIXME: Use Clang attributes instead of grovelling the macro expansion loc.
|
|
auto loc = decl->getLocStart();
|
|
if (loc.isMacroID()) {
|
|
StringRef MacroName = getClangPreprocessor().getImmediateMacroName(loc);
|
|
if (MacroName == "CF_ENUM" || MacroName == "OBJC_ENUM" ||
|
|
MacroName == "SWIFT_ENUM" || MacroName == "__CF_NAMED_ENUM")
|
|
return EnumKind::Enum;
|
|
if (MacroName == "CF_OPTIONS" || MacroName == "OBJC_OPTIONS"
|
|
|| MacroName == "SWIFT_OPTIONS")
|
|
return EnumKind::Options;
|
|
}
|
|
|
|
// Fall back to the 'Unknown' path.
|
|
return EnumKind::Unknown;
|
|
}
|
|
|
|
Decl *ClangImporter::Implementation::importDeclCached(
|
|
const clang::NamedDecl *ClangDecl) {
|
|
auto Known = ImportedDecls.find(ClangDecl->getCanonicalDecl());
|
|
if (Known != ImportedDecls.end())
|
|
return Known->second;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Checks if we don't need to import the typedef itself. If the typedef
|
|
/// should be skipped, returns the underlying declaration that the typedef
|
|
/// refers to -- this declaration should be imported instead.
|
|
static const clang::TagDecl *
|
|
canSkipOverTypedef(ClangImporter::Implementation &Impl,
|
|
const clang::NamedDecl *D,
|
|
bool &TypedefIsSuperfluous) {
|
|
// If we have a typedef that refers to a tag type of the same name,
|
|
// skip the typedef and import the tag type directly.
|
|
|
|
TypedefIsSuperfluous = false;
|
|
|
|
auto *ClangTypedef = dyn_cast<clang::TypedefNameDecl>(D);
|
|
if (!ClangTypedef)
|
|
return nullptr;
|
|
|
|
const clang::DeclContext *RedeclContext =
|
|
ClangTypedef->getDeclContext()->getRedeclContext();
|
|
if (!RedeclContext->isTranslationUnit())
|
|
return nullptr;
|
|
|
|
clang::QualType UnderlyingType = ClangTypedef->getUnderlyingType();
|
|
|
|
// A typedef to a typedef should get imported as a typealias.
|
|
auto *TypedefT = UnderlyingType->getAs<clang::TypedefType>();
|
|
if (TypedefT)
|
|
return nullptr;
|
|
|
|
auto *TT = UnderlyingType->getAs<clang::TagType>();
|
|
if (!TT)
|
|
return nullptr;
|
|
|
|
clang::TagDecl *UnderlyingDecl = TT->getDecl();
|
|
if (UnderlyingDecl->getDeclContext()->getRedeclContext() != RedeclContext)
|
|
return nullptr;
|
|
|
|
if (UnderlyingDecl->getDeclName().isEmpty())
|
|
return UnderlyingDecl;
|
|
|
|
auto TypedefName = ClangTypedef->getDeclName();
|
|
auto TagDeclName = UnderlyingDecl->getDeclName();
|
|
if (TypedefName != TagDeclName)
|
|
return nullptr;
|
|
|
|
TypedefIsSuperfluous = true;
|
|
return UnderlyingDecl;
|
|
}
|
|
|
|
/// Import Clang attributes as Swift attributes.
|
|
void ClangImporter::Implementation::importAttributes(
|
|
const clang::NamedDecl *ClangDecl,
|
|
Decl *MappedDecl)
|
|
{
|
|
ASTContext &C = SwiftContext;
|
|
|
|
if (auto maybeDefinition = getDefinitionForClangTypeDecl(ClangDecl))
|
|
if (maybeDefinition.getValue())
|
|
ClangDecl = cast<clang::NamedDecl>(maybeDefinition.getValue());
|
|
|
|
// Scan through Clang attributes and map them onto Swift
|
|
// equivalents.
|
|
bool AnyUnavailable = false;
|
|
for (clang::NamedDecl::attr_iterator AI = ClangDecl->attr_begin(),
|
|
AE = ClangDecl->attr_end(); AI != AE; ++AI) {
|
|
//
|
|
// __attribute__((unavailable)
|
|
//
|
|
// Mapping: @availability(*,unavailable)
|
|
//
|
|
if (auto unavailable = dyn_cast<clang::UnavailableAttr>(*AI)) {
|
|
auto Message = unavailable->getMessage();
|
|
auto attr = AvailabilityAttr::createUnconditional(C, Message);
|
|
MappedDecl->getAttrs().add(attr);
|
|
AnyUnavailable = true;
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// __attribute__((annotate(swift1_unavailable)))
|
|
//
|
|
// Mapping: @availability(*, unavailable)
|
|
//
|
|
if (auto unavailable_annot = dyn_cast<clang::AnnotateAttr>(*AI))
|
|
if (unavailable_annot->getAnnotation() == "swift1_unavailable") {
|
|
auto attr = AvailabilityAttr::createUnconditional(
|
|
C, "", "", UnconditionalAvailabilityKind::UnavailableInSwift);
|
|
MappedDecl->getAttrs().add(attr);
|
|
AnyUnavailable = true;
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// __attribute__((deprecated))
|
|
//
|
|
// Mapping: @availability(*,deprecated)
|
|
//
|
|
if (auto deprecated = dyn_cast<clang::DeprecatedAttr>(*AI)) {
|
|
auto Message = deprecated->getMessage();
|
|
auto attr = AvailabilityAttr::createUnconditional(C, Message, "",
|
|
UnconditionalAvailabilityKind::Deprecated);
|
|
MappedDecl->getAttrs().add(attr);
|
|
continue;
|
|
}
|
|
|
|
// __attribute__((availability))
|
|
//
|
|
if (auto avail = dyn_cast<clang::AvailabilityAttr>(*AI)) {
|
|
StringRef Platform = avail->getPlatform()->getName();
|
|
|
|
// Is this our special "availability(swift, unavailable)" attribute?
|
|
if (Platform == "swift") {
|
|
auto attr = AvailabilityAttr::createUnconditional(
|
|
C, avail->getMessage(), /*renamed*/"",
|
|
UnconditionalAvailabilityKind::UnavailableInSwift);
|
|
MappedDecl->getAttrs().add(attr);
|
|
AnyUnavailable = true;
|
|
continue;
|
|
}
|
|
|
|
// Does this availability attribute map to the platform we are
|
|
// currently targeting?
|
|
if (!PlatformAvailabilityFilter ||
|
|
!PlatformAvailabilityFilter(Platform))
|
|
continue;
|
|
|
|
// Translate from Clang platform strings to known Swift platforms.
|
|
// We need to handle watchOS here, as well.
|
|
// rdar://problem/20774229
|
|
auto platformK =
|
|
llvm::StringSwitch<Optional<PlatformKind>>(Platform)
|
|
.Case("ios", PlatformKind::iOS)
|
|
.Case("macosx", PlatformKind::OSX)
|
|
.Case("tvos", PlatformKind::tvOS)
|
|
.Case("ios_app_extension", PlatformKind::iOSApplicationExtension)
|
|
.Case("macosx_app_extension",
|
|
PlatformKind::OSXApplicationExtension)
|
|
.Case("tvos_app_extension",
|
|
PlatformKind::tvOSApplicationExtension)
|
|
.Default(None);
|
|
if (!platformK)
|
|
continue;
|
|
|
|
// Is this declaration marked unconditionally unavailable?
|
|
auto Unconditional = UnconditionalAvailabilityKind::None;
|
|
if (avail->getUnavailable()) {
|
|
Unconditional = UnconditionalAvailabilityKind::Unavailable;
|
|
AnyUnavailable = true;
|
|
}
|
|
|
|
StringRef message = avail->getMessage();
|
|
|
|
const auto &deprecated = avail->getDeprecated();
|
|
if (!deprecated.empty()) {
|
|
if (DeprecatedAsUnavailableFilter &&
|
|
DeprecatedAsUnavailableFilter(deprecated.getMajor(),
|
|
deprecated.getMinor())) {
|
|
AnyUnavailable = true;
|
|
Unconditional = UnconditionalAvailabilityKind::Unavailable;
|
|
if (message.empty())
|
|
message = DeprecatedAsUnavailableMessage;
|
|
}
|
|
}
|
|
|
|
const auto &obsoleted = avail->getObsoleted();
|
|
const auto &introduced = avail->getIntroduced();
|
|
|
|
auto AvAttr = new (C) AvailabilityAttr(SourceLoc(), SourceRange(),
|
|
platformK.getValue(),
|
|
message, /*rename*/StringRef(),
|
|
introduced, deprecated, obsoleted,
|
|
Unconditional, /*implicit=*/false);
|
|
|
|
MappedDecl->getAttrs().add(AvAttr);
|
|
}
|
|
}
|
|
|
|
// If the declaration is unavailable, we're done.
|
|
if (AnyUnavailable)
|
|
return;
|
|
|
|
// Add implicit attributes.
|
|
if (auto MD = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
|
|
// Ban uses of 'performSelector'.
|
|
auto sel = MD->getSelector();
|
|
if (sel.getNameForSlot(0).startswith("performSelector") ||
|
|
sel.getNameForSlot(0).startswith("makeObjectsPerformSelector")) {
|
|
auto attr = AvailabilityAttr::createUnconditional(C,
|
|
"'performSelector' methods are unavailable");
|
|
MappedDecl->getAttrs().add(attr);
|
|
return;
|
|
}
|
|
|
|
// Any knowledge of methods known due to our whitelists.
|
|
if (auto knownMethod = getKnownObjCMethod(MD)) {
|
|
// Availability.
|
|
if (knownMethod->Unavailable) {
|
|
auto attr = AvailabilityAttr::createUnconditional(
|
|
C,
|
|
SwiftContext.AllocateCopy(knownMethod->UnavailableMsg));
|
|
MappedDecl->getAttrs().add(attr);
|
|
|
|
// If we made a protocol requirement unavailable, mark it optional:
|
|
// nobody should have to satisfy it.
|
|
if (isa<ProtocolDecl>(MappedDecl->getDeclContext())) {
|
|
if (!MappedDecl->getAttrs().hasAttribute<OptionalAttr>())
|
|
MappedDecl->getAttrs().add(new (C) OptionalAttr(/*implicit*/false));
|
|
}
|
|
}
|
|
}
|
|
} else if (auto PD = dyn_cast<clang::ObjCPropertyDecl>(ClangDecl)) {
|
|
if (auto knownProperty = getKnownObjCProperty(PD)) {
|
|
if (knownProperty->Unavailable) {
|
|
auto attr = AvailabilityAttr::createUnconditional(
|
|
C,
|
|
SwiftContext.AllocateCopy(knownProperty->UnavailableMsg));
|
|
MappedDecl->getAttrs().add(attr);
|
|
}
|
|
}
|
|
} else if (auto CD = dyn_cast<clang::ObjCContainerDecl>(ClangDecl)) {
|
|
if (isa<clang::ObjCInterfaceDecl>(CD) || isa<clang::ObjCProtocolDecl>(CD)) {
|
|
if (auto knownContext = getKnownObjCContext(CD)) {
|
|
if (knownContext->Unavailable) {
|
|
auto attr = AvailabilityAttr::createUnconditional(
|
|
C,
|
|
SwiftContext.AllocateCopy(
|
|
knownContext->UnavailableMsg));
|
|
MappedDecl->getAttrs().add(attr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ban NSInvocation.
|
|
if (auto ID = dyn_cast<clang::ObjCInterfaceDecl>(ClangDecl)) {
|
|
if (ID->getName() == "NSInvocation") {
|
|
auto attr = AvailabilityAttr::createUnconditional(C, "");
|
|
MappedDecl->getAttrs().add(attr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Ban CFRelease|CFRetain|CFAutorelease(CFTypeRef) as well as custom ones
|
|
// such as CGColorRelease(CGColorRef).
|
|
if (auto FD = dyn_cast<clang::FunctionDecl>(ClangDecl)) {
|
|
if (FD->getNumParams() == 1 &&
|
|
(FD->getName().endswith("Release") ||
|
|
FD->getName().endswith("Retain") ||
|
|
FD->getName().endswith("Autorelease")))
|
|
if (auto t = FD->getParamDecl(0)->getType()->getAs<clang::TypedefType>())
|
|
if (isCFTypeDecl(t->getDecl())) {
|
|
auto attr = AvailabilityAttr::createUnconditional(C,
|
|
"Core Foundation objects are automatically memory managed");
|
|
MappedDecl->getAttrs().add(attr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Map __attribute__((warn_unused_result)).
|
|
if (ClangDecl->hasAttr<clang::WarnUnusedResultAttr>()) {
|
|
MappedDecl->getAttrs().add(new (C) WarnUnusedResultAttr(SourceLoc(),
|
|
SourceLoc(),
|
|
false));
|
|
}
|
|
}
|
|
|
|
Decl *
|
|
ClangImporter::Implementation::importDeclImpl(const clang::NamedDecl *ClangDecl,
|
|
bool &TypedefIsSuperfluous,
|
|
bool &HadForwardDeclaration) {
|
|
assert(ClangDecl);
|
|
|
|
bool SkippedOverTypedef = false;
|
|
Decl *Result = nullptr;
|
|
if (auto *UnderlyingDecl = canSkipOverTypedef(*this, ClangDecl,
|
|
TypedefIsSuperfluous)) {
|
|
Result = importDecl(UnderlyingDecl);
|
|
SkippedOverTypedef = true;
|
|
}
|
|
|
|
if (!Result) {
|
|
SwiftDeclConverter converter(*this);
|
|
Result = converter.Visit(ClangDecl);
|
|
HadForwardDeclaration = converter.hadForwardDeclaration();
|
|
}
|
|
if (!Result)
|
|
return nullptr;
|
|
|
|
if (Result)
|
|
importAttributes(ClangDecl, Result);
|
|
|
|
#ifndef NDEBUG
|
|
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
|
|
|
|
// Note that the decl was imported from Clang. Don't mark Swift decls as
|
|
// imported.
|
|
if (!Result->getDeclContext()->isModuleScopeContext() ||
|
|
isa<ClangModuleUnit>(Result->getDeclContext())) {
|
|
// Either the Swift declaration was from stdlib,
|
|
// or we imported the underlying decl of the typedef,
|
|
// or we imported the decl itself.
|
|
bool ImportedCorrectly =
|
|
!Result->getClangDecl() || SkippedOverTypedef ||
|
|
Result->getClangDecl()->getCanonicalDecl() == Canon;
|
|
|
|
// Or the other type is a typedef,
|
|
if (!ImportedCorrectly &&
|
|
isa<clang::TypedefNameDecl>(Result->getClangDecl())) {
|
|
// both types are ValueDecls:
|
|
if (isa<clang::ValueDecl>(Result->getClangDecl())) {
|
|
ImportedCorrectly =
|
|
getClangASTContext().hasSameType(
|
|
cast<clang::ValueDecl>(Result->getClangDecl())->getType(),
|
|
cast<clang::ValueDecl>(Canon)->getType());
|
|
} else if (isa<clang::TypeDecl>(Result->getClangDecl())) {
|
|
// both types are TypeDecls:
|
|
ImportedCorrectly =
|
|
getClangASTContext().hasSameUnqualifiedType(
|
|
getClangASTContext().getTypeDeclType(
|
|
cast<clang::TypeDecl>(Result->getClangDecl())),
|
|
getClangASTContext().getTypeDeclType(
|
|
cast<clang::TypeDecl>(Canon)));
|
|
}
|
|
assert(ImportedCorrectly);
|
|
}
|
|
assert(Result->hasClangNode());
|
|
}
|
|
#else
|
|
(void)SkippedOverTypedef;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
void ClangImporter::Implementation::startedImportingEntity() {
|
|
++NumCurrentImportingEntities;
|
|
++NumTotalImportedEntities;
|
|
}
|
|
|
|
void ClangImporter::Implementation::finishedImportingEntity() {
|
|
assert(NumCurrentImportingEntities &&
|
|
"finishedImportingEntity not paired with startedImportingEntity");
|
|
if (NumCurrentImportingEntities == 1) {
|
|
// We decrease NumCurrentImportingEntities only after pending actions
|
|
// are finished, to avoid recursively re-calling finishPendingActions().
|
|
finishPendingActions();
|
|
}
|
|
--NumCurrentImportingEntities;
|
|
}
|
|
|
|
void ClangImporter::Implementation::finishPendingActions() {
|
|
while (true) {
|
|
if (!RegisteredExternalDecls.empty()) {
|
|
if (hasFinishedTypeChecking()) {
|
|
RegisteredExternalDecls.clear();
|
|
} else {
|
|
Decl *D = RegisteredExternalDecls.pop_back_val();
|
|
SwiftContext.addedExternalDecl(D);
|
|
if (auto typeResolver = getTypeResolver())
|
|
if (auto *nominal = dyn_cast<NominalTypeDecl>(D))
|
|
if (!nominal->hasDelayedMembers())
|
|
typeResolver->resolveExternalDeclImplicitMembers(nominal);
|
|
}
|
|
} else if (!DelayedProtocolConformances.empty()) {
|
|
NormalProtocolConformance *conformance =
|
|
DelayedProtocolConformances.pop_back_val();
|
|
finishProtocolConformance(conformance);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Finish the given protocol conformance (for an imported type)
|
|
/// by filling in any missing witnesses.
|
|
void ClangImporter::Implementation::finishProtocolConformance(
|
|
NormalProtocolConformance *conformance) {
|
|
// Create witnesses for requirements not already met.
|
|
for (auto req : conformance->getProtocol()->getMembers()) {
|
|
auto valueReq = dyn_cast<ValueDecl>(req);
|
|
if (!valueReq)
|
|
continue;
|
|
|
|
if (!conformance->hasWitness(valueReq)) {
|
|
if (auto func = dyn_cast<AbstractFunctionDecl>(valueReq)){
|
|
// For an optional requirement, record an empty witness:
|
|
// we'll end up querying this at runtime.
|
|
auto Attrs = func->getAttrs();
|
|
if (Attrs.hasAttribute<OptionalAttr>()) {
|
|
conformance->setWitness(valueReq, ConcreteDeclRef());
|
|
continue;
|
|
}
|
|
}
|
|
|
|
conformance->setWitness(valueReq, valueReq);
|
|
} else {
|
|
// An initializer that conforms to a requirement is required.
|
|
auto witness = conformance->getWitness(valueReq, nullptr).getDecl();
|
|
if (auto ctor = dyn_cast_or_null<ConstructorDecl>(witness)) {
|
|
if (!ctor->getAttrs().hasAttribute<RequiredAttr>()) {
|
|
ctor->getAttrs().add(
|
|
new (SwiftContext) RequiredAttr(/*implicit=*/true));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
conformance->setState(ProtocolConformanceState::Complete);
|
|
}
|
|
|
|
Decl *ClangImporter::Implementation::importDeclAndCacheImpl(
|
|
const clang::NamedDecl *ClangDecl,
|
|
bool SuperfluousTypedefsAreTransparent) {
|
|
if (!ClangDecl)
|
|
return nullptr;
|
|
|
|
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
|
|
|
|
if (auto Known = importDeclCached(Canon)) {
|
|
if (!SuperfluousTypedefsAreTransparent &&
|
|
SuperfluousTypedefs.count(Canon))
|
|
return nullptr;
|
|
return Known;
|
|
}
|
|
|
|
bool TypedefIsSuperfluous = false;
|
|
bool HadForwardDeclaration = false;
|
|
|
|
ImportingEntityRAII ImportingEntity(*this);
|
|
Decl *Result = importDeclImpl(ClangDecl, TypedefIsSuperfluous,
|
|
HadForwardDeclaration);
|
|
if (!Result)
|
|
return nullptr;
|
|
|
|
if (TypedefIsSuperfluous) {
|
|
SuperfluousTypedefs.insert(Canon);
|
|
if (auto tagDecl = dyn_cast_or_null<clang::TagDecl>(Result->getClangDecl()))
|
|
DeclsWithSuperfluousTypedefs.insert(tagDecl);
|
|
}
|
|
|
|
if (!HadForwardDeclaration)
|
|
ImportedDecls[Canon] = Result;
|
|
|
|
if (!SuperfluousTypedefsAreTransparent && TypedefIsSuperfluous)
|
|
return nullptr;
|
|
|
|
return Result;
|
|
}
|
|
|
|
Decl *
|
|
ClangImporter::Implementation::importMirroredDecl(const clang::NamedDecl *decl,
|
|
DeclContext *dc,
|
|
bool forceClassMethod) {
|
|
if (!decl)
|
|
return nullptr;
|
|
|
|
auto canon = decl->getCanonicalDecl();
|
|
auto known = ImportedProtocolDecls.find({{canon, forceClassMethod}, dc });
|
|
if (known != ImportedProtocolDecls.end())
|
|
return known->second;
|
|
|
|
SwiftDeclConverter converter(*this);
|
|
Decl *result;
|
|
if (auto method = dyn_cast<clang::ObjCMethodDecl>(decl)) {
|
|
result = converter.VisitObjCMethodDecl(method, dc, forceClassMethod);
|
|
} else if (auto prop = dyn_cast<clang::ObjCPropertyDecl>(decl)) {
|
|
assert(!forceClassMethod && "can't mirror properties yet");
|
|
result = converter.VisitObjCPropertyDecl(prop, dc);
|
|
} else {
|
|
llvm_unreachable("unexpected mirrored decl");
|
|
}
|
|
|
|
if (result) {
|
|
if (!forceClassMethod) {
|
|
if (auto special = converter.importSpecialMethod(result, dc))
|
|
result = special;
|
|
}
|
|
|
|
assert(result->getClangDecl() && result->getClangDecl() == canon);
|
|
result->setImplicit();
|
|
|
|
// Map the Clang attributes onto Swift attributes.
|
|
importAttributes(decl, result);
|
|
}
|
|
if (result || !converter.hadForwardDeclaration())
|
|
ImportedProtocolDecls[{{canon, forceClassMethod}, dc}] = result;
|
|
return result;
|
|
}
|
|
|
|
DeclContext *ClangImporter::Implementation::importDeclContextImpl(
|
|
const clang::DeclContext *dc) {
|
|
// Every declaration should come from a module, so we should not see the
|
|
// TranslationUnit DeclContext here.
|
|
assert(!dc->isTranslationUnit());
|
|
|
|
auto decl = dyn_cast<clang::NamedDecl>(dc);
|
|
if (!decl)
|
|
return nullptr;
|
|
|
|
auto swiftDecl = importDecl(decl);
|
|
if (!swiftDecl)
|
|
return nullptr;
|
|
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(swiftDecl))
|
|
return nominal;
|
|
if (auto extension = dyn_cast<ExtensionDecl>(swiftDecl))
|
|
return extension;
|
|
if (auto constructor = dyn_cast<ConstructorDecl>(swiftDecl))
|
|
return constructor;
|
|
if (auto destructor = dyn_cast<DestructorDecl>(swiftDecl))
|
|
return destructor;
|
|
return nullptr;
|
|
}
|
|
|
|
DeclContext *
|
|
ClangImporter::Implementation::importDeclContextOf(const clang::Decl *D) {
|
|
const clang::DeclContext *DC = D->getDeclContext();
|
|
|
|
if (DC->isTranslationUnit()) {
|
|
if (auto *M = getClangModuleForDecl(D))
|
|
return M;
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
return importDeclContextImpl(DC);
|
|
}
|
|
|
|
ValueDecl *
|
|
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
|
|
Type type,
|
|
const clang::APValue &value,
|
|
ConstantConvertKind convertKind,
|
|
bool isStatic,
|
|
ClangNode ClangN) {
|
|
auto &context = SwiftContext;
|
|
|
|
// Create the integer literal value.
|
|
Expr *expr = nullptr;
|
|
switch (value.getKind()) {
|
|
case clang::APValue::AddrLabelDiff:
|
|
case clang::APValue::Array:
|
|
case clang::APValue::ComplexFloat:
|
|
case clang::APValue::ComplexInt:
|
|
case clang::APValue::LValue:
|
|
case clang::APValue::MemberPointer:
|
|
case clang::APValue::Struct:
|
|
case clang::APValue::Uninitialized:
|
|
case clang::APValue::Union:
|
|
case clang::APValue::Vector:
|
|
llvm_unreachable("Unhandled APValue kind");
|
|
|
|
case clang::APValue::Float:
|
|
case clang::APValue::Int: {
|
|
// Print the value.
|
|
llvm::SmallString<16> printedValue;
|
|
if (value.getKind() == clang::APValue::Int) {
|
|
value.getInt().toString(printedValue);
|
|
} else {
|
|
assert(value.getFloat().isFinite() && "can't handle infinities or NaNs");
|
|
value.getFloat().toString(printedValue);
|
|
}
|
|
|
|
// If this was a negative number, record that and strip off the '-'.
|
|
// FIXME: This is hideous!
|
|
// FIXME: Actually make the negation work.
|
|
bool isNegative = printedValue[0] == '-';
|
|
if (isNegative)
|
|
printedValue.erase(printedValue.begin());
|
|
|
|
// Create the expression node.
|
|
StringRef printedValueCopy(context.AllocateCopy(printedValue).data(),
|
|
printedValue.size());
|
|
if (value.getKind() == clang::APValue::Int) {
|
|
expr = new (context) IntegerLiteralExpr(printedValueCopy, SourceLoc(),
|
|
/*Implicit=*/true);
|
|
} else {
|
|
expr = new (context) FloatLiteralExpr(printedValueCopy, SourceLoc(),
|
|
/*Implicit=*/true);
|
|
}
|
|
|
|
if (!isNegative)
|
|
break;
|
|
|
|
// If it was a negative number, negate the integer literal.
|
|
auto minusRef = getOperatorRef(context, context.getIdentifier("-"));
|
|
if (!minusRef)
|
|
return nullptr;
|
|
expr = new (context) PrefixUnaryExpr(minusRef, expr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(expr);
|
|
return createConstant(name, dc, type, expr, convertKind, isStatic, ClangN);
|
|
}
|
|
|
|
|
|
ValueDecl *
|
|
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
|
|
Type type, StringRef value,
|
|
ConstantConvertKind convertKind,
|
|
bool isStatic,
|
|
ClangNode ClangN) {
|
|
auto expr = new (SwiftContext) StringLiteralExpr(value, SourceRange());
|
|
return createConstant(name, dc, type, expr, convertKind, isStatic, ClangN);
|
|
}
|
|
|
|
|
|
ValueDecl *
|
|
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
|
|
Type type, Expr *valueExpr,
|
|
ConstantConvertKind convertKind,
|
|
bool isStatic,
|
|
ClangNode ClangN) {
|
|
auto &context = SwiftContext;
|
|
|
|
auto var = createDeclWithClangNode<VarDecl>(ClangN,
|
|
isStatic, /*IsLet*/ false,
|
|
SourceLoc(), name, type, dc);
|
|
|
|
// Form the argument patterns.
|
|
SmallVector<Pattern *, 3> getterArgs;
|
|
|
|
// 'self'
|
|
if (dc->isTypeContext()) {
|
|
auto selfTy = dc->getDeclaredTypeInContext();
|
|
if (isStatic)
|
|
selfTy = MetatypeType::get(selfTy);
|
|
|
|
getterArgs.push_back(
|
|
Pattern::buildImplicitSelfParameter(SourceLoc(),
|
|
TypeLoc::withoutLoc(selfTy),
|
|
dc));
|
|
}
|
|
|
|
// empty tuple
|
|
getterArgs.push_back(TuplePattern::create(context, SourceLoc(), { },
|
|
SourceLoc()));
|
|
getterArgs.back()->setType(TupleType::getEmpty(context));
|
|
|
|
// Form the type of the getter.
|
|
auto getterType = type;
|
|
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
|
|
it != itEnd; ++it) {
|
|
getterType = FunctionType::get((*it)->getType()->getUnlabeledType(context),
|
|
getterType);
|
|
}
|
|
|
|
// Create the getter function declaration.
|
|
auto func = FuncDecl::create(context, SourceLoc(), StaticSpellingKind::None,
|
|
SourceLoc(), Identifier(),
|
|
SourceLoc(), SourceLoc(), nullptr, getterType,
|
|
getterArgs, TypeLoc::withoutLoc(type), dc);
|
|
func->setStatic(isStatic);
|
|
func->setBodyResultType(type);
|
|
func->setAccessibility(Accessibility::Public);
|
|
|
|
// If we're not done type checking, build the getter body.
|
|
if (!hasFinishedTypeChecking()) {
|
|
auto expr = valueExpr;
|
|
|
|
// If we need a conversion, add one now.
|
|
switch (convertKind) {
|
|
case ConstantConvertKind::None:
|
|
break;
|
|
|
|
case ConstantConvertKind::Construction:
|
|
case ConstantConvertKind::ConstructionWithUnwrap: {
|
|
auto typeRef = TypeExpr::createImplicit(type, context);
|
|
expr = new (context) ParenExpr(SourceLoc(), expr, SourceLoc(),
|
|
/*Implicit=*/true);
|
|
expr = new (context) CallExpr(typeRef, expr, /*Implicit=*/true);
|
|
if (convertKind == ConstantConvertKind::ConstructionWithUnwrap)
|
|
expr = new (context) ForceValueExpr(expr, SourceLoc());
|
|
break;
|
|
}
|
|
|
|
case ConstantConvertKind::Coerce:
|
|
break;
|
|
|
|
case ConstantConvertKind::Downcast: {
|
|
expr = new (context) ForcedCheckedCastExpr(expr, SourceLoc(), SourceLoc(),
|
|
TypeLoc::withoutLoc(type));
|
|
expr->setImplicit();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Create the return statement.
|
|
auto ret = new (context) ReturnStmt(SourceLoc(), expr);
|
|
|
|
// Finally, set the body.
|
|
func->setBody(BraceStmt::create(context, SourceLoc(),
|
|
ASTNode(ret),
|
|
SourceLoc()));
|
|
}
|
|
|
|
// Mark the function transparent so that we inline it away completely.
|
|
func->getAttrs().add(new (context) TransparentAttr(/*implicit*/ true));
|
|
|
|
// Set the function up as the getter.
|
|
var->makeComputed(SourceLoc(), func, nullptr, nullptr, SourceLoc());
|
|
|
|
// Register this thunk as an external definition.
|
|
registerExternalDecl(func);
|
|
|
|
return var;
|
|
}
|
|
|
|
/// \brief Create a decl with error type and an "unavailable" attribute on it
|
|
/// with the specified message.
|
|
void ClangImporter::Implementation::
|
|
markUnavailable(ValueDecl *decl, StringRef unavailabilityMsgRef) {
|
|
|
|
unavailabilityMsgRef = SwiftContext.AllocateCopy(unavailabilityMsgRef);
|
|
auto ua = AvailabilityAttr::createUnconditional(SwiftContext,
|
|
unavailabilityMsgRef);
|
|
decl->getAttrs().add(ua);
|
|
}
|
|
|
|
/// \brief Create a decl with error type and an "unavailable" attribute on it
|
|
/// with the specified message.
|
|
ValueDecl *ClangImporter::Implementation::
|
|
createUnavailableDecl(Identifier name, DeclContext *dc, Type type,
|
|
StringRef UnavailableMessage, bool isStatic,
|
|
ClangNode ClangN) {
|
|
|
|
// Create a new VarDecl with dummy type.
|
|
auto var = createDeclWithClangNode<VarDecl>(ClangN,
|
|
isStatic, /*IsLet*/ false,
|
|
SourceLoc(), name, type, dc);
|
|
markUnavailable(var, UnavailableMessage);
|
|
|
|
return var;
|
|
}
|
|
|
|
|
|
void
|
|
ClangImporter::Implementation::loadAllMembers(Decl *D, uint64_t unused,
|
|
bool *hasMissingRequiredMembers) {
|
|
assert(D->hasClangNode());
|
|
auto clangDecl = cast<clang::ObjCContainerDecl>(D->getClangDecl());
|
|
|
|
SwiftDeclConverter converter(*this);
|
|
|
|
DeclContext *DC;
|
|
IterableDeclContext *IDC;
|
|
SmallVector<ProtocolDecl *, 4> protos;
|
|
|
|
// Figure out the declaration context we're importing into.
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(D)) {
|
|
DC = nominal;
|
|
IDC = nominal;
|
|
} else {
|
|
auto ext = cast<ExtensionDecl>(D);
|
|
DC = ext;
|
|
IDC = ext;
|
|
}
|
|
|
|
ImportingEntityRAII Importing(*this);
|
|
|
|
SmallVector<Decl *, 16> members;
|
|
bool scratch;
|
|
if (!hasMissingRequiredMembers)
|
|
hasMissingRequiredMembers = &scratch;
|
|
*hasMissingRequiredMembers = false;
|
|
converter.importObjCMembers(clangDecl, DC,
|
|
members, *hasMissingRequiredMembers);
|
|
|
|
protos = takeImportedProtocols(D);
|
|
if (auto clangClass = dyn_cast<clang::ObjCInterfaceDecl>(clangDecl)) {
|
|
auto swiftClass = cast<ClassDecl>(D);
|
|
clangDecl = clangClass = clangClass->getDefinition();
|
|
|
|
// Imported inherited initializers.
|
|
if (clangClass->getName() != "Protocol") {
|
|
converter.importInheritedConstructors(const_cast<ClassDecl *>(swiftClass),
|
|
members);
|
|
}
|
|
|
|
} else if (auto clangProto = dyn_cast<clang::ObjCProtocolDecl>(clangDecl)) {
|
|
clangDecl = clangProto->getDefinition();
|
|
}
|
|
|
|
// Import mirrored declarations for protocols to which this category
|
|
// or extension conforms.
|
|
// FIXME: This is supposed to be a short-term hack.
|
|
converter.importMirroredProtocolMembers(clangDecl, DC,
|
|
protos, members, SwiftContext);
|
|
|
|
// Add the members now, before ~ImportingEntityRAII does work that might
|
|
// involve them.
|
|
for (auto member : members) {
|
|
IDC->addMember(member);
|
|
}
|
|
|
|
}
|
|
|
|
void ClangImporter::Implementation::loadAllConformances(
|
|
const Decl *D, uint64_t contextData,
|
|
SmallVectorImpl<ProtocolConformance *> &Conformances) {
|
|
Conformances = takeDelayedConformance(contextData);
|
|
}
|
|
|
|
Optional<MappedTypeNameKind>
|
|
ClangImporter::Implementation::getSpecialTypedefKind(clang::TypedefNameDecl *decl) {
|
|
auto iter = SpecialTypedefNames.find(decl->getCanonicalDecl());
|
|
if (iter == SpecialTypedefNames.end())
|
|
return None;
|
|
return iter->second;
|
|
}
|