Files
swift-mirror/lib/ClangImporter/ImporterImpl.h
Jordan Rose cc346aaa75 [ClangImporter] Handle CF_RETURNS_[NOT_]RETAINED on parameters.
By declaring the parameter's retain count convention, we can avoid the
use of Unmanaged. (See test cases for more examples.)

The last piece of this puzzle is offering a sugared overload with multiple
return values (rdar://problem/20436785) but that will have to wait.

This requires changes to Clang; please update.

rdar://problem/20436757

Swift SVN r28216
2015-05-06 20:03:43 +00:00

1101 lines
40 KiB
C++

//===--- ImporterImpl.h - Import Clang Modules - Implementation------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides the implementation class definitions for the Clang
// module loader.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_CLANG_IMPORTER_IMPL_H
#define SWIFT_CLANG_IMPORTER_IMPL_H
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/Type.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/Basic/StringExtras.h"
#include "clang/APINotes/APINotesReader.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/AST/Attr.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include <set>
namespace clang {
class APValue;
class Decl;
class DeclarationName;
class EnumDecl;
class MacroInfo;
class NamedDecl;
class ObjCInterfaceDecl;
class ObjCMethodDecl;
class ObjCPropertyDecl;
class ParmVarDecl;
class Parser;
class QualType;
class TypedefNameDecl;
}
namespace swift {
class ASTContext;
class ClangModuleUnit;
class ClassDecl;
class ConstructorDecl;
class Decl;
class DeclContext;
class Expr;
class ExtensionDecl;
class FuncDecl;
class Identifier;
class Pattern;
class SubscriptDecl;
class ValueDecl;
/// \brief Describes the kind of conversion to apply to a constant value.
enum class ConstantConvertKind {
/// \brief No conversion required.
None,
/// \brief Coerce the constant to the given type.
Coerce,
/// \brief Construct the given type from the constant value.
Construction,
/// \brief Construct the given type from the constant value, using an
/// optional initializer.
ConstructionWithUnwrap,
/// \brief Perform an unchecked downcast to the given type.
Downcast
};
/// \brief Describes the kind of type import we're performing.
enum class ImportTypeKind {
/// \brief Import an abstract type reference, like the underlying
/// type of a typedef.
///
/// This provides special treatment for class reference types:
/// the typedef itself is left as a non-optional type.
Abstract,
/// \brief Import the type of a literal value.
Value,
/// \brief Import the type of a literal value that can be bridged.
BridgedValue,
/// \brief Import the declared type of a variable.
Variable,
/// \brief Import the declared type of an audited variable.
///
/// This is exactly like ImportTypeKind::Variable, except it
/// disables wrapping CF class types in Unmanaged.
AuditedVariable,
/// \brief Import the declared type of a struct or union field.
RecordField,
/// \brief Import the result type of a function.
///
/// This provides special treatment for 'void', among other things, and
/// enables the conversion of bridged types.
Result,
/// \brief Import the result type of an audited function.
///
/// This is exactly like ImportTypeKind::Result, except it
/// disables wrapping CF class types in Unmanaged.
AuditedResult,
/// \brief Import the type of a function parameter.
///
/// This provides special treatment for C++ references (which become
/// [inout] parameters) and C pointers (which become magic [inout]-able types),
/// among other things, and enables the conversion of bridged types.
/// Parameters are always considered CF-audited.
Parameter,
/// \brief Import the type of a parameter declared with
/// \c CF_RETURNS_RETAINED.
///
/// This ensures that the parameter is not marked as Unmanaged.
CFRetainedOutParameter,
/// \brief Import the type of a parameter declared with
/// \c CF_RETURNS_NON_RETAINED.
///
/// This ensures that the parameter is not marked as Unmanaged.
CFUnretainedOutParameter,
/// \brief Import the type pointed to by a pointer or reference.
///
/// This provides special treatment for pointer-to-ObjC-pointer
/// types, which get imported as pointers to *checked* optional,
/// *Pointer<NSFoo?>, instead of implicitly unwrapped optional as usual.
Pointee,
/// \brief Import the type of an ObjC property.
///
/// This enables the conversion of bridged types. Properties are always
/// considered CF-audited.
Property,
/// \brief Import the type of an ObjC property accessor.
///
/// This behaves exactly like Property except that it accepts Void.
PropertyAccessor,
/// \brief Import the underlying type of an enum.
///
/// This provides special treatment for 'NSUInteger'.
Enum
};
/// \brief Describes the kind of the C type that can be mapped to a stdlib
/// swift type.
enum class MappedCTypeKind {
UnsignedInt,
SignedInt,
UnsignedWord,
SignedWord,
FloatIEEEsingle,
FloatIEEEdouble,
FloatX87DoubleExtended,
VaList,
ObjCBool,
ObjCSel,
ObjCId,
ObjCClass,
CGFloat,
};
/// \brief Describes what to do with the C name of a type that can be mapped to
/// a Swift standard library type.
enum class MappedTypeNameKind {
DoNothing,
DefineOnly,
DefineAndUse
};
/// \brief Bitmask constants for language dialects where a certain C to Swift
/// type mapping applies.
enum class MappedLanguages {
ObjC1 = 0x1,
All = ObjC1
};
/// \brief Describes certain kinds of methods that need to be specially
/// handled by the importer.
enum class SpecialMethodKind {
Regular,
Constructor,
PropertyAccessor,
NSDictionarySubscriptGetter
};
#define SWIFT_NATIVE_ANNOTATION_STRING "__swift native"
#define SWIFT_PROTOCOL_SUFFIX "Protocol"
#define SWIFT_CFTYPE_SUFFIX "Ref"
namespace api_notes = clang::api_notes;
using api_notes::FactoryAsInitKind;
/// \brief Implementation of the Clang importer.
class LLVM_LIBRARY_VISIBILITY ClangImporter::Implementation
: public LazyMemberLoader
{
friend class ClangImporter;
public:
/// \brief Describes how a particular C enumeration type will be imported
/// into Swift. All of the possibilities have the same storage
/// representation, but can be used in different ways.
enum class EnumKind {
/// \brief The enumeration type should map to an enum, which means that
/// all of the cases are independent.
Enum,
/// \brief The enumeration type should map to an option set, which means that
/// the constants represent combinations of independent flags.
Options,
/// \brief The enumeration type should map to a distinct type, but we don't
/// know the intended semantics of the enum constants, so conservatively
/// map them to independent constants.
Unknown,
/// \brief The enumeration constants should simply map to the appropriate
/// integer values.
Constants
};
Implementation(ASTContext &ctx, const ClangImporterOptions &opts);
~Implementation();
/// \brief Swift AST context.
ASTContext &SwiftContext;
const bool InferImplicitProperties;
const bool ImportForwardDeclarations;
const bool ErrorHandling;
constexpr static const char * const moduleImportBufferName =
"<swift-imported-modules>";
constexpr static const char * const bridgingHeaderBufferName =
"<bridging-header-import>";
private:
/// \brief A count of the number of load module operations.
/// FIXME: Horrible, horrible hack for \c loadModule().
unsigned ImportCounter = 0;
/// \brief The value of \c ImportCounter last time when imported modules were
/// verified.
unsigned VerifiedImportCounter = 0;
/// \brief Clang compiler invocation.
llvm::IntrusiveRefCntPtr<clang::CompilerInvocation> Invocation;
/// \brief Clang compiler instance, which is used to actually load Clang
/// modules.
std::unique_ptr<clang::CompilerInstance> Instance;
/// \brief Clang compiler action, which is used to actually run the
/// parser.
std::unique_ptr<clang::FrontendAction> Action;
/// \brief Clang parser, which is used to load textual headers.
std::unique_ptr<clang::Parser> Parser;
/// The active type checker, or null if there is no active type checker.
///
/// The flag is \c true if there has ever been a type resolver assigned, i.e.
/// if type checking has begun.
llvm::PointerIntPair<LazyResolver *, 1, bool> typeResolver;
public:
/// \brief Mapping of already-imported declarations.
llvm::DenseMap<const clang::Decl *, Decl *> ImportedDecls;
/// \brief The set of "special" typedef-name declarations, which are
/// mapped to specific Swift types.
///
/// Normal typedef-name declarations imported into Swift will maintain
/// equality between the imported declaration's underlying type and the
/// import of the underlying type. A typedef-name declaration is special
/// when this is not the case, e.g., Objective-C's "BOOL" has an underlying
/// type of "signed char", but is mapped to a special Swift struct type
/// ObjCBool.
llvm::SmallDenseMap<const clang::TypedefNameDecl *, MappedTypeNameKind, 16>
SpecialTypedefNames;
/// Mapping from Objective-C selectors to method names.
llvm::DenseMap<std::pair<ObjCSelector, char>, DeclName> SelectorMappings;
/// Is the given identifier a reserved name in Swift?
static bool isSwiftReservedName(StringRef name);
/// Translation API nullability from an API note into an optional kind.
static OptionalTypeKind translateNullability(clang::NullabilityKind kind);
/// Retrieve the API notes readers that may contain information for the
/// given Objective-C container.
///
/// \returns a (name, primary, secondary) tuple containing the name of the
/// entity to look for and the API notes readers where information could be
/// found. The "primary" reader is the reader describes the module where the
/// specific container is defined; the "secondary" reader describes the
/// module in which the type is originally defined, if it's different from
/// the primary. Either or both of the readers may be null.
std::tuple<StringRef, api_notes::APINotesReader*, api_notes::APINotesReader*>
getAPINotesForContext(const clang::ObjCContainerDecl *container);
/// Retrieve the API notes reader that contains information for the
/// given declaration. Note, use getAPINotesForContext to get notes for ObjC
/// properties and methods.
api_notes::APINotesReader* getAPINotesForDecl(const clang::Decl *decl);
/// Retrieve any information known a priori about the given Objective-C
/// method, if we have it.
///
/// If \p container is specified, we're looking for a method with the same
/// selector and instance-ness in \p container.
Optional<api_notes::ObjCMethodInfo>
getKnownObjCMethod(const clang::ObjCMethodDecl *method,
const clang::ObjCContainerDecl *container = nullptr);
/// For ObjC property accessor, if the property is known, lookup
/// the property info and merge it in.
void mergePropInfoIntoAccessor(const clang::ObjCMethodDecl *method,
api_notes::ObjCMethodInfo &methodInfo);
/// Retrieve information about the given Objective-C context scoped to the
/// given Swift module.
Optional<api_notes::ObjCContextInfo>
getKnownObjCContext(const clang::ObjCContainerDecl *container);
/// Retrieve any information known a priori about the given Objective-C
/// property.
Optional<api_notes::ObjCPropertyInfo>
getKnownObjCProperty(const clang::ObjCPropertyDecl *property);
/// Retrieve any information known a priori about the given global variable.
Optional<api_notes::GlobalVariableInfo>
getKnownGlobalVariable(const clang::VarDecl *global);
/// Retrieve any information known a priori about the given global function.
Optional<api_notes::GlobalFunctionInfo>
getKnownGlobalFunction(const clang::FunctionDecl *function);
/// Determine whether the given class has designated initializers,
/// consulting
bool hasDesignatedInitializers(const clang::ObjCInterfaceDecl *classDecl);
/// Determine whether the given method is a designated initializer
/// of the given class.
bool isDesignatedInitializer(const clang::ObjCInterfaceDecl *classDecl,
const clang::ObjCMethodDecl *method);
/// Determine whether the given method is a required initializer
/// of the given class.
bool isRequiredInitializer(const clang::ObjCMethodDecl *method);
/// Determine whether the given class method should be imported as
/// an initializer.
FactoryAsInitKind getFactoryAsInit(const clang::ObjCInterfaceDecl *classDecl,
const clang::ObjCMethodDecl *method);
/// \brief Typedefs that we should not be importing. We should be importing
/// underlying decls instead.
llvm::DenseSet<const clang::Decl *> SuperfluousTypedefs;
/// Tag decls whose typedefs were imported instead.
///
/// \sa SuperfluousTypedefs
llvm::DenseSet<const clang::Decl *> DeclsWithSuperfluousTypedefs;
using ClangDeclAndFlag = llvm::PointerIntPair<const clang::Decl *, 1, bool>;
/// \brief Mapping of already-imported declarations from protocols, which
/// can (and do) get replicated into classes.
llvm::DenseMap<std::pair<ClangDeclAndFlag, DeclContext *>, Decl *>
ImportedProtocolDecls;
/// \brief Mapping of already-imported macros.
llvm::DenseMap<clang::MacroInfo *, ValueDecl *> ImportedMacros;
/// Keeps track of active selector-basde lookups, so that we don't infinitely
/// recurse when checking whether a method with a given selector has already
/// been imported.
llvm::DenseMap<std::pair<ObjCSelector, char>, unsigned>
ActiveSelectors;
// FIXME: An extra level of caching of visible decls, since lookup needs to
// be filtered by module after the fact.
SmallVector<ValueDecl *, 0> CachedVisibleDecls;
enum class CacheState {
Invalid,
InProgress,
Valid
} CurrentCacheState = CacheState::Invalid;
/// \brief Check if the declaration is one of the specially handled
/// accessibility APIs.
///
/// These appaer as both properties and methods in ObjC and should be
/// imported as methods into Swift.
bool isAccessibilityDecl(const clang::Decl *objCMethodOrProp);
private:
/// \brief Generation number that is used for crude versioning.
///
/// This value is incremented every time a new module is imported.
unsigned Generation = 1;
/// \brief A cached set of extensions for a particular Objective-C class.
struct CachedExtensions {
CachedExtensions()
: Extensions(nullptr), Generation(0) { }
CachedExtensions(const CachedExtensions &) = delete;
CachedExtensions &operator=(const CachedExtensions &) = delete;
CachedExtensions(CachedExtensions &&other)
: Extensions(other.Extensions), Generation(other.Generation)
{
other.Extensions = nullptr;
other.Generation = 0;
}
CachedExtensions &operator=(CachedExtensions &&other) {
delete Extensions;
Extensions = other.Extensions;
Generation = other.Generation;
other.Extensions = nullptr;
other.Generation = 0;
return *this;
}
~CachedExtensions() { delete Extensions; }
/// \brief The cached extensions.
SmallVector<ExtensionDecl *, 4> *Extensions;
/// \brief Generation number used to tell when this cache has gone stale.
unsigned Generation;
};
void bumpGeneration() {
++Generation;
SwiftContext.bumpGeneration();
CachedVisibleDecls.clear();
CurrentCacheState = CacheState::Invalid;
}
/// \brief Cache of the class extensions.
llvm::DenseMap<ClassDecl *, CachedExtensions> ClassExtensions;
public:
/// \brief Keep track of subscript declarations based on getter/setter
/// pairs.
llvm::DenseMap<std::pair<FuncDecl *, FuncDecl *>, SubscriptDecl *> Subscripts;
/// \brief Keep track of enum constant name prefixes in enums.
llvm::DenseMap<const clang::EnumDecl *, StringRef> EnumConstantNamePrefixes;
private:
class EnumConstantDenseSetInfo {
public:
using PairTy = std::pair<const clang::EnumDecl *, llvm::APSInt>;
using PointerInfo = llvm::DenseMapInfo<const clang::EnumDecl *>;
static inline PairTy getEmptyKey() {
return {PointerInfo::getEmptyKey(), llvm::APSInt(/*bitwidth=*/1)};
}
static inline PairTy getTombstoneKey() {
return {PointerInfo::getTombstoneKey(), llvm::APSInt(/*bitwidth=*/1)};
}
static unsigned getHashValue(const PairTy &pair) {
return llvm::combineHashValue(PointerInfo::getHashValue(pair.first),
llvm::hash_value(pair.second));
}
static bool isEqual(const PairTy &lhs, const PairTy &rhs) {
return lhs == rhs;
}
};
public:
/// \brief Keep track of enum constant values that have been imported.
llvm::DenseSet<std::pair<const clang::EnumDecl *, llvm::APSInt>,
EnumConstantDenseSetInfo>
EnumConstantValues;
/// \brief Keep track of initializer declarations that correspond to
/// imported methods.
llvm::DenseMap<std::pair<const clang::ObjCMethodDecl *, DeclContext *>,
ConstructorDecl *>
Constructors;
private:
/// \brief NSObject, imported into Swift.
Type NSObjectTy;
/// A pair containing a ClangModuleUnit,
/// and whether the adapters of its re-exported modules have all been forced
/// to load already.
using ModuleInitPair = llvm::PointerIntPair<ClangModuleUnit *, 1, bool>;
public:
/// A map from Clang modules to their Swift wrapper modules.
llvm::SmallDenseMap<const clang::Module *, ModuleInitPair, 16> ModuleWrappers;
/// A map from Clang modules to their associated API notes.
llvm::SmallDenseMap<
const clang::Module *,
std::unique_ptr<api_notes::APINotesReader>> APINotesReaders;
/// The module unit that contains declarations from imported headers.
ClangModuleUnit *ImportedHeaderUnit = nullptr;
/// The modules re-exported by imported headers.
llvm::SmallVector<Module::ImportedModule, 8> ImportedHeaderExports;
/// The modules that requested imported headers.
///
/// These are used to look up Swift classes forward-declared with \@class.
TinyPtrVector<Module *> ImportedHeaderOwners;
/// \brief Clang's objectAtIndexedSubscript: selector.
clang::Selector objectAtIndexedSubscript;
/// \brief Clang's setObjectAt:indexedSubscript: selector.
clang::Selector setObjectAtIndexedSubscript;
/// \brief Clang's objectForKeyedSubscript: selector.
clang::Selector objectForKeyedSubscript;
/// \brief Clang's setObject:forKeyedSubscript: selector.
clang::Selector setObjectForKeyedSubscript;
private:
Optional<Module *> checkedFoundationModule, checkedSIMDModule;
/// External Decls that we have imported but not passed to the ASTContext yet.
SmallVector<Decl *, 4> RegisteredExternalDecls;
/// Protocol conformances that may be missing witnesses.
SmallVector<NormalProtocolConformance *, 4> DelayedProtocolConformances;
unsigned NumCurrentImportingEntities = 0;
/// Mapping from delayed conformance IDs to the set of delayed
/// protocol conformances.
llvm::DenseMap<unsigned, SmallVector<ProtocolConformance *, 4>>
DelayedConformances;
/// The next delayed conformance ID to use with \c DelayedConformances.
unsigned NextDelayedConformanceID = 0;
/// The set of imported protocols for a declaration, used only to
/// load all members of the declaration.
llvm::DenseMap<const Decl *, SmallVector<ProtocolDecl *, 4>>
ImportedProtocols;
void startedImportingEntity();
void finishedImportingEntity();
void finishPendingActions();
void finishProtocolConformance(NormalProtocolConformance *conformance);
struct ImportingEntityRAII {
Implementation &Impl;
ImportingEntityRAII(Implementation &Impl) : Impl(Impl) {
Impl.startedImportingEntity();
}
~ImportingEntityRAII() {
Impl.finishedImportingEntity();
}
};
public:
/// A predicate that indicates if the given platform should be
/// considered for availability.
std::function<bool (StringRef PlatformName)>
PlatformAvailabilityFilter;
/// A predicate that indicates if the given platform version should
/// should be included in the cutoff of deprecated APIs marked unavailable.
std::function<bool (unsigned major, llvm::Optional<unsigned> minor)>
DeprecatedAsUnavailableFilter;
/// The message to embed for implicitly unavailability if a deprecated
/// API is now unavailable.
std::string DeprecatedAsUnavailableMessage;
public:
void registerExternalDecl(Decl *D) {
RegisteredExternalDecls.push_back(D);
}
void scheduleFinishProtocolConformance(NormalProtocolConformance *C) {
DelayedProtocolConformances.push_back(C);
}
/// \brief Retrieve the Clang AST context.
clang::ASTContext &getClangASTContext() const {
return Instance->getASTContext();
}
/// \brief Retrieve the Clang Sema object.
clang::Sema &getClangSema() const {
return Instance->getSema();
}
/// \brief Retrieve the Clang AST context.
clang::Preprocessor &getClangPreprocessor() const {
return Instance->getPreprocessor();
}
clang::CodeGenOptions &getClangCodeGenOpts() const {
return Instance->getCodeGenOpts();
}
/// Imports the given header contents into the Clang context.
void importHeader(Module *adapter, StringRef headerName, SourceLoc diagLoc,
std::unique_ptr<llvm::MemoryBuffer> contents);
/// Returns the redeclaration of \p D that contains its definition for any
/// tag type decl (struct, enum, or union) or Objective-C class or protocol.
///
/// Returns \c None if \p D is not a redeclarable type declaration.
/// Returns null if \p D is a redeclarable type, but it does not have a
/// definition yet.
Optional<const clang::Decl *>
getDefinitionForClangTypeDecl(const clang::Decl *D);
/// Returns the module \p D comes from, or \c None if \p D does not have
/// a valid associated module.
///
/// The returned module may be null (but not \c None) if \p D comes from
/// an imported header.
Optional<clang::Module *>
getClangSubmoduleForDecl(const clang::Decl *D,
bool allowForwardDeclaration = false);
/// \brief Retrieve the imported module that should contain the given
/// Clang decl.
ClangModuleUnit *getClangModuleForDecl(const clang::Decl *D,
bool allowForwardDeclaration = false);
/// Returns the module \p MI comes from, or \c None if \p MI does not have
/// a valid associated module.
///
/// The returned module may be null (but not \c None) if \p MI comes from
/// an imported header.
Optional<clang::Module *>
getClangSubmoduleForMacro(const clang::MacroInfo *MI);
ClangModuleUnit *getClangModuleForMacro(const clang::MacroInfo *MI);
/// \brief Import the given Swift identifier into Clang.
clang::DeclarationName importName(Identifier name);
/// \brief Import the given Clang name into Swift.
///
/// \param name The Clang name to map into Swift.
///
/// \param suffix The suffix to append to the Clang name to produce the
/// Swift name.
///
/// \param removePrefix The prefix to remove from the Clang name to produce
/// the Swift name. If the Clang name does not start with this prefix,
/// nothing is removed.
Identifier importName(clang::DeclarationName name, StringRef suffix = "",
StringRef removePrefix = "");
/// Import an Objective-C selector.
ObjCSelector importSelector(clang::Selector selector);
/// Import a Swift name as a Clang selector.
clang::Selector importSelector(DeclName name, bool allowSimpleName = true);
/// Export a Swift Objective-C selector as a Clang Objective-C selector.
clang::Selector exportSelector(ObjCSelector selector);
/// Map the given selector to a declaration name.
///
/// \param selector The selector to map.
///
/// \param isInitializer Whether this name should be mapped as an
/// initializer.
DeclName mapSelectorToDeclName(ObjCSelector selector, bool isInitializer);
/// Try to map the given selector, which may be the name of a factory method,
/// to the name of an initializer.
///
/// \param selector The selector to map.
///
/// \param className The name of the class in which the method occurs.
///
/// \returns the initializer name for this factory method, or an empty
/// name if this selector does not fit the pattern.
DeclName mapFactorySelectorToInitializerName(ObjCSelector selector,
StringRef className);
/// \brief Import the given Swift source location into Clang.
clang::SourceLocation importSourceLoc(SourceLoc loc);
/// \brief Import the given Clang source location into Swift.
SourceLoc importSourceLoc(clang::SourceLocation loc);
/// \brief Import the given Clang source range into Swift.
SourceRange importSourceRange(clang::SourceRange loc);
/// \brief Import the given Clang preprocessor macro as a Swift value decl.
///
/// \returns The imported declaration, or null if the macro could not be
/// translated into Swift.
ValueDecl *importMacro(Identifier name, clang::MacroInfo *macro);
/// Returns true if it is expected that the macro is ignored.
bool shouldIgnoreMacro(StringRef name, const clang::MacroInfo *macro);
/// \brief Classify the given Clang enumeration type to describe how it
/// should be imported
EnumKind classifyEnum(const clang::EnumDecl *decl);
/// Import attributes from the given Clang declaration to its Swift
/// equivalent.
void importAttributes(const clang::NamedDecl *ClangDecl, Decl *MappedDecl);
/// If we already imported a given decl, return the corresponding Swift decl.
/// Otherwise, return nullptr.
Decl *importDeclCached(const clang::NamedDecl *ClangDecl);
Decl *importDeclImpl(const clang::NamedDecl *ClangDecl,
bool &TypedefIsSuperfluous,
bool &HadForwardDeclaration);
Decl *importDeclAndCacheImpl(const clang::NamedDecl *ClangDecl,
bool SuperfluousTypedefsAreTransparent);
/// \brief Same as \c importDeclReal, but for use inside importer
/// implementation.
///
/// Unlike \c importDeclReal, this function for convenience transparently
/// looks through superfluous typedefs and returns the imported underlying
/// decl in that case.
Decl *importDecl(const clang::NamedDecl *ClangDecl) {
return importDeclAndCacheImpl(ClangDecl,
/*SuperfluousTypedefsAreTransparent=*/true);
}
/// \brief Import the given Clang declaration into Swift. Use this function
/// outside of the importer implementation, when importing a decl requested by
/// Swift code.
///
/// \returns The imported declaration, or null if this declaration could
/// not be represented in Swift.
Decl *importDeclReal(const clang::NamedDecl *ClangDecl) {
return importDeclAndCacheImpl(ClangDecl,
/*SuperfluousTypedefsAreTransparent=*/false);
}
/// \brief Import a cloned version of the given declaration, which is part of
/// an Objective-C protocol and currently must be a method or property, into
/// the given declaration context.
///
/// \returns The imported declaration, or null if this declaration could not
/// be represented in Swift.
Decl *importMirroredDecl(const clang::NamedDecl *decl, DeclContext *dc,
bool forceClassMethod = false);
/// \brief Import the given Clang declaration context into Swift.
///
/// Usually one will use \c importDeclContextOf instead.
///
/// \returns The imported declaration context, or null if it could not
/// be converted.
DeclContext *importDeclContextImpl(const clang::DeclContext *dc);
/// \brief Import the declaration context of a given Clang declaration into
/// Swift.
///
/// \returns The imported declaration context, or null if it could not
/// be converted.
DeclContext *importDeclContextOf(const clang::Decl *D);
/// \brief Create a new named constant with the given value.
///
/// \param name The name of the constant.
/// \param dc The declaration context into which the name will be introduced.
/// \param type The type of the named constant.
/// \param value The value of the named constant.
/// \param convertKind How to convert the constant to the given type.
/// \param isStatic Whether the constant should be a static member of \p dc.
ValueDecl *createConstant(Identifier name, DeclContext *dc,
Type type, const clang::APValue &value,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN);
/// \brief Create a new named constant with the given value.
///
/// \param name The name of the constant.
/// \param dc The declaration context into which the name will be introduced.
/// \param type The type of the named constant.
/// \param value The value of the named constant.
/// \param convertKind How to convert the constant to the given type.
/// \param isStatic Whether the constant should be a static member of \p dc.
ValueDecl *createConstant(Identifier name, DeclContext *dc,
Type type, StringRef value,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN);
/// \brief Create a new named constant using the given expression.
///
/// \param name The name of the constant.
/// \param dc The declaration context into which the name will be introduced.
/// \param type The type of the named constant.
/// \param valueExpr An expression to use as the value of the constant.
/// \param convertKind How to convert the constant to the given type.
/// \param isStatic Whether the constant should be a static member of \p dc.
ValueDecl *createConstant(Identifier name, DeclContext *dc,
Type type, Expr *valueExpr,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN);
/// \brief Add "Unavailable" annotation to the swift declaration.
void markUnavailable(ValueDecl *decl, StringRef unavailabilityMsg);
/// \brief Create a decl with error type and an "unavailable" attribute on it
/// with the specified message.
ValueDecl *createUnavailableDecl(Identifier name, DeclContext *dc,
Type type, StringRef UnavailableMessage,
bool isStatic, ClangNode ClangN);
/// \brief Retrieve the standard library module.
Module *getStdlibModule();
/// \brief Retrieve the named module.
///
/// \param name The name of the module.
///
/// \returns The named module, or null if the module has not been imported.
Module *getNamedModule(StringRef name);
/// \brief Returns the "Foundation" module, if it can be loaded.
///
/// After this has been called, the Foundation module will or won't be loaded
/// into the ASTContext.
Module *tryLoadFoundationModule();
/// \brief Returns the "SIMD" module, if it can be loaded.
///
/// After this has been called, the SIMD module will or won't be loaded
/// into the ASTContext.
Module *tryLoadSIMDModule();
/// \brief Retrieves the Swift wrapper for the given Clang module, creating
/// it if necessary.
ClangModuleUnit *getWrapperForModule(ClangImporter &importer,
const clang::Module *underlying);
/// Retrieve the API notes reader that corresponds to the given Clang module,
/// loading it if necessary.
///
/// \returns an unowned pointer to the corresponding API notes reader, or
/// nullptr if no API notes file exists.
api_notes::APINotesReader *getAPINotesForModule(const clang::Module *module);
/// \brief Constructs a Swift module for the given Clang module.
Module *finishLoadingClangModule(ClangImporter &importer,
const clang::Module *clangModule,
bool preferAdapter);
/// \brief Retrieve the named Swift type, e.g., Int32.
///
/// \param module The name of the module in which the type should occur.
///
/// \param name The name of the type to find.
///
/// \returns The named type, or null if the type could not be found.
Type getNamedSwiftType(Module *module, StringRef name);
/// \brief Retrieve a specialization of the the named Swift type, e.g.,
/// UnsafeMutablePointer<T>.
///
/// \param module The name of the module in which the type should occur.
///
/// \param name The name of the type to find.
///
/// \param args The arguments to use in the specialization.
///
/// \returns The named type, or null if the type could not be found.
Type getNamedSwiftTypeSpecialization(Module *module, StringRef name,
ArrayRef<Type> args);
/// \brief Retrieve the NSObject type.
Type getNSObjectType();
/// \brief Retrieve the NSCopying protocol type.
Type getNSCopyingType();
/// \brief Retrieve the CFStringRef typealias.
Type getCFStringRefType();
/// \brief Determines whether the given type matches an implicit type
/// bound of "NSObject", which is used to validate NSDictionary/NSSet.
bool matchesNSObjectBound(Type type);
/// \brief Look up and attempt to import a Clang declaration with
/// the given name.
Decl *importDeclByName(StringRef name);
/// \brief Import the given Clang type into Swift.
///
/// \param type The Clang type to import.
///
/// \param kind The kind of type import we're performing.
///
/// \param isUsedInSystemModule Tells us that the use of the type is comming
/// from system module.
///
/// \returns The imported type, or null if this type could
/// not be represented in Swift.
Type importType(clang::QualType type,
ImportTypeKind kind,
bool isUsedInSystemModule,
OptionalTypeKind optional = OTK_ImplicitlyUnwrappedOptional);
/// \brief Import the given function type.
///
/// This routine should be preferred when importing function types for
/// which we have actual function parameters, e.g., when dealing with a
/// function declaration, because it produces a function type whose input
/// tuple has argument names.
///
/// \param clangDecl The underlying declaration, if any; should only be
/// considered for any attributes it might carry.
/// \param resultType The result type of the function.
/// \param params The parameter types to the function.
/// \param isVariadic Whether the function is variadic.
/// \param isNoReturn Whether the function is noreturn.
/// \param bodyPatterns The patterns visible inside the function body.
///
/// \returns the imported function type, or null if the type cannot be
/// imported.
Type importFunctionType(const clang::FunctionDecl *clangDecl,
clang::QualType resultType,
ArrayRef<const clang::ParmVarDecl *> params,
bool isVariadic, bool isNoReturn,
bool isFromSystemModule,
SmallVectorImpl<Pattern*> &bodyPatterns);
Type importPropertyType(const clang::ObjCPropertyDecl *clangDecl,
bool isFromSystemModule);
/// \brief Import the type of an Objective-C method.
///
/// This routine should be preferred when importing function types for
/// which we have actual function parameters, e.g., when dealing with a
/// function declaration, because it produces a function type whose input
/// tuple has argument names.
///
/// \param clangDecl The underlying declaration, if any; should only be
/// considered for any attributes it might carry.
/// \param resultType The result type of the function.
/// \param params The parameter types to the function.
/// \param isVariadic Whether the function is variadic.
/// \param isNoReturn Whether the function is noreturn.
/// \param bodyPatterns The patterns visible inside the function body.
/// whether the created arg/body patterns are different (selector-style).
/// \param methodName The name of the imported method.
/// \param errorConvention Information about the method's error conventions.
/// \param kind Controls whether we're building a type for a method that
/// needs special handling.
///
/// \returns the imported function type, or null if the type cannot be
/// imported.
Type importMethodType(const clang::ObjCMethodDecl *clangDecl,
clang::QualType resultType,
ArrayRef<const clang::ParmVarDecl *> params,
bool isVariadic, bool isNoReturn,
bool isFromSystemModule,
SmallVectorImpl<Pattern*> &bodyPatterns,
DeclName &methodName,
Optional<ForeignErrorConvention> &errorConvention,
SpecialMethodKind kind);
/// \brief Determine whether the given typedef-name is "special", meaning
/// that it has performed some non-trivial mapping of its underlying type
/// based on the name of the typedef.
Optional<MappedTypeNameKind>
getSpecialTypedefKind(clang::TypedefNameDecl *decl);
/// \brief Look up a name, accepting only typedef results.
const clang::TypedefNameDecl *lookupTypedef(clang::DeclarationName);
/// \brief Return whether a global of the given type should be imported as a
/// 'let' declaration as opposed to 'var'.
bool shouldImportGlobalAsLet(clang::QualType type);
LazyResolver *getTypeResolver() const {
return typeResolver.getPointer();
}
void setTypeResolver(LazyResolver *newResolver) {
assert((!typeResolver.getPointer() || !newResolver) &&
"already have a type resolver");
typeResolver.setPointerAndInt(newResolver, true);
}
bool hasBegunTypeChecking() const { return typeResolver.getInt(); }
bool hasFinishedTypeChecking() const {
return hasBegunTypeChecking() && !getTypeResolver();
}
/// Allocate a new delayed conformance ID with the given set of
/// conformances.
unsigned allocateDelayedConformance(
SmallVector<ProtocolConformance *, 4> &&conformances) {
unsigned id = NextDelayedConformanceID++;
DelayedConformances[id] = std::move(conformances);
return id;
}
/// Take the delayed conformances associated with the given id.
SmallVector<ProtocolConformance *, 4> takeDelayedConformance(unsigned id) {
auto conformances = DelayedConformances.find(id);
SmallVector<ProtocolConformance *, 4> result
= std::move(conformances->second);
DelayedConformances.erase(conformances);
return std::move(result);
}
/// Record the set of imported protocols for the given declaration,
/// to be used by member loading.
///
/// FIXME: This is all a hack; we should have lazier deserialization
/// of protocols separate from their conformances.
void recordImportedProtocols(const Decl *decl,
ArrayRef<ProtocolDecl *> protocols) {
if (protocols.empty())
return;
auto &recorded = ImportedProtocols[decl];
recorded.insert(recorded.end(), protocols.begin(), protocols.end());
}
/// Retrieve the imported protocols for the given declaration.
SmallVector<ProtocolDecl *, 4> takeImportedProtocols(const Decl *decl) {
SmallVector<ProtocolDecl *, 4> result;
auto known = ImportedProtocols.find(decl);
if (known != ImportedProtocols.end()) {
result = std::move(known->second);
ImportedProtocols.erase(known);
}
return result;
}
virtual void
loadAllMembers(Decl *D, uint64_t unused,
bool *hasMissingRequiredMembers) override;
void
loadAllConformances(
const Decl *D, uint64_t contextData,
SmallVectorImpl<ProtocolConformance *> &Conformances) override;
template <typename DeclTy, typename ...Targs>
DeclTy *createDeclWithClangNode(ClangNode ClangN, Targs &&... Args) {
assert(ClangN);
void *DeclPtr = allocateMemoryForDecl<DeclTy>(SwiftContext, sizeof(DeclTy),
true);
auto D = ::new (DeclPtr) DeclTy(std::forward<Targs>(Args)...);
D->setClangNode(ClangN);
D->setEarlyAttrValidation(true);
if (auto VD = dyn_cast<ValueDecl>(D))
VD->setAccessibility(Accessibility::Public);
if (auto ASD = dyn_cast<AbstractStorageDecl>(D))
ASD->setSetterAccessibility(Accessibility::Public);
return D;
}
};
}
#endif