Files
swift-mirror/lib/SIL/SILInstructions.cpp
Michael Gottesman 107a276b0e Make sure we have operands before dereferencing Operands[1] in CondBranchInst::get{True,False}Operands().
Without this if you called either of these methods when you did not have True or
False operands, memory that is not owned by the CondBranchInst would be touched.
Now we just check if we don't have the relevant arguments and early return an
empty array of the relevant type.

Swift SVN r26782
2015-03-31 22:52:39 +00:00

1296 lines
48 KiB
C++

//===--- SILInstruction.cpp - Instructions for SIL code -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the high-level SILInstruction classes used for SIL code.
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILInstruction.h"
#include "swift/Basic/type_traits.h"
#include "swift/Basic/Unicode.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/AST/AST.h"
#include "swift/Basic/AssertImplements.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/SILModule.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/ErrorHandling.h"
using namespace swift;
using namespace Lowering;
//===----------------------------------------------------------------------===//
// SILInstruction Subclasses
//===----------------------------------------------------------------------===//
// alloc_stack always returns two results: Builtin.RawPointer & LValue[EltTy]
static SILTypeList *getAllocStackType(SILType eltTy, SILFunction &F) {
SILType resTys[] = {
eltTy.getLocalStorageType(),
eltTy.getAddressType()
};
return F.getModule().getSILTypeList(resTys);
}
AllocStackInst::AllocStackInst(SILLocation loc, SILType elementType, SILFunction &F)
: AllocationInst(ValueKind::AllocStackInst, loc,
getAllocStackType(elementType, F)) {
}
/// getDecl - Return the underlying variable declaration associated with this
/// allocation, or null if this is a temporary allocation.
VarDecl *AllocStackInst::getDecl() const {
return getLoc().getAsASTNode<VarDecl>();
}
AllocRefInst::AllocRefInst(SILLocation loc, SILType elementType, SILFunction &F,
bool objc)
: AllocationInst(ValueKind::AllocRefInst, loc, elementType), ObjC(objc) {
}
// alloc_box returns two results: Builtin.NativeObject & LValue[EltTy]
static SILTypeList *getAllocBoxType(SILType EltTy, SILFunction &F) {
const ASTContext &Ctx = F.getModule().getASTContext();
SILType ResTys[] = {
SILType::getNativeObjectType(Ctx),
EltTy.getAddressType()
};
return F.getModule().getSILTypeList(ResTys);
}
AllocBoxInst::AllocBoxInst(SILLocation Loc, SILType ElementType, SILFunction &F)
: AllocationInst(ValueKind::AllocBoxInst, Loc,
getAllocBoxType(ElementType, F)) {
}
/// getDecl - Return the underlying variable declaration associated with this
/// allocation, or null if this is a temporary allocation.
VarDecl *AllocBoxInst::getDecl() const {
return getLoc().getAsASTNode<VarDecl>();
}
VarDecl *DebugValueInst::getDecl() const {
return getLoc().getAsASTNode<VarDecl>();
}
VarDecl *DebugValueAddrInst::getDecl() const {
return getLoc().getAsASTNode<VarDecl>();
}
static SILTypeList *getAllocExistentialBoxType(SILType ExistTy,
SILType ConcreteTy,
SILFunction &F) {
SILType Tys[] = {
ExistTy.getObjectType(),
ConcreteTy.getAddressType(),
};
return F.getModule().getSILTypeList(Tys);
}
AllocExistentialBoxInst::AllocExistentialBoxInst(SILLocation Loc,
SILType ExistentialType,
CanType ConcreteType,
SILType ConcreteLoweredType,
ArrayRef<ProtocolConformance *> Conformances,
SILFunction *Parent)
: AllocationInst(ValueKind::AllocExistentialBoxInst, Loc,
getAllocExistentialBoxType(ExistentialType,
ConcreteLoweredType, *Parent)),
ConcreteType(ConcreteType),
Conformances(Conformances)
{
}
static void declareWitnessTable(SILModule &Mod,
ProtocolConformance *C) {
if (!C) return;
if (!Mod.lookUpWitnessTable(C, false).first)
Mod.createWitnessTableDeclaration(C,
TypeConverter::getLinkageForProtocolConformance(
C->getRootNormalConformance(),
NotForDefinition));
}
AllocExistentialBoxInst *
AllocExistentialBoxInst::create(SILLocation Loc,
SILType ExistentialType,
CanType ConcreteType,
SILType ConcreteLoweredType,
ArrayRef<ProtocolConformance *> Conformances,
SILFunction *F) {
SILModule &Mod = F->getModule();
void *Buffer = Mod.allocate(sizeof(AllocExistentialBoxInst),
alignof(AllocExistentialBoxInst));
for (ProtocolConformance *C : Conformances)
declareWitnessTable(Mod, C);
return ::new (Buffer) AllocExistentialBoxInst(Loc,
ExistentialType,
ConcreteType,
ConcreteLoweredType,
Conformances, F);
}
BuiltinInst *BuiltinInst::create(SILLocation Loc, Identifier Name,
SILType ReturnType,
ArrayRef<Substitution> Substitutions,
ArrayRef<SILValue> Args,
SILFunction &F) {
void *Buffer = F.getModule().allocate(
sizeof(BuiltinInst)
+ decltype(Operands)::getExtraSize(Args.size())
+ sizeof(Substitution) * Substitutions.size(),
alignof(BuiltinInst));
return ::new (Buffer) BuiltinInst(Loc, Name, ReturnType, Substitutions,
Args);
}
BuiltinInst::BuiltinInst(SILLocation Loc,
Identifier Name,
SILType ReturnType,
ArrayRef<Substitution> Subs,
ArrayRef<SILValue> Args)
: SILInstruction(ValueKind::BuiltinInst, Loc, ReturnType),
Name(Name),
NumSubstitutions(Subs.size()),
Operands(this, Args)
{
static_assert(IsTriviallyCopyable<Substitution>::value,
"assuming Substitution is trivially copyable");
memcpy(getSubstitutionsStorage(), Subs.begin(),
sizeof(Substitution) * Subs.size());
}
ApplyInst::ApplyInst(SILLocation Loc, SILValue Callee,
SILType SubstCalleeTy,
SILType Result,
ArrayRef<Substitution> Subs,
ArrayRef<SILValue> Args)
: ApplyInstBase(ValueKind::ApplyInst, Loc, Callee, SubstCalleeTy,
Subs, Args, Result)
{
}
ApplyInst *ApplyInst::create(SILLocation Loc, SILValue Callee,
SILType SubstCalleeTy,
SILType Result,
ArrayRef<Substitution> Subs,
ArrayRef<SILValue> Args,
SILFunction &F) {
void *Buffer = allocate(F, Subs, Args);
return ::new(Buffer) ApplyInst(Loc, Callee, SubstCalleeTy,
Result, Subs, Args);
}
bool swift::doesApplyCalleeHaveSemantics(SILValue callee, StringRef semantics) {
if (auto *FRI = dyn_cast<FunctionRefInst>(callee))
if (auto *F = FRI->getReferencedFunction())
return F->hasSemanticsString(semantics);
return false;
}
void *swift::allocateApplyInst(SILFunction &F, size_t size, size_t alignment) {
return F.getModule().allocate(size, alignment);
}
PartialApplyInst::PartialApplyInst(SILLocation Loc, SILValue Callee,
SILType SubstCalleeTy,
ArrayRef<Substitution> Subs,
ArrayRef<SILValue> Args, SILType ClosureType)
// FIXME: the callee should have a lowered SIL function type, and PartialApplyInst
// should derive the type of its result by partially applying the callee's type.
: ApplyInstBase(ValueKind::PartialApplyInst, Loc, Callee, SubstCalleeTy,
Subs, Args, ClosureType)
{
}
PartialApplyInst *PartialApplyInst::create(SILLocation Loc, SILValue Callee,
SILType SubstCalleeTy,
ArrayRef<Substitution> Subs,
ArrayRef<SILValue> Args,
SILType ClosureType,
SILFunction &F) {
void *Buffer = allocate(F, Subs, Args);
return ::new(Buffer) PartialApplyInst(Loc, Callee, SubstCalleeTy,
Subs, Args, ClosureType);
}
TryApplyInstBase::TryApplyInstBase(ValueKind valueKind, SILLocation loc,
SILBasicBlock *normalBB,
SILBasicBlock *errorBB)
: TermInst(valueKind, loc),
DestBBs{{this, normalBB}, {this, errorBB}} {}
TryApplyInst::TryApplyInst(SILLocation loc, SILValue callee,
SILType substCalleeTy,
ArrayRef<Substitution> subs,
ArrayRef<SILValue> args,
SILBasicBlock *normalBB, SILBasicBlock *errorBB)
: ApplyInstBase(ValueKind::TryApplyInst, loc, callee, substCalleeTy,
subs, args, normalBB, errorBB) {
}
TryApplyInst *TryApplyInst::create(SILLocation loc, SILValue callee,
SILType substCalleeTy,
ArrayRef<Substitution> subs,
ArrayRef<SILValue> args,
SILBasicBlock *normalBB,
SILBasicBlock *errorBB,
SILFunction &F) {
void *buffer = allocate(F, subs, args);
return ::new(buffer) TryApplyInst(loc, callee, substCalleeTy,
subs, args, normalBB, errorBB);
}
FunctionRefInst::FunctionRefInst(SILLocation Loc, SILFunction *F)
: LiteralInst(ValueKind::FunctionRefInst, Loc, F->getLoweredType()),
Function(F) {
F->incrementRefCount();
}
FunctionRefInst::~FunctionRefInst() {
if (Function)
Function->decrementRefCount();
}
void FunctionRefInst::dropReferencedFunction() {
if (Function)
Function->decrementRefCount();
Function = nullptr;
}
GlobalAddrInst::GlobalAddrInst(SILLocation Loc, SILGlobalVariable *Global)
: LiteralInst(ValueKind::GlobalAddrInst, Loc,
Global->getLoweredType().getAddressType()),
Global(Global)
{}
GlobalAddrInst::GlobalAddrInst(SILLocation Loc, SILType Ty)
: LiteralInst(ValueKind::GlobalAddrInst, Loc, Ty),
Global(nullptr)
{}
const IntrinsicInfo &BuiltinInst::getIntrinsicInfo() const {
return getModule().getIntrinsicInfo(getName());
}
const BuiltinInfo &BuiltinInst::getBuiltinInfo() const {
return getModule().getBuiltinInfo(getName());
}
static unsigned getWordsForBitWidth(unsigned bits) {
return (bits + llvm::integerPartWidth - 1)/llvm::integerPartWidth;
}
template<typename INST>
static void *allocateLiteralInstWithTextSize(SILFunction &F, unsigned length) {
return F.getModule().allocate(sizeof(INST) + length, alignof(INST));
}
template<typename INST>
static void *allocateLiteralInstWithBitSize(SILFunction &F, unsigned bits) {
unsigned words = getWordsForBitWidth(bits);
return F.getModule().allocate(sizeof(INST) + sizeof(llvm::integerPart)*words,
alignof(INST));
}
IntegerLiteralInst::IntegerLiteralInst(SILLocation Loc, SILType Ty,
const llvm::APInt &Value)
: LiteralInst(ValueKind::IntegerLiteralInst, Loc, Ty),
numBits(Value.getBitWidth())
{
memcpy(this + 1, Value.getRawData(),
Value.getNumWords() * sizeof(llvm::integerPart));
}
IntegerLiteralInst *
IntegerLiteralInst::create(SILLocation Loc, SILType Ty, const APInt &Value,
SILFunction &B) {
auto intTy = Ty.castTo<BuiltinIntegerType>();
assert(intTy->getGreatestWidth() == Value.getBitWidth() &&
"IntegerLiteralInst APInt value's bit width doesn't match type");
(void)intTy;
void *buf = allocateLiteralInstWithBitSize<IntegerLiteralInst>(B,
Value.getBitWidth());
return ::new (buf) IntegerLiteralInst(Loc, Ty, Value);
}
IntegerLiteralInst *
IntegerLiteralInst::create(SILLocation Loc, SILType Ty,
intmax_t Value, SILFunction &B) {
auto intTy = Ty.castTo<BuiltinIntegerType>();
return create(Loc, Ty,
APInt(intTy->getGreatestWidth(), Value), B);
}
IntegerLiteralInst *
IntegerLiteralInst::create(IntegerLiteralExpr *E, SILFunction &F) {
return create(E,
SILType::getBuiltinIntegerType(
E->getType()->castTo<BuiltinIntegerType>()
->getGreatestWidth(),
F.getASTContext()),
E->getValue(), F);
}
IntegerLiteralInst *
IntegerLiteralInst::create(CharacterLiteralExpr *E, SILFunction &F) {
return create(E,
SILType::getPrimitiveObjectType(E->getType()->getCanonicalType()),
E->getValue(), F);
}
/// getValue - Return the APInt for the underlying integer literal.
APInt IntegerLiteralInst::getValue() const {
return APInt(numBits,
{reinterpret_cast<const llvm::integerPart *>(this + 1),
getWordsForBitWidth(numBits)});
}
FloatLiteralInst::FloatLiteralInst(SILLocation Loc, SILType Ty,
const APInt &Bits)
: LiteralInst(ValueKind::FloatLiteralInst, Loc, Ty),
numBits(Bits.getBitWidth())
{
memcpy(this + 1, Bits.getRawData(),
Bits.getNumWords() * sizeof(llvm::integerPart));
}
FloatLiteralInst *
FloatLiteralInst::create(SILLocation Loc, SILType Ty, const APFloat &Value,
SILFunction &B) {
auto floatTy = Ty.castTo<BuiltinFloatType>();
assert(&floatTy->getAPFloatSemantics() == &Value.getSemantics() &&
"FloatLiteralInst value's APFloat semantics do not match type");
(void)floatTy;
APInt Bits = Value.bitcastToAPInt();
void *buf = allocateLiteralInstWithBitSize<FloatLiteralInst>(B,
Bits.getBitWidth());
return ::new (buf) FloatLiteralInst(Loc, Ty, Bits);
}
FloatLiteralInst *
FloatLiteralInst::create(FloatLiteralExpr *E, SILFunction &F) {
return create(E,
// Builtin floating-point types are always valid SIL types.
SILType::getBuiltinFloatType(
E->getType()->castTo<BuiltinFloatType>()->getFPKind(),
F.getASTContext()),
E->getValue(), F);
}
APInt FloatLiteralInst::getBits() const {
return APInt(numBits,
{reinterpret_cast<const llvm::integerPart *>(this + 1),
getWordsForBitWidth(numBits)});
}
APFloat FloatLiteralInst::getValue() const {
return APFloat(getType().castTo<BuiltinFloatType>()->getAPFloatSemantics(),
getBits());
}
StringLiteralInst::StringLiteralInst(SILLocation Loc, StringRef Text,
Encoding encoding, SILType Ty)
: LiteralInst(ValueKind::StringLiteralInst, Loc, Ty),
Length(Text.size()), TheEncoding(encoding)
{
memcpy(this + 1, Text.data(), Text.size());
}
StringLiteralInst *
StringLiteralInst::create(SILLocation loc, StringRef text, Encoding encoding,
SILFunction &F) {
void *buf
= allocateLiteralInstWithTextSize<StringLiteralInst>(F, text.size());
auto Ty = SILType::getRawPointerType(F.getModule().getASTContext());
return ::new (buf) StringLiteralInst(loc, text, encoding, Ty);
}
uint64_t StringLiteralInst::getCodeUnitCount() {
if (TheEncoding == Encoding::UTF16)
return unicode::getUTF16Length(getValue());
return Length;
}
StoreInst::StoreInst(SILLocation Loc, SILValue Src, SILValue Dest)
: SILInstruction(ValueKind::StoreInst, Loc),
Operands(this, Src, Dest) {
}
AssignInst::AssignInst(SILLocation Loc, SILValue Src, SILValue Dest)
: SILInstruction(ValueKind::AssignInst, Loc),
Operands(this, Src, Dest) {
}
MarkFunctionEscapeInst *
MarkFunctionEscapeInst::create(SILLocation Loc,
ArrayRef<SILValue> Elements, SILFunction &F) {
void *Buffer = F.getModule().allocate(sizeof(MarkFunctionEscapeInst) +
decltype(Operands)::getExtraSize(Elements.size()),
alignof(MarkFunctionEscapeInst));
return ::new(Buffer) MarkFunctionEscapeInst(Loc, Elements);
}
MarkFunctionEscapeInst::MarkFunctionEscapeInst(SILLocation Loc,
ArrayRef<SILValue> Elems)
: SILInstruction(ValueKind::MarkFunctionEscapeInst, Loc),
Operands(this, Elems) {
}
static SILType getPinResultType(SILType operandType) {
return SILType::getPrimitiveObjectType(
OptionalType::get(operandType.getSwiftRValueType())->getCanonicalType());
}
StrongPinInst::StrongPinInst(SILLocation loc, SILValue operand)
: UnaryInstructionBase(loc, operand, getPinResultType(operand.getType())) {
}
StoreWeakInst::StoreWeakInst(SILLocation loc, SILValue value, SILValue dest,
IsInitialization_t isInit)
: SILInstruction(ValueKind::StoreWeakInst, loc),
Operands(this, value, dest), IsInitializationOfDest(isInit) {
}
CopyAddrInst::CopyAddrInst(SILLocation Loc, SILValue SrcLValue, SILValue DestLValue,
IsTake_t isTakeOfSrc,
IsInitialization_t isInitializationOfDest)
: SILInstruction(ValueKind::CopyAddrInst, Loc),
IsTakeOfSrc(isTakeOfSrc), IsInitializationOfDest(isInitializationOfDest),
Operands(this, SrcLValue, DestLValue)
{
}
UnconditionalCheckedCastAddrInst::
UnconditionalCheckedCastAddrInst(SILLocation loc,
CastConsumptionKind consumption,
SILValue src, CanType srcType,
SILValue dest, CanType targetType)
: SILInstruction(ValueKind::UnconditionalCheckedCastAddrInst, loc),
Operands(this, src, dest), ConsumptionKind(consumption),
SourceType(srcType), TargetType(targetType) {
}
StructInst *StructInst::create(SILLocation Loc, SILType Ty,
ArrayRef<SILValue> Elements, SILFunction &F) {
void *Buffer = F.getModule().allocate(sizeof(StructInst) +
decltype(Operands)::getExtraSize(Elements.size()),
alignof(StructInst));
return ::new(Buffer) StructInst(Loc, Ty, Elements);
}
StructInst::StructInst(SILLocation Loc, SILType Ty, ArrayRef<SILValue> Elems)
: SILInstruction(ValueKind::StructInst, Loc, Ty), Operands(this, Elems) {
assert(!Ty.getStructOrBoundGenericStruct()->hasUnreferenceableStorage());
}
TupleInst *TupleInst::create(SILLocation Loc, SILType Ty,
ArrayRef<SILValue> Elements, SILFunction &F) {
void *Buffer = F.getModule().allocate(sizeof(TupleInst) +
decltype(Operands)::getExtraSize(Elements.size()),
alignof(TupleInst));
return ::new(Buffer) TupleInst(Loc, Ty, Elements);
}
TupleInst::TupleInst(SILLocation Loc, SILType Ty, ArrayRef<SILValue> Elems)
: SILInstruction(ValueKind::TupleInst, Loc, Ty), Operands(this, Elems) {
}
MetatypeInst::MetatypeInst(SILLocation Loc, SILType Metatype)
: SILInstruction(ValueKind::MetatypeInst, Loc, Metatype) {}
bool TupleExtractInst::isTrivialEltOfOneRCIDTuple() const {
SILModule &Mod = getModule();
// If we are not trivial, bail.
if (!getType().isTrivial(Mod))
return false;
// If the elt we are extracting is trivial, we can not have any non trivial
// fields.
if (getOperand().getType().isTrivial(Mod))
return false;
// Ok, now we know that our tuple has non-trivial fields. Make sure that our
// parent tuple has only one non-trivial field.
bool FoundNonTrivialField = false;
SILType OpTy = getOperand().getType();
unsigned FieldNo = getFieldNo();
// For each element index of the tuple...
for (unsigned i = 0, e = getNumTupleElts(); i != e; ++i) {
// If the element index is the one we are extracting, skip it...
if (i == FieldNo)
continue;
// Otherwise check if we have a non-trivial type. If we don't have one,
// continue.
if (OpTy.getTupleElementType(i).isTrivial(Mod))
continue;
// Ok, this type is non-trivial. If we have not seen a non-trivial field
// yet, set the FoundNonTrivialField flag.
if (!FoundNonTrivialField) {
FoundNonTrivialField = true;
continue;
}
// If we have seen a field and thus the FoundNonTrivialField flag is set,
// return false.
return false;
}
// We found only one trivial field.
assert(FoundNonTrivialField && "Tuple is non-trivial, but does not have a "
"non-trivial element?!");
return true;
}
bool TupleExtractInst::isEltOnlyNonTrivialElt() const {
SILModule &Mod = getModule();
// If the elt we are extracting is trivial, we can not be a non-trivial
// field... return false.
if (getType().isTrivial(Mod))
return false;
// Ok, we know that the elt we are extracting is non-trivial. Make sure that
// we have no other non-trivial elts.
SILType OpTy = getOperand().getType();
unsigned FieldNo = getFieldNo();
// For each element index of the tuple...
for (unsigned i = 0, e = getNumTupleElts(); i != e; ++i) {
// If the element index is the one we are extracting, skip it...
if (i == FieldNo)
continue;
// Otherwise check if we have a non-trivial type. If we don't have one,
// continue.
if (OpTy.getTupleElementType(i).isTrivial(Mod))
continue;
// If we do have a non-trivial type, return false. We have multiple
// non-trivial types violating our condition.
return false;
}
// We checked every other elt of the tuple and did not find any
// non-trivial elt except for ourselves. Return true.
return true;
}
bool StructExtractInst::isTrivialFieldOfOneRCIDStruct() const {
SILModule &Mod = getModule();
// If we are not trivial, bail.
if (!getType().isTrivial(Mod))
return false;
SILType StructTy = getOperand().getType();
// If the elt we are extracting is trivial, we can not have any non trivial
// fields.
if (StructTy.isTrivial(Mod))
return false;
// Ok, now we know that our tuple has non-trivial fields. Make sure that our
// parent tuple has only one non-trivial field.
bool FoundNonTrivialField = false;
// For each element index of the tuple...
for (VarDecl *D : getStructDecl()->getStoredProperties()) {
// If the field is the one we are extracting, skip it...
if (Field == D)
continue;
// Otherwise check if we have a non-trivial type. If we don't have one,
// continue.
if (StructTy.getFieldType(D, Mod).isTrivial(Mod))
continue;
// Ok, this type is non-trivial. If we have not seen a non-trivial field
// yet, set the FoundNonTrivialField flag.
if (!FoundNonTrivialField) {
FoundNonTrivialField = true;
continue;
}
// If we have seen a field and thus the FoundNonTrivialField flag is set,
// return false.
return false;
}
// We found only one trivial field.
assert(FoundNonTrivialField && "Struct is non-trivial, but does not have a "
"non-trivial field?!");
return true;
}
/// Return true if we are extracting the only non-trivial field of out parent
/// struct. This implies that a ref count operation on the aggregate is
/// equivalent to a ref count operation on this field.
bool StructExtractInst::isFieldOnlyNonTrivialField() const {
SILModule &Mod = getModule();
// If the field we are extracting is trivial, we can not be a non-trivial
// field... return false.
if (getType().isTrivial(Mod))
return false;
SILType StructTy = getOperand().getType();
// Ok, we are visiting a non-trivial field. Then for every stored field...
for (VarDecl *D : getStructDecl()->getStoredProperties()) {
// If we are visiting our own field continue.
if (Field == D)
continue;
// Ok, we have a field that is not equal to the field we are
// extracting. If that field is trivial, we do not care about
// it... continue.
if (StructTy.getFieldType(D, Mod).isTrivial(Mod))
continue;
// We have found a non trivial member that is not the member we are
// extracting, fail.
return false;
}
// We checked every other field of the struct and did not find any
// non-trivial fields except for ourselves. Return true.
return true;
}
//===----------------------------------------------------------------------===//
// Instructions representing terminators
//===----------------------------------------------------------------------===//
TermInst::SuccessorListTy TermInst::getSuccessors() {
#define TERMINATOR(TYPE, PARENT, EFFECT) \
if (auto I = dyn_cast<TYPE>(this)) \
return I->getSuccessors();
#include "swift/SIL/SILNodes.def"
llvm_unreachable("not a terminator?!");
}
BranchInst::BranchInst(SILLocation Loc,
SILBasicBlock *DestBB,
ArrayRef<SILValue> Args)
: TermInst(ValueKind::BranchInst, Loc),
DestBB(this, DestBB), Operands(this, Args) {}
BranchInst *BranchInst::create(SILLocation Loc,
SILBasicBlock *DestBB,
SILFunction &F) {
return create(Loc, DestBB, {}, F);
}
BranchInst *BranchInst::create(SILLocation Loc,
SILBasicBlock *DestBB, ArrayRef<SILValue> Args,
SILFunction &F) {
void *Buffer = F.getModule().allocate(sizeof(BranchInst) +
decltype(Operands)::getExtraSize(Args.size()),
alignof(BranchInst));
return ::new (Buffer) BranchInst(Loc, DestBB, Args);
}
CondBranchInst::CondBranchInst(SILLocation Loc, SILValue Condition,
SILBasicBlock *TrueBB, SILBasicBlock *FalseBB,
ArrayRef<SILValue> Args, unsigned NumTrue,
unsigned NumFalse)
: TermInst(ValueKind::CondBranchInst, Loc),
DestBBs{{this, TrueBB}, {this, FalseBB}},
NumTrueArgs(NumTrue), NumFalseArgs(NumFalse),
Operands(this, Args, Condition)
{
assert(Args.size() == (NumTrueArgs + NumFalseArgs) &&
"Invalid number of args");
assert(TrueBB != FalseBB && "Identical destinations");
}
CondBranchInst *CondBranchInst::create(SILLocation Loc, SILValue Condition,
SILBasicBlock *TrueBB,
SILBasicBlock *FalseBB,
SILFunction &F) {
return create(Loc, Condition, TrueBB, {}, FalseBB, {}, F);
}
CondBranchInst *CondBranchInst::create(SILLocation Loc, SILValue Condition,
SILBasicBlock *TrueBB, ArrayRef<SILValue> TrueArgs,
SILBasicBlock *FalseBB, ArrayRef<SILValue> FalseArgs,
SILFunction &F) {
SmallVector<SILValue, 4> Args;
Args.append(TrueArgs.begin(), TrueArgs.end());
Args.append(FalseArgs.begin(), FalseArgs.end());
void *Buffer = F.getModule().allocate(sizeof(CondBranchInst) +
decltype(Operands)::getExtraSize(Args.size()),
alignof(CondBranchInst));
return ::new (Buffer) CondBranchInst(Loc, Condition, TrueBB, FalseBB, Args,
TrueArgs.size(), FalseArgs.size());
}
OperandValueArrayRef CondBranchInst::getTrueArgs() const {
return Operands.asValueArray().slice(1, NumTrueArgs);
}
OperandValueArrayRef CondBranchInst::getFalseArgs() const {
return Operands.asValueArray().slice(1 + NumTrueArgs, NumFalseArgs);
}
SILValue
CondBranchInst::getArgForDestBB(SILBasicBlock *DestBB, SILArgument *A) {
// If TrueBB and FalseBB equal, we can not find an arg for this DestBB so
// return an empty SILValue.
if (getTrueBB() == getFalseBB()) {
assert(DestBB == getTrueBB() && "DestBB is not a target of this cond_br");
return SILValue();
}
unsigned i = A->getIndex();
if (DestBB == getTrueBB())
return Operands[1 + i].get();
assert(DestBB == getFalseBB()
&& "By process of elimination BB must be false BB");
return Operands[1 + NumTrueArgs + i].get();
}
ArrayRef<Operand> CondBranchInst::getTrueOperands() const {
if (NumTrueArgs == 0)
return ArrayRef<Operand>();
return ArrayRef<Operand>(&Operands[1], NumTrueArgs);
}
MutableArrayRef<Operand> CondBranchInst::getTrueOperands() {
if (NumTrueArgs == 0)
return MutableArrayRef<Operand>();
return MutableArrayRef<Operand>(&Operands[1], NumTrueArgs);
}
ArrayRef<Operand> CondBranchInst::getFalseOperands() const {
if (NumFalseArgs == 0)
return ArrayRef<Operand>();
return ArrayRef<Operand>(&Operands[1+NumTrueArgs], NumFalseArgs);
}
MutableArrayRef<Operand> CondBranchInst::getFalseOperands() {
if (NumFalseArgs == 0)
return MutableArrayRef<Operand>();
return MutableArrayRef<Operand>(&Operands[1+NumTrueArgs], NumFalseArgs);
}
void CondBranchInst::swapSuccessors() {
// Swap our destinations.
SILBasicBlock *First = DestBBs[0].getBB();
DestBBs[0] = DestBBs[1].getBB();
DestBBs[1] = First;
// If we don't have any arguments return.
if (!NumTrueArgs && !NumFalseArgs)
return;
// Otherwise swap our true and false arguments.
MutableArrayRef<Operand> Ops = getAllOperands();
llvm::SmallVector<SILValue, 4> TrueOps;
for (SILValue V : getTrueArgs())
TrueOps.push_back(V);
auto FalseArgs = getFalseArgs();
for (unsigned i = 0, e = NumFalseArgs; i < e; ++i) {
Ops[1+i].set(FalseArgs[i]);
}
for (unsigned i = 0, e = NumTrueArgs; i < e; ++i) {
Ops[1+i+NumFalseArgs].set(TrueOps[i]);
}
// Finally swap the number of arguments that we have.
std::swap(NumTrueArgs, NumFalseArgs);
}
SwitchValueInst::SwitchValueInst(SILLocation Loc, SILValue Operand,
SILBasicBlock *DefaultBB,
ArrayRef<SILValue> Cases,
ArrayRef<SILBasicBlock*> BBs)
: TermInst(ValueKind::SwitchValueInst, Loc),
NumCases(Cases.size()),
HasDefault(bool(DefaultBB)),
Operands(this, Cases, Operand)
{
// Initialize the successor array.
auto *succs = getSuccessorBuf();
unsigned OperandBitWidth = 0;
if (auto OperandTy = Operand.getType().getAs<BuiltinIntegerType>()) {
OperandBitWidth = OperandTy->getGreatestWidth();
}
for (unsigned i = 0, size = Cases.size(); i < size; ++i) {
if (OperandBitWidth) {
auto *IL = dyn_cast<IntegerLiteralInst>(Cases[i]);
assert(IL && "switch_value case value should be of an integer type");
assert(IL->getValue().getBitWidth() == OperandBitWidth &&
"switch_value case value is not same bit width as operand");
(void)IL;
} else {
auto *FR = dyn_cast<FunctionRefInst>(Cases[i]);
if (!FR) {
if (auto *CF = dyn_cast<ConvertFunctionInst>(Cases[i])) {
FR = dyn_cast<FunctionRefInst>(CF->getOperand());
}
}
assert(FR && "switch_value case value should be a function reference");
}
::new (succs + i) SILSuccessor(this, BBs[i]);
}
if (HasDefault)
::new (succs + NumCases) SILSuccessor(this, DefaultBB);
}
SwitchValueInst::~SwitchValueInst() {
// Destroy the successor records to keep the CFG up to date.
auto *succs = getSuccessorBuf();
for (unsigned i = 0, end = NumCases + HasDefault; i < end; ++i) {
succs[i].~SILSuccessor();
}
}
SwitchValueInst *SwitchValueInst::create(
SILLocation Loc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<SILValue, SILBasicBlock *>> CaseBBs, SILFunction &F) {
// Allocate enough room for the instruction with tail-allocated data for all
// the case values and the SILSuccessor arrays. There are `CaseBBs.size()`
// SILValues and `CaseBBs.size() + (DefaultBB ? 1 : 0)` successors.
SmallVector<SILValue, 8> Cases;
SmallVector<SILBasicBlock *, 8> BBs;
unsigned numCases = CaseBBs.size();
unsigned numSuccessors = numCases + (DefaultBB ? 1 : 0);
for(auto pair: CaseBBs) {
Cases.push_back(pair.first);
BBs.push_back(pair.second);
}
size_t bufSize = sizeof(SwitchValueInst) +
decltype(Operands)::getExtraSize(Cases.size()) +
sizeof(SILSuccessor) * numSuccessors;
void *buf = F.getModule().allocate(bufSize, alignof(SwitchValueInst));
return ::new (buf) SwitchValueInst(Loc, Operand, DefaultBB, Cases, BBs);
}
SelectValueInst::SelectValueInst(SILLocation Loc, SILValue Operand, SILType Type,
SILValue DefaultResult,
ArrayRef<SILValue> CaseValuesAndResults)
: SelectInstBase(ValueKind::SelectValueInst,
Loc,
Type,
CaseValuesAndResults.size() / 2,
bool(DefaultResult),
CaseValuesAndResults, Operand) {
unsigned OperandBitWidth = 0;
if (auto OperandTy = Operand.getType().getAs<BuiltinIntegerType>()) {
OperandBitWidth = OperandTy->getGreatestWidth();
}
for (unsigned i = 0; i < NumCases; ++i) {
auto *IL = dyn_cast<IntegerLiteralInst>(CaseValuesAndResults[i * 2]);
assert(IL && "select_value case value should be of an integer type");
assert(IL->getValue().getBitWidth() == OperandBitWidth &&
"select_value case value is not same bit width as operand");
(void)IL;
}
}
SelectValueInst::~SelectValueInst() {
}
SelectValueInst *
SelectValueInst::create(SILLocation Loc, SILValue Operand, SILType Type,
SILValue DefaultResult,
ArrayRef<std::pair<SILValue, SILValue>> CaseValues,
SILFunction &F) {
// Allocate enough room for the instruction with tail-allocated data for all
// the case values and the SILSuccessor arrays. There are `CaseBBs.size()`
// SILValuues and `CaseBBs.size() + (DefaultBB ? 1 : 0)` successors.
SmallVector<SILValue, 8> CaseValuesAndResults;
for (auto pair : CaseValues) {
CaseValuesAndResults.push_back(pair.first);
CaseValuesAndResults.push_back(pair.second);
}
if ((bool)DefaultResult)
CaseValuesAndResults.push_back(DefaultResult);
size_t bufSize = sizeof(SelectValueInst) + decltype(Operands)::getExtraSize(
CaseValuesAndResults.size());
void *buf = F.getModule().allocate(bufSize, alignof(SelectValueInst));
return ::new (buf)
SelectValueInst(Loc, Operand, Type, DefaultResult, CaseValuesAndResults);
}
static SmallVector<SILValue, 4>
getCaseOperands(ArrayRef<std::pair<EnumElementDecl*, SILValue>> CaseValues,
SILValue DefaultValue) {
SmallVector<SILValue, 4> result;
for (auto &pair : CaseValues)
result.push_back(pair.second);
if (DefaultValue)
result.push_back(DefaultValue);
return result;
}
SelectEnumInstBase::SelectEnumInstBase(
ValueKind Kind, SILLocation Loc, SILValue Operand, SILType Ty,
SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl *, SILValue>> CaseValues)
: SelectInstBase(Kind, Loc, Ty, CaseValues.size(), bool(DefaultValue),
getCaseOperands(CaseValues, DefaultValue), Operand) {
// Initialize the case and successor arrays.
auto *cases = getCaseBuf();
for (unsigned i = 0, size = CaseValues.size(); i < size; ++i) {
cases[i] = CaseValues[i].first;
}
}
template<typename SELECT_ENUM_INST>
SELECT_ENUM_INST *
SelectEnumInstBase::createSelectEnum(SILLocation Loc, SILValue Operand,
SILType Ty,
SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl*, SILValue>> CaseValues,
SILFunction &F) {
// Allocate enough room for the instruction with tail-allocated
// EnumElementDecl and operand arrays. There are `CaseBBs.size()` decls
// and `CaseBBs.size() + (DefaultBB ? 1 : 0)` values.
unsigned numCases = CaseValues.size();
void *buf = F.getModule().allocate(
sizeof(SELECT_ENUM_INST) + sizeof(EnumElementDecl*) * numCases
+ TailAllocatedOperandList<1>::getExtraSize(numCases + (bool)DefaultValue),
alignof(SELECT_ENUM_INST));
return ::new (buf) SELECT_ENUM_INST(Loc,Operand,Ty,DefaultValue,CaseValues);
}
SelectEnumInst *
SelectEnumInst::create(SILLocation Loc, SILValue Operand, SILType Type,
SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl *, SILValue>> CaseValues,
SILFunction &F) {
return createSelectEnum<SelectEnumInst>(Loc, Operand, Type, DefaultValue,
CaseValues, F);
}
SelectEnumAddrInst *
SelectEnumAddrInst::create(SILLocation Loc, SILValue Operand, SILType Type,
SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl *, SILValue>> CaseValues,
SILFunction &F) {
return createSelectEnum<SelectEnumAddrInst>(Loc, Operand, Type, DefaultValue,
CaseValues, F);
}
SwitchEnumInstBase::SwitchEnumInstBase(
ValueKind Kind,
SILLocation Loc, SILValue Operand,
SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl*, SILBasicBlock*>> CaseBBs)
: TermInst(Kind, Loc),
Operands(this, Operand),
NumCases(CaseBBs.size()),
HasDefault(bool(DefaultBB))
{
// Initialize the case and successor arrays.
auto *cases = getCaseBuf();
auto *succs = getSuccessorBuf();
for (unsigned i = 0, size = CaseBBs.size(); i < size; ++i) {
cases[i] = CaseBBs[i].first;
::new (succs + i) SILSuccessor(this, CaseBBs[i].second);
}
if (HasDefault)
::new (succs + NumCases) SILSuccessor(this, DefaultBB);
}
namespace {
template <class Inst> EnumElementDecl *
getUniqueCaseForDefaultValue(Inst *inst, SILValue enumValue) {
assert(inst->hasDefault() && "doesn't have a default");
SILType enumType = enumValue.getType();
if (enumType.isResilient(inst->getModule()))
return nullptr;
EnumDecl *decl = enumType.getEnumOrBoundGenericEnum();
assert(decl && "switch_enum operand is not an enum");
llvm::SmallPtrSet<EnumElementDecl *, 4> unswitchedElts;
for (auto elt : decl->getAllElements())
unswitchedElts.insert(elt);
for (unsigned i = 0, e = inst->getNumCases(); i != e; ++i) {
auto Entry = inst->getCase(i);
unswitchedElts.erase(Entry.first);
}
if (unswitchedElts.size() == 1)
return *unswitchedElts.begin();
return nullptr;
}
}
NullablePtr<EnumElementDecl> SelectEnumInstBase::getUniqueCaseForDefault() {
return getUniqueCaseForDefaultValue(this, getEnumOperand());
}
NullablePtr<EnumElementDecl> SelectEnumInstBase::getSingleTrueElement() const {
auto SEIType = getType().getAs<BuiltinIntegerType>();
if (!SEIType)
return nullptr;
if (SEIType->getWidth() != BuiltinIntegerWidth::fixed(1))
return nullptr;
// Try to find a single literal "true" case.
Optional<EnumElementDecl*> TrueElement;
for (unsigned i = 0, e = getNumCases(); i < e; ++i) {
auto casePair = getCase(i);
if (auto intLit = dyn_cast<IntegerLiteralInst>(casePair.second)) {
if (intLit->getValue() == APInt(1, 1)) {
if (!TrueElement)
TrueElement = casePair.first;
else
// Use Optional(nullptr) to represent more than one.
TrueElement = Optional<EnumElementDecl*>(nullptr);
}
}
}
if (!TrueElement || !*TrueElement)
return nullptr;
return *TrueElement;
}
SwitchEnumInstBase::~SwitchEnumInstBase() {
// Destroy the successor records to keep the CFG up to date.
auto *succs = getSuccessorBuf();
for (unsigned i = 0, end = NumCases + HasDefault; i < end; ++i) {
succs[i].~SILSuccessor();
}
}
template<typename SWITCH_ENUM_INST>
SWITCH_ENUM_INST *
SwitchEnumInstBase::createSwitchEnum(SILLocation Loc, SILValue Operand,
SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl*, SILBasicBlock*>> CaseBBs,
SILFunction &F) {
// Allocate enough room for the instruction with tail-allocated
// EnumElementDecl and SILSuccessor arrays. There are `CaseBBs.size()` decls
// and `CaseBBs.size() + (DefaultBB ? 1 : 0)` successors.
unsigned numCases = CaseBBs.size();
unsigned numSuccessors = numCases + (DefaultBB ? 1 : 0);
void *buf = F.getModule().allocate(sizeof(SWITCH_ENUM_INST)
+ sizeof(EnumElementDecl*) * numCases
+ sizeof(SILSuccessor) * numSuccessors,
alignof(SWITCH_ENUM_INST));
return ::new (buf) SWITCH_ENUM_INST(Loc, Operand, DefaultBB, CaseBBs);
}
NullablePtr<EnumElementDecl> SwitchEnumInstBase::getUniqueCaseForDefault() {
return getUniqueCaseForDefaultValue(this, getOperand());
}
NullablePtr<EnumElementDecl>
SwitchEnumInstBase::getUniqueCaseForDestination(SILBasicBlock *BB) {
SILValue value = getOperand();
SILType enumType = value.getType();
EnumDecl *decl = enumType.getEnumOrBoundGenericEnum();
assert(decl && "switch_enum operand is not an enum");
(void)decl;
EnumElementDecl *D = nullptr;
for (unsigned i = 0, e = getNumCases(); i != e; ++i) {
auto Entry = getCase(i);
if (Entry.second == BB) {
if (D != nullptr)
return nullptr;
D = Entry.first;
}
}
if (!D && hasDefault() && getDefaultBB() == BB) {
return getUniqueCaseForDefault();
}
return D;
}
SwitchEnumInst *SwitchEnumInst::create(SILLocation Loc, SILValue Operand,
SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl*, SILBasicBlock*>> CaseBBs,
SILFunction &F) {
return
createSwitchEnum<SwitchEnumInst>(Loc, Operand, DefaultBB, CaseBBs, F);
}
SwitchEnumAddrInst *
SwitchEnumAddrInst::create(SILLocation Loc, SILValue Operand,
SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl*, SILBasicBlock*>> CaseBBs,
SILFunction &F) {
return createSwitchEnum<SwitchEnumAddrInst>
(Loc, Operand, DefaultBB, CaseBBs, F);
}
DynamicMethodBranchInst::DynamicMethodBranchInst(SILLocation Loc,
SILValue Operand,
SILDeclRef Member,
SILBasicBlock *HasMethodBB,
SILBasicBlock *NoMethodBB)
: TermInst(ValueKind::DynamicMethodBranchInst, Loc),
Member(Member),
DestBBs{{this, HasMethodBB}, {this, NoMethodBB}},
Operands(this, Operand)
{
}
DynamicMethodBranchInst *DynamicMethodBranchInst::create(
SILLocation Loc,
SILValue Operand,
SILDeclRef Member,
SILBasicBlock *HasMethodBB,
SILBasicBlock *NoMethodBB,
SILFunction &F) {
void *Buffer = F.getModule().allocate(sizeof(DynamicMethodBranchInst),
alignof(DynamicMethodBranchInst));
return ::new (Buffer) DynamicMethodBranchInst(Loc, Operand, Member,
HasMethodBB, NoMethodBB);
}
SILLinkage
TypeConverter::getLinkageForProtocolConformance(const NormalProtocolConformance *C,
ForDefinition_t definition) {
// If the conformance is imported from Clang, give it shared linkage.
auto typeDecl = C->getType()->getNominalOrBoundGenericNominal();
auto typeUnit = typeDecl->getModuleScopeContext();
if (isa<ClangModuleUnit>(typeUnit)
&& C->getDeclContext()->getParentModule() == typeUnit->getParentModule())
return SILLinkage::Shared;
// FIXME: This should be using std::min(protocol's access, type's access).
switch (C->getProtocol()->getEffectiveAccess()) {
case Accessibility::Private:
return (definition ? SILLinkage::Private : SILLinkage::PrivateExternal);
case Accessibility::Internal:
return (definition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
default:
return (definition ? SILLinkage::Public : SILLinkage::PublicExternal);
}
}
/// Create a witness method, creating a witness table declaration if we don't
/// have a witness table for it. Later on if someone wants the real definition,
/// lookUpWitnessTable will deserialize it for us if we can.
///
/// This is following the same model of how we deal with SILFunctions in
/// function_ref. There we always just create a declaration and then later
/// deserialize the actual function definition if we need to.
WitnessMethodInst *
WitnessMethodInst::create(SILLocation Loc, CanType LookupType,
ProtocolConformance *Conformance, SILDeclRef Member,
SILType Ty, SILFunction *F,
SILValue OpenedExistential, bool Volatile) {
SILModule &Mod = F->getModule();
void *Buffer =
Mod.allocate(sizeof(WitnessMethodInst), alignof(WitnessMethodInst));
declareWitnessTable(Mod, Conformance);
return ::new (Buffer) WitnessMethodInst(Loc, LookupType, Conformance, Member,
Ty, OpenedExistential, Volatile);
}
InitExistentialAddrInst *
InitExistentialAddrInst::create(SILLocation Loc, SILValue Existential,
CanType ConcreteType,
SILType ConcreteLoweredType,
ArrayRef<ProtocolConformance *> Conformances,
SILFunction *F) {
SILModule &Mod = F->getModule();
void *Buffer = Mod.allocate(sizeof(InitExistentialAddrInst),
alignof(InitExistentialAddrInst));
for (ProtocolConformance *C : Conformances)
declareWitnessTable(Mod, C);
return ::new (Buffer) InitExistentialAddrInst(Loc, Existential,
ConcreteType,
ConcreteLoweredType,
Conformances);
}
InitExistentialRefInst *
InitExistentialRefInst::create(SILLocation Loc, SILType ExistentialType,
CanType ConcreteType,
SILValue Instance,
ArrayRef<ProtocolConformance *> Conformances,
SILFunction *F) {
SILModule &Mod = F->getModule();
void *Buffer = Mod.allocate(sizeof(InitExistentialRefInst),
alignof(InitExistentialRefInst));
for (ProtocolConformance *C : Conformances) {
if (!C)
continue;
if (!Mod.lookUpWitnessTable(C, false).first)
declareWitnessTable(Mod, C);
}
return ::new (Buffer) InitExistentialRefInst(Loc, ExistentialType,
ConcreteType,
Instance,
Conformances);
}
InitExistentialMetatypeInst *
InitExistentialMetatypeInst::create(SILLocation loc,
SILType existentialMetatypeType,
SILValue metatype,
ArrayRef<ProtocolConformance *> conformances,
SILFunction *F) {
SILModule &M = F->getModule();
void *buffer = M.allocate(sizeof(InitExistentialMetatypeInst),
alignof(InitExistentialMetatypeInst));
for (ProtocolConformance *conformance : conformances)
if (!M.lookUpWitnessTable(conformance, false).first)
declareWitnessTable(M, conformance);
return ::new (buffer) InitExistentialMetatypeInst(loc, existentialMetatypeType,
metatype, conformances);
}