Files
swift-mirror/lib/Serialization/SerializeSIL.cpp
Andrew Trick a174aa4dfe Add AST and SILGen support for Builtin.isUnique.
Preparation to fix <rdar://problem/18151694> Add Builtin.checkUnique
to avoid lost Array copies.

This adds the following new builtins:

    isUnique : <T> (inout T[?]) -> Int1
    isUniqueOrPinned : <T> (inout T[?]) -> Int1

These builtins take an inout object reference and return a
boolean. Passing the reference inout forces the optimizer to preserve
a retain distinct from what’s required to maintain lifetime for any of
the reference's source-level copies, because the called function is
allowed to replace the reference, thereby releasing the referent.

Before this change, the API entry points for uniqueness checking
already took an inout reference. However, after full inlining, it was
possible for two source-level variables that reference the same object
to appear to be the same variable from the optimizer's perspective
because an address to the variable was longer taken at the point of
checking uniqueness. Consequently the optimizer could remove
"redundant" copies which were actually needed to implement
copy-on-write semantics. With a builtin, the variable whose reference
is being checked for uniqueness appears mutable at the level of an
individual SIL instruction.

The kind of reference count checking that Builtin.isUnique performs
depends on the argument type:

    - Native object types are directly checked by reading the
      strong reference count:
      (Builtin.NativeObject, known native class reference)

    - Objective-C object types require an additional check that the
      dynamic object type uses native swift reference counting:
      (Builtin.UnknownObject, unknown class reference, class existential)

    - Bridged object types allow the dymanic object type check to be
      bypassed based on the pointer encoding:
      (Builtin.BridgeObject)

Any of the above types may also be wrapped in an optional.  If the
static argument type is optional, then a null check is also performed.

Thus, isUnique only returns true for non-null, native swift object
references with a strong reference count of one.

isUniqueOrPinned has the same semantics as isUnique except that it
also returns true if the object is marked pinned regardless of the
reference count. This allows for simultaneous non-structural
modification of multiple subobjects.

In some cases, the standard library can dynamically determine that it
has a native reference even though the static type is a bridge or
unknown object. Unsafe variants of the builtin are available to allow
the additional pointer bit mask and dynamic class lookup to be
bypassed in these cases:

    isUnique_native : <T> (inout T[?]) -> Int1
    isUniqueOrPinned_native : <T> (inout T[?]) -> Int1

These builtins perform an implicit cast to NativeObject before
checking uniqueness. There’s no way at SIL level to cast the address
of a reference, so we need to encapsulate this operation as part of
the builtin.

Swift SVN r27887
2015-04-28 22:54:24 +00:00

1688 lines
68 KiB
C++

//===--- SerializeSIL.cpp - Read and write SIL ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-serialize"
#include "SILFormat.h"
#include "Serialization.h"
#include "swift/AST/Module.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/OnDiskHashTable.h"
using namespace swift;
using namespace swift::serialization;
using namespace swift::serialization::sil_block;
using namespace llvm::support;
using llvm::BCBlockRAII;
static unsigned toStableStringEncoding(StringLiteralInst::Encoding encoding) {
switch (encoding) {
case StringLiteralInst::Encoding::UTF8: return SIL_UTF8;
case StringLiteralInst::Encoding::UTF16: return SIL_UTF16;
}
llvm_unreachable("bad string encoding");
}
static unsigned toStableSILLinkage(SILLinkage linkage) {
switch (linkage) {
case SILLinkage::Public: return SIL_LINKAGE_PUBLIC;
case SILLinkage::Hidden: return SIL_LINKAGE_HIDDEN;
case SILLinkage::Shared: return SIL_LINKAGE_SHARED;
case SILLinkage::Private: return SIL_LINKAGE_PRIVATE;
case SILLinkage::PublicExternal: return SIL_LINKAGE_PUBLIC_EXTERNAL;
case SILLinkage::HiddenExternal: return SIL_LINKAGE_HIDDEN_EXTERNAL;
case SILLinkage::SharedExternal: return SIL_LINKAGE_SHARED_EXTERNAL;
case SILLinkage::PrivateExternal: return SIL_LINKAGE_PRIVATE_EXTERNAL;
}
llvm_unreachable("bad linkage");
}
static unsigned toStableCastConsumptionKind(CastConsumptionKind kind) {
switch (kind) {
case CastConsumptionKind::TakeAlways:
return SIL_CAST_CONSUMPTION_TAKE_ALWAYS;
case CastConsumptionKind::TakeOnSuccess:
return SIL_CAST_CONSUMPTION_TAKE_ON_SUCCESS;
case CastConsumptionKind::CopyOnSuccess:
return SIL_CAST_CONSUMPTION_COPY_ON_SUCCESS;
}
llvm_unreachable("bad cast consumption kind");
}
namespace {
/// Used to serialize the on-disk func hash table.
class FuncTableInfo {
public:
using key_type = Identifier;
using key_type_ref = key_type;
using data_type = DeclID;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::HashString(key.str());
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.str().size();
uint32_t dataLength = sizeof(DeclID);
endian::Writer<little> writer(out);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key.str();
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(sizeof(DeclID) <= 32, "DeclID too large");
endian::Writer<little>(out).write<uint32_t>(data);
}
};
class SILSerializer {
Serializer &S;
ASTContext &Ctx;
llvm::BitstreamWriter &Out;
/// A reusable buffer for emitting records.
SmallVector<uint64_t, 64> ScratchRecord;
/// In case we want to encode the relative of InstID vs ValueID.
ValueID InstID = 0;
llvm::DenseMap<const ValueBase*, ValueID> ValueIDs;
ValueID addValueRef(SILValue SV) {
return addValueRef(SV.getDef());
}
ValueID addValueRef(const ValueBase *Val);
public:
using TableData = FuncTableInfo::data_type;
using Table = llvm::DenseMap<FuncTableInfo::key_type, TableData>;
private:
/// FuncTable maps function name to an ID.
Table FuncTable;
std::vector<BitOffset> Funcs;
/// The current function ID.
DeclID FuncID = 1;
/// Maps class name to a VTable ID.
Table VTableList;
/// Holds the list of VTables.
std::vector<BitOffset> VTableOffset;
DeclID VTableID = 1;
/// Maps global variable name to an ID.
Table GlobalVarList;
/// Holds the list of SIL global variables.
std::vector<BitOffset> GlobalVarOffset;
DeclID GlobalVarID = 1;
/// Maps witness table identifier to an ID.
Table WitnessTableList;
/// Holds the list of WitnessTables.
std::vector<BitOffset> WitnessTableOffset;
DeclID WitnessTableID = 1;
/// Give each SILBasicBlock a unique ID.
llvm::DenseMap<const SILBasicBlock*, unsigned> BasicBlockMap;
/// Functions that we've emitted a reference to.
llvm::SmallSet<const SILFunction *, 16> FuncsToDeclare;
std::array<unsigned, 256> SILAbbrCodes;
template <typename Layout>
void registerSILAbbr() {
using AbbrArrayTy = decltype(SILAbbrCodes);
static_assert(Layout::Code <= std::tuple_size<AbbrArrayTy>::value,
"layout has invalid record code");
SILAbbrCodes[Layout::Code] = Layout::emitAbbrev(Out);
DEBUG(llvm::dbgs() << "SIL abbre code " << SILAbbrCodes[Layout::Code]
<< " for layout " << Layout::Code << "\n");
}
// TODO: this is not required anymore. Remove it.
bool ShouldSerializeAll;
/// Helper function to update ListOfValues for MethodInst. Format:
/// Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC), and an operand.
void handleMethodInst(const MethodInst *MI, SILValue operand,
SmallVectorImpl<ValueID> &ListOfValues);
void writeSILFunction(const SILFunction &F, bool DeclOnly = false);
void writeSILBasicBlock(const SILBasicBlock &BB);
void writeSILInstruction(const SILInstruction &SI);
void writeSILVTable(const SILVTable &vt);
void writeSILGlobalVar(const SILGlobalVariable &g);
void writeSILWitnessTable(const SILWitnessTable &wt);
void writeSILBlock(const SILModule *SILMod);
void writeIndexTables();
void writeConversionLikeInstruction(const SILInstruction *I);
void writeOneTypeLayout(ValueKind valueKind, SILType type);
void writeOneTypeOneOperandLayout(ValueKind valueKind,
unsigned attrs,
SILType type,
SILValue operand);
void writeOneTypeOneOperandLayout(ValueKind valueKind,
unsigned attrs,
CanType type,
SILValue operand);
void writeOneOperandLayout(ValueKind valueKind,
unsigned attrs,
SILValue operand);
/// Helper function to determine if given the current state of the
/// deserialization if the function body for F should be deserialized.
bool shouldEmitFunctionBody(const SILFunction &F);
public:
SILSerializer(Serializer &S, ASTContext &Ctx,
llvm::BitstreamWriter &Out, bool serializeAll)
: S(S), Ctx(Ctx), Out(Out), ShouldSerializeAll(serializeAll) {}
void writeSILModule(const SILModule *SILMod);
};
} // end anonymous namespace
/// We enumerate all values in a SILFunction beforehand to correctly
/// handle forward references of values.
ValueID SILSerializer::addValueRef(const ValueBase *Val) {
if (!Val || isa<SILUndef>(Val))
return 0;
ValueID id = ValueIDs[Val];
assert(id != 0 && "We should have assigned a value ID to each value.");
return id;
}
void SILSerializer::writeSILFunction(const SILFunction &F, bool DeclOnly) {
ValueIDs.clear();
InstID = 0;
FuncTable[Ctx.getIdentifier(F.getName())] = FuncID++;
Funcs.push_back(Out.GetCurrentBitNo());
unsigned abbrCode = SILAbbrCodes[SILFunctionLayout::Code];
TypeID FnID = S.addTypeRef(F.getLoweredType().getSwiftType());
DEBUG(llvm::dbgs() << "SILFunction " << F.getName() << " @ BitNo "
<< Out.GetCurrentBitNo() << " abbrCode " << abbrCode
<< " FnID " << FnID << "\n");
DEBUG(llvm::dbgs() << "Serialized SIL:\n"; F.dump());
IdentifierID SemanticsID =
F.getSemanticsAttr().empty() ? (IdentifierID)0 :
S.addIdentifierRef(Ctx.getIdentifier(F.getSemanticsAttr()));
SILLinkage Linkage = F.getLinkage();
// We serialize shared_external linkage as shared since:
//
// 1. shared_external linkage is just a hack to tell the optimizer that a
// shared function was deserialized.
//
// 2. We can not just serialize a declaration to a shared_external function
// since shared_external functions still have linkonce_odr linkage at the LLVM
// level. This means they must be defined not just declared.
//
// TODO: When serialization is reworked, this should be removed.
if (hasSharedVisibility(Linkage))
Linkage = SILLinkage::Shared;
SILFunctionLayout::emitRecord(
Out, ScratchRecord, abbrCode, toStableSILLinkage(Linkage),
(unsigned)F.isTransparent(), (unsigned)F.isFragile(),
(unsigned)F.isThunk(), (unsigned)F.isGlobalInit(),
(unsigned)F.getInlineStrategy(), (unsigned)F.getEffectsKind(),
FnID, SemanticsID);
if (DeclOnly || isAvailableExternally(Linkage) || F.isExternalDeclaration())
return;
// Write the body's context archetypes, unless we don't actually have a body.
if (!F.isExternalDeclaration()) {
if (auto gp = F.getContextGenericParams()) {
// To help deserializing the context generic params, we serialize the
// outer-most list first. In most cases, we do not have decls associated
// with these parameter lists, so serialize the lists directly.
std::vector<GenericParamList *> paramLists;
for (; gp; gp = gp->getOuterParameters())
paramLists.push_back(gp);
for (unsigned i = 0, e = paramLists.size(); i < e; i++)
S.writeGenericParams(paramLists.rbegin()[i], SILAbbrCodes);
}
}
// Assign a unique ID to each basic block of the SILFunction.
unsigned BasicID = 0;
BasicBlockMap.clear();
// Assign a value ID to each SILInstruction that has value and to each basic
// block argument.
unsigned ValueID = 0;
for (const SILBasicBlock &BB : F) {
BasicBlockMap.insert(std::make_pair(&BB, BasicID++));
for (auto I = BB.bbarg_begin(), E = BB.bbarg_end(); I != E; ++I)
ValueIDs[static_cast<const ValueBase*>(*I)] = ++ValueID;
for (const SILInstruction &SI : BB)
if (SI.hasValue())
ValueIDs[&SI] = ++ValueID;
}
for (const SILBasicBlock &BB : F)
writeSILBasicBlock(BB);
}
void SILSerializer::writeSILBasicBlock(const SILBasicBlock &BB) {
SmallVector<DeclID, 4> Args;
for (auto I = BB.bbarg_begin(), E = BB.bbarg_end(); I != E; ++I) {
SILArgument *SA = *I;
DeclID tId = S.addTypeRef(SA->getType().getSwiftRValueType());
DeclID vId = addValueRef(static_cast<const ValueBase*>(SA));
Args.push_back(tId);
Args.push_back((unsigned)SA->getType().getCategory());
Args.push_back(vId);
}
unsigned abbrCode = SILAbbrCodes[SILBasicBlockLayout::Code];
SILBasicBlockLayout::emitRecord(Out, ScratchRecord, abbrCode, Args);
for (const SILInstruction &SI : BB)
writeSILInstruction(SI);
}
/// Add SILDeclRef to ListOfValues, so we can reconstruct it at
/// deserialization.
static void handleSILDeclRef(Serializer &S, const SILDeclRef &Ref,
SmallVectorImpl<ValueID> &ListOfValues) {
ListOfValues.push_back(S.addDeclRef(Ref.getDecl()));
ListOfValues.push_back((unsigned)Ref.kind);
ListOfValues.push_back((unsigned)Ref.getResilienceExpansion());
ListOfValues.push_back(Ref.uncurryLevel);
ListOfValues.push_back(Ref.isForeign);
}
/// Helper function to update ListOfValues for MethodInst. Format:
/// Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC), and an operand.
void SILSerializer::handleMethodInst(const MethodInst *MI,
SILValue operand,
SmallVectorImpl<ValueID> &ListOfValues) {
ListOfValues.push_back(MI->isVolatile());
handleSILDeclRef(S, MI->getMember(), ListOfValues);
ListOfValues.push_back(
S.addTypeRef(operand.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)operand.getType().getCategory());
ListOfValues.push_back(addValueRef(operand));
ListOfValues.push_back(operand.getResultNumber());
}
void SILSerializer::writeOneTypeLayout(ValueKind valueKind,
SILType type) {
unsigned abbrCode = SILAbbrCodes[SILOneTypeLayout::Code];
SILOneTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned) valueKind,
S.addTypeRef(type.getSwiftRValueType()),
(unsigned)type.getCategory());
}
void SILSerializer::writeOneOperandLayout(ValueKind valueKind,
unsigned attrs,
SILValue operand) {
auto operandType = operand.getType();
auto operandTypeRef = S.addTypeRef(operandType.getSwiftRValueType());
auto operandRef = addValueRef(operand);
SILOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneOperandLayout::Code],
unsigned(valueKind), attrs,
operandTypeRef, unsigned(operandType.getCategory()),
operandRef, operand.getResultNumber());
}
void SILSerializer::writeOneTypeOneOperandLayout(ValueKind valueKind,
unsigned attrs,
SILType type,
SILValue operand) {
auto typeRef = S.addTypeRef(type.getSwiftRValueType());
auto operandType = operand.getType();
auto operandTypeRef = S.addTypeRef(operandType.getSwiftRValueType());
auto operandRef = addValueRef(operand);
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
unsigned(valueKind), attrs,
typeRef, unsigned(type.getCategory()),
operandTypeRef, unsigned(operandType.getCategory()),
operandRef, operand.getResultNumber());
}
void SILSerializer::writeOneTypeOneOperandLayout(ValueKind valueKind,
unsigned attrs,
CanType type,
SILValue operand) {
auto typeRef = S.addTypeRef(type);
auto operandType = operand.getType();
auto operandTypeRef = S.addTypeRef(operandType.getSwiftRValueType());
auto operandRef = addValueRef(operand);
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
unsigned(valueKind), attrs,
typeRef, 0,
operandTypeRef, unsigned(operandType.getCategory()),
operandRef, operand.getResultNumber());
}
/// Write an instruction that looks exactly like a conversion: all
/// important information is encoded in the operand and the result type.
void SILSerializer::writeConversionLikeInstruction(const SILInstruction *I) {
assert(I->getNumOperands() == 1);
assert(I->getNumTypes() == 1);
writeOneTypeOneOperandLayout(I->getKind(), 0, I->getType(0),
I->getOperand(0));
}
void SILSerializer::writeSILInstruction(const SILInstruction &SI) {
switch (SI.getKind()) {
case ValueKind::SILArgument:
case ValueKind::SILUndef:
llvm_unreachable("not an instruction");
case ValueKind::UnreachableInst: {
unsigned abbrCode = SILAbbrCodes[SILInstNoOperandLayout::Code];
SILInstNoOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind());
break;
}
case ValueKind::AllocExistentialBoxInst:
case ValueKind::InitExistentialAddrInst:
case ValueKind::InitExistentialMetatypeInst:
case ValueKind::InitExistentialRefInst: {
SILValue operand;
SILType Ty;
CanType FormalConcreteType;
ArrayRef<ProtocolConformance*> conformances;
switch (SI.getKind()) {
default: llvm_unreachable("out of sync with parent");
case ValueKind::InitExistentialAddrInst: {
auto &IEI = cast<InitExistentialAddrInst>(SI);
operand = IEI.getOperand();
Ty = IEI.getLoweredConcreteType();
FormalConcreteType = IEI.getFormalConcreteType();
conformances = IEI.getConformances();
break;
}
case ValueKind::InitExistentialRefInst: {
auto &IERI = cast<InitExistentialRefInst>(SI);
operand = IERI.getOperand();
Ty = IERI.getType();
FormalConcreteType = IERI.getFormalConcreteType();
conformances = IERI.getConformances();
break;
}
case ValueKind::InitExistentialMetatypeInst: {
auto &IEMI = cast<InitExistentialMetatypeInst>(SI);
operand = IEMI.getOperand();
Ty = IEMI.getType();
conformances = IEMI.getConformances();
break;
}
case ValueKind::AllocExistentialBoxInst: {
auto &AEBI = cast<AllocExistentialBoxInst>(SI);
Ty = AEBI.getExistentialType();
FormalConcreteType = AEBI.getFormalConcreteType();
conformances = AEBI.getConformances();
break;
}
}
TypeID operandType = 0;
SILValueCategory operandCategory = SILValueCategory::Object;
ValueID operandID = 0;
if (operand) {
operandType = S.addTypeRef(operand.getType().getSwiftRValueType());
operandCategory = operand.getType().getCategory();
operandID = addValueRef(operand);
}
unsigned abbrCode = SILAbbrCodes[SILInitExistentialLayout::Code];
SILInitExistentialLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(),
operandType,
(unsigned)operandCategory,
operandID,
operand.getResultNumber(),
S.addTypeRef(FormalConcreteType),
conformances.size());
for (auto conformance : conformances) {
S.writeConformance(conformance, SILAbbrCodes);
}
break;
}
case ValueKind::DeallocValueBufferInst: {
auto DVBI = cast<DeallocValueBufferInst>(&SI);
writeOneTypeOneOperandLayout(DVBI->getKind(), 0,
DVBI->getValueType(),
DVBI->getOperand());
break;
}
case ValueKind::DeallocBoxInst: {
auto DBI = cast<DeallocBoxInst>(&SI);
writeOneTypeOneOperandLayout(DBI->getKind(), 0,
DBI->getElementType(),
DBI->getOperand());
break;
}
case ValueKind::DeallocExistentialBoxInst: {
auto DBI = cast<DeallocExistentialBoxInst>(&SI);
writeOneTypeOneOperandLayout(DBI->getKind(), 0,
DBI->getConcreteType(),
DBI->getOperand());
break;
}
case ValueKind::ValueMetatypeInst: {
auto VMI = cast<ValueMetatypeInst>(&SI);
writeOneTypeOneOperandLayout(VMI->getKind(), 0,
VMI->getType(),
VMI->getOperand());
break;
}
case ValueKind::ExistentialMetatypeInst: {
auto EMI = cast<ExistentialMetatypeInst>(&SI);
writeOneTypeOneOperandLayout(EMI->getKind(), 0,
EMI->getType(),
EMI->getOperand());
break;
}
case ValueKind::AllocValueBufferInst: {
auto AVBI = cast<AllocValueBufferInst>(&SI);
writeOneTypeOneOperandLayout(AVBI->getKind(), 0,
AVBI->getValueType(),
AVBI->getOperand());
break;
}
case ValueKind::AllocBoxInst: {
const AllocBoxInst *ABI = cast<AllocBoxInst>(&SI);
writeOneTypeLayout(ABI->getKind(), ABI->getElementType());
break;
}
case ValueKind::AllocRefInst: {
const AllocRefInst *ARI = cast<AllocRefInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneTypeValuesLayout::Code];
ValueID Args[1] = { ARI->isObjC() };
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(
ARI->getType().getSwiftRValueType()),
(unsigned)ARI->getType().getCategory(),
llvm::makeArrayRef(Args));
break;
}
case ValueKind::AllocRefDynamicInst: {
const AllocRefDynamicInst* ARD = cast<AllocRefDynamicInst>(&SI);
unsigned flags = 0;
if (ARD->isObjC())
flags = 1;
writeOneTypeOneOperandLayout(SI.getKind(), flags,
ARD->getType(), ARD->getOperand());
break;
}
case ValueKind::AllocStackInst: {
const AllocStackInst *ASI = cast<AllocStackInst>(&SI);
writeOneTypeLayout(ASI->getKind(), ASI->getElementType());
break;
}
case ValueKind::ProjectValueBufferInst: {
auto PVBI = cast<ProjectValueBufferInst>(&SI);
writeOneTypeOneOperandLayout(PVBI->getKind(), 0,
PVBI->getValueType(),
PVBI->getOperand());
break;
}
case ValueKind::BuiltinInst: {
// Format: number of substitutions, the builtin name, result type, and
// a list of values for the arguments. Each value in the list
// is represented with 4 IDs:
// ValueID, ValueResultNumber, TypeID, TypeCategory.
// The record is followed by the substitution list.
const BuiltinInst *BI = cast<BuiltinInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg : BI->getArguments()) {
Args.push_back(addValueRef(Arg));
Args.push_back(Arg.getResultNumber());
Args.push_back(S.addTypeRef(Arg.getType().getSwiftRValueType()));
Args.push_back((unsigned)Arg.getType().getCategory());
}
SILInstApplyLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstApplyLayout::Code],
2 /*Builtin*/,
BI->getSubstitutions().size(),
S.addTypeRef(BI->getType().getSwiftRValueType()),
(unsigned)BI->getType().getCategory(),
S.addIdentifierRef(BI->getName()),
0,
Args);
S.writeSubstitutions(BI->getSubstitutions(), SILAbbrCodes);
break;
}
case ValueKind::ApplyInst: {
// Format: attributes such as transparent and number of substitutions,
// the callee's substituted and unsubstituted types, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber. The record
// is followed by the substitution list.
const ApplyInst *AI = cast<ApplyInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg: AI->getArguments()) {
Args.push_back(addValueRef(Arg));
Args.push_back(Arg.getResultNumber());
}
SILInstApplyLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstApplyLayout::Code], 0/*Apply*/,
AI->getSubstitutions().size(),
S.addTypeRef(AI->getCallee().getType().getSwiftRValueType()),
S.addTypeRef(AI->getSubstCalleeType()),
addValueRef(AI->getCallee()), AI->getCallee().getResultNumber(),
Args);
S.writeSubstitutions(AI->getSubstitutions(), SILAbbrCodes);
break;
}
case ValueKind::TryApplyInst: {
// Format: attributes such as transparent and number of substitutions,
// the callee's substituted and unsubstituted types, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber. The final two
// entries in the list are the basic block destinations. The record
// is followed by the substitution list.
const TryApplyInst *AI = cast<TryApplyInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg: AI->getArguments()) {
Args.push_back(addValueRef(Arg));
Args.push_back(Arg.getResultNumber());
}
Args.push_back(BasicBlockMap[AI->getNormalBB()]);
Args.push_back(BasicBlockMap[AI->getErrorBB()]);
SILInstApplyLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstApplyLayout::Code], 0/*Apply*/,
AI->getSubstitutions().size(),
S.addTypeRef(AI->getCallee().getType().getSwiftRValueType()),
S.addTypeRef(AI->getSubstCalleeType()),
addValueRef(AI->getCallee()), AI->getCallee().getResultNumber(),
Args);
S.writeSubstitutions(AI->getSubstitutions(), SILAbbrCodes);
break;
}
case ValueKind::PartialApplyInst: {
const PartialApplyInst *PAI = cast<PartialApplyInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg: PAI->getArguments()) {
Args.push_back(addValueRef(Arg));
Args.push_back(Arg.getResultNumber());
}
SILInstApplyLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstApplyLayout::Code], 1/*PartialApply*/,
PAI->getSubstitutions().size(),
S.addTypeRef(PAI->getCallee().getType().getSwiftRValueType()),
S.addTypeRef(PAI->getSubstCalleeType()),
addValueRef(PAI->getCallee()), PAI->getCallee().getResultNumber(),
Args);
S.writeSubstitutions(PAI->getSubstitutions(), SILAbbrCodes);
break;
}
case ValueKind::GlobalAddrInst: {
// Format: Name and type. Use SILOneOperandLayout.
const GlobalAddrInst *GAI = cast<GlobalAddrInst>(&SI);
SILOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addTypeRef(GAI->getType().getSwiftRValueType()),
(unsigned)GAI->getType().getCategory(),
S.addIdentifierRef(
Ctx.getIdentifier(GAI->getReferencedGlobal()->getName())),
0);
break;
}
case ValueKind::BranchInst: {
// Format: destination basic block ID, a list of arguments. Use
// SILOneTypeValuesLayout.
const BranchInst *BrI = cast<BranchInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : BrI->getArgs()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
BasicBlockMap[BrI->getDestBB()], 0, ListOfValues);
break;
}
case ValueKind::CondBranchInst: {
// Format: condition, true basic block ID, a list of arguments, false basic
// block ID, a list of arguments. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, true basic block ID,
// false basic block ID, number of true arguments, and a list of true|false
// arguments.
const CondBranchInst *CBI = cast<CondBranchInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(CBI->getCondition()));
ListOfValues.push_back(CBI->getCondition().getResultNumber());
ListOfValues.push_back(BasicBlockMap[CBI->getTrueBB()]);
ListOfValues.push_back(BasicBlockMap[CBI->getFalseBB()]);
ListOfValues.push_back(CBI->getTrueArgs().size());
for (auto Elt : CBI->getTrueArgs()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
for (auto Elt : CBI->getFalseArgs()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(CBI->getCondition().getType().getSwiftRValueType()),
(unsigned)CBI->getCondition().getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::SwitchEnumInst:
case ValueKind::SwitchEnumAddrInst: {
// Format: condition, a list of cases (EnumElementDecl + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, hasDefault, default
// basic block ID, a list of (DeclID, BasicBlock ID).
const SwitchEnumInstBase *SOI = cast<SwitchEnumInstBase>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(SOI->getOperand()));
ListOfValues.push_back(SOI->getOperand().getResultNumber());
ListOfValues.push_back((unsigned)SOI->hasDefault());
if (SOI->hasDefault())
ListOfValues.push_back(BasicBlockMap[SOI->getDefaultBB()]);
else
ListOfValues.push_back(0);
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILBasicBlock *dest;
std::tie(elt, dest) = SOI->getCase(i);
ListOfValues.push_back(S.addDeclRef(elt));
ListOfValues.push_back(BasicBlockMap[dest]);
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(SOI->getOperand().getType().getSwiftRValueType()),
(unsigned)SOI->getOperand().getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::SelectEnumInst:
case ValueKind::SelectEnumAddrInst: {
// Format: condition, a list of cases (EnumElementDecl + Value ID),
// default value ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, result type,
// hasDefault, default
// basic block ID, a list of (DeclID, BasicBlock ID).
const SelectEnumInstBase *SOI = cast<SelectEnumInstBase>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(SOI->getEnumOperand()));
ListOfValues.push_back(SOI->getEnumOperand().getResultNumber());
ListOfValues.push_back(S.addTypeRef(SOI->getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)SOI->getType().getCategory());
ListOfValues.push_back((unsigned)SOI->hasDefault());
if (SOI->hasDefault()) {
ListOfValues.push_back(addValueRef(SOI->getDefaultResult()));
ListOfValues.push_back(SOI->getDefaultResult().getResultNumber());
} else {
ListOfValues.push_back(0);
ListOfValues.push_back(0);
}
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILValue result;
std::tie(elt, result) = SOI->getCase(i);
ListOfValues.push_back(S.addDeclRef(elt));
ListOfValues.push_back(addValueRef(result));
ListOfValues.push_back(result.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(SOI->getEnumOperand().getType().getSwiftRValueType()),
(unsigned)SOI->getEnumOperand().getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::SwitchValueInst: {
// Format: condition, a list of cases (Value ID + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list contains value for condition, hasDefault, default
// basic block ID, a list of (Value ID, BasicBlock ID).
const SwitchValueInst *SII = cast<SwitchValueInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(SII->getOperand()));
ListOfValues.push_back(SII->getOperand().getResultNumber());
ListOfValues.push_back((unsigned)SII->hasDefault());
if (SII->hasDefault())
ListOfValues.push_back(BasicBlockMap[SII->getDefaultBB()]);
else
ListOfValues.push_back(0);
for (unsigned i = 0, e = SII->getNumCases(); i < e; ++i) {
SILValue value;
SILBasicBlock *dest;
std::tie(value, dest) = SII->getCase(i);
ListOfValues.push_back(addValueRef(value));
ListOfValues.push_back(value.getResultNumber());
ListOfValues.push_back(BasicBlockMap[dest]);
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(SII->getOperand().getType().getSwiftRValueType()),
(unsigned)SII->getOperand().getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::SelectValueInst: {
// Format: condition, a list of cases (Value ID + Value ID),
// default value ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, result type,
// hasDefault, default
// basic block ID, a list of (Value ID, Value ID).
const SelectValueInst *SVI = cast<SelectValueInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(SVI->getOperand()));
ListOfValues.push_back(SVI->getOperand().getResultNumber());
ListOfValues.push_back(S.addTypeRef(SVI->getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)SVI->getType().getCategory());
ListOfValues.push_back((unsigned)SVI->hasDefault());
if (SVI->hasDefault()) {
ListOfValues.push_back(addValueRef(SVI->getDefaultResult()));
ListOfValues.push_back(SVI->getDefaultResult().getResultNumber());
} else {
ListOfValues.push_back(0);
ListOfValues.push_back(0);
}
for (unsigned i = 0, e = SVI->getNumCases(); i < e; ++i) {
SILValue casevalue;
SILValue result;
std::tie(casevalue, result) = SVI->getCase(i);
ListOfValues.push_back(addValueRef(casevalue));
ListOfValues.push_back(casevalue.getResultNumber());
ListOfValues.push_back(addValueRef(result));
ListOfValues.push_back(result.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(SVI->getOperand().getType().getSwiftRValueType()),
(unsigned)SVI->getOperand().getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::CondFailInst:
case ValueKind::RetainValueInst:
case ValueKind::ReleaseValueInst:
case ValueKind::AutoreleaseValueInst:
case ValueKind::DeallocStackInst:
case ValueKind::DeallocRefInst:
case ValueKind::DeinitExistentialAddrInst:
case ValueKind::DestroyAddrInst:
case ValueKind::IsNonnullInst:
case ValueKind::LoadInst:
case ValueKind::LoadWeakInst:
case ValueKind::MarkUninitializedInst:
case ValueKind::FixLifetimeInst:
case ValueKind::CopyBlockInst:
case ValueKind::StrongPinInst:
case ValueKind::StrongReleaseInst:
case ValueKind::StrongRetainInst:
case ValueKind::StrongRetainAutoreleasedInst:
case ValueKind::StrongUnpinInst:
case ValueKind::AutoreleaseReturnInst:
case ValueKind::StrongRetainUnownedInst:
case ValueKind::UnownedRetainInst:
case ValueKind::UnownedReleaseInst:
case ValueKind::IsUniqueInst:
case ValueKind::IsUniqueOrPinnedInst:
case ValueKind::ReturnInst:
case ValueKind::ThrowInst:
case ValueKind::DebugValueInst:
case ValueKind::DebugValueAddrInst: {
unsigned Attr = 0;
if (auto *LWI = dyn_cast<LoadWeakInst>(&SI))
Attr = LWI->isTake();
else if (auto *MUI = dyn_cast<MarkUninitializedInst>(&SI))
Attr = (unsigned)MUI->getKind();
writeOneOperandLayout(SI.getKind(), Attr, SI.getOperand(0));
break;
}
case ValueKind::FunctionRefInst: {
// Use SILOneOperandLayout to specify the function type and the function
// name (IdentifierID).
const FunctionRefInst *FRI = cast<FunctionRefInst>(&SI);
SILFunction *ReferencedFunction = FRI->getReferencedFunction();
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(FRI->getType().getSwiftRValueType()),
(unsigned)FRI->getType().getCategory(),
S.addIdentifierRef(Ctx.getIdentifier(ReferencedFunction->getName())),
0);
// Make sure we declare the referenced function.
FuncsToDeclare.insert(ReferencedFunction);
break;
}
case ValueKind::MarkDependenceInst:
case ValueKind::IndexAddrInst:
case ValueKind::IndexRawPointerInst: {
SILValue operand, operand2;
unsigned Attr = 0;
if (SI.getKind() == ValueKind::IndexRawPointerInst) {
const IndexRawPointerInst *IRP = cast<IndexRawPointerInst>(&SI);
operand = IRP->getBase();
operand2 = IRP->getIndex();
} else if (SI.getKind() == ValueKind::MarkDependenceInst) {
const MarkDependenceInst *MDI = cast<MarkDependenceInst>(&SI);
operand = MDI->getValue();
operand2 = MDI->getBase();
} else {
const IndexAddrInst *IAI = cast<IndexAddrInst>(&SI);
operand = IAI->getBase();
operand2 = IAI->getIndex();
}
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code],
(unsigned)SI.getKind(), Attr,
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand), operand.getResultNumber(),
S.addTypeRef(operand2.getType().getSwiftRValueType()),
(unsigned)operand2.getType().getCategory(),
addValueRef(operand2), operand2.getResultNumber());
break;
}
case ValueKind::StringLiteralInst: {
auto SLI = cast<StringLiteralInst>(&SI);
StringRef Str = SLI->getValue();
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
unsigned encoding = toStableStringEncoding(SLI->getEncoding());
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), encoding, 0, 0,
S.addIdentifierRef(Ctx.getIdentifier(Str)),
0);
break;
}
case ValueKind::FloatLiteralInst:
case ValueKind::IntegerLiteralInst: {
// Use SILOneOperandLayout to specify the type and the literal.
std::string Str;
SILType Ty;
switch (SI.getKind()) {
default: llvm_unreachable("Out of sync with parent switch");
case ValueKind::IntegerLiteralInst:
Str = cast<IntegerLiteralInst>(&SI)->getValue().toString(10, true);
Ty = cast<IntegerLiteralInst>(&SI)->getType();
break;
case ValueKind::FloatLiteralInst:
Str = cast<FloatLiteralInst>(&SI)->getBits().toString(16,
/*Signed*/false);
Ty = cast<FloatLiteralInst>(&SI)->getType();
break;
}
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(),
S.addIdentifierRef(Ctx.getIdentifier(Str)),
0);
break;
}
case ValueKind::MarkFunctionEscapeInst: {
// Format: a list of typed values. A typed value is expressed by 4 IDs:
// TypeID, TypeCategory, ValueID, ValueResultNumber.
const MarkFunctionEscapeInst *MFE = cast<MarkFunctionEscapeInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : MFE->getElements()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), 0, 0, ListOfValues);
break;
}
case ValueKind::MetatypeInst:
case ValueKind::NullClassInst:
writeOneTypeLayout(SI.getKind(), SI.getType(0));
break;
case ValueKind::ObjCProtocolInst: {
const ObjCProtocolInst *PI = cast<ObjCProtocolInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(PI->getType().getSwiftRValueType()),
(unsigned)PI->getType().getCategory(),
S.addDeclRef(PI->getProtocol()), 0);
break;
}
// Conversion instructions (and others of similar form).
case ValueKind::OpenExistentialAddrInst:
case ValueKind::OpenExistentialRefInst:
case ValueKind::OpenExistentialMetatypeInst:
case ValueKind::OpenExistentialBoxInst:
case ValueKind::UncheckedRefCastInst:
case ValueKind::UncheckedAddrCastInst:
case ValueKind::UncheckedTrivialBitCastInst:
case ValueKind::UncheckedRefBitCastInst:
case ValueKind::BridgeObjectToRefInst:
case ValueKind::BridgeObjectToWordInst:
case ValueKind::UpcastInst:
case ValueKind::AddressToPointerInst:
case ValueKind::PointerToAddressInst:
case ValueKind::RefToRawPointerInst:
case ValueKind::RawPointerToRefInst:
case ValueKind::RefToUnownedInst:
case ValueKind::UnownedToRefInst:
case ValueKind::RefToUnmanagedInst:
case ValueKind::UnmanagedToRefInst:
case ValueKind::ThinToThickFunctionInst:
case ValueKind::ThickToObjCMetatypeInst:
case ValueKind::ObjCToThickMetatypeInst:
case ValueKind::ConvertFunctionInst:
case ValueKind::ThinFunctionToPointerInst:
case ValueKind::PointerToThinFunctionInst:
case ValueKind::ObjCMetatypeToObjectInst:
case ValueKind::ObjCExistentialMetatypeToObjectInst:
case ValueKind::ProjectBlockStorageInst: {
writeConversionLikeInstruction(&SI);
break;
}
case ValueKind::RefToBridgeObjectInst: {
auto RI = cast<RefToBridgeObjectInst>(&SI);
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code], (unsigned)SI.getKind(),
/*attr*/ 0,
S.addTypeRef(RI->getConverted().getType().getSwiftRValueType()),
(unsigned)RI->getConverted().getType().getCategory(),
addValueRef(RI->getConverted()),
RI->getConverted().getResultNumber(),
S.addTypeRef(RI->getBitsOperand().getType().getSwiftRValueType()),
(unsigned)RI->getBitsOperand().getType().getCategory(),
addValueRef(RI->getBitsOperand()),
RI->getBitsOperand().getResultNumber());
break;
}
// Checked Conversion instructions.
case ValueKind::UnconditionalCheckedCastInst: {
auto CI = cast<UnconditionalCheckedCastInst>(&SI);
SILInstCastLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstCastLayout::Code],
(unsigned)SI.getKind(), /*attr*/ 0,
S.addTypeRef(CI->getType().getSwiftRValueType()),
(unsigned)CI->getType().getCategory(),
S.addTypeRef(CI->getOperand().getType().getSwiftRValueType()),
(unsigned)CI->getOperand().getType().getCategory(),
addValueRef(CI->getOperand()), CI->getOperand().getResultNumber());
break;
}
case ValueKind::UnconditionalCheckedCastAddrInst: {
auto CI = cast<UnconditionalCheckedCastAddrInst>(&SI);
ValueID listOfValues[] = {
toStableCastConsumptionKind(CI->getConsumptionKind()),
S.addTypeRef(CI->getSourceType()),
addValueRef(CI->getSrc()),
CI->getSrc().getResultNumber(),
S.addTypeRef(CI->getSrc().getType().getSwiftRValueType()),
(unsigned)CI->getSrc().getType().getCategory(),
S.addTypeRef(CI->getTargetType()),
addValueRef(CI->getDest()),
CI->getDest().getResultNumber()
};
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(CI->getDest().getType().getSwiftRValueType()),
(unsigned)CI->getDest().getType().getCategory(),
llvm::makeArrayRef(listOfValues));
break;
}
case ValueKind::AssignInst:
case ValueKind::CopyAddrInst:
case ValueKind::StoreInst:
case ValueKind::StoreWeakInst: {
SILValue operand, value;
unsigned Attr = 0;
if (SI.getKind() == ValueKind::StoreWeakInst) {
Attr = cast<StoreWeakInst>(&SI)->isInitializationOfDest();
operand = cast<StoreWeakInst>(&SI)->getDest();
value = cast<StoreWeakInst>(&SI)->getSrc();
} else if (SI.getKind() == ValueKind::StoreInst) {
operand = cast<StoreInst>(&SI)->getDest();
value = cast<StoreInst>(&SI)->getSrc();
} else if (SI.getKind() == ValueKind::AssignInst) {
operand = cast<AssignInst>(&SI)->getDest();
value = cast<AssignInst>(&SI)->getSrc();
} else if (SI.getKind() == ValueKind::CopyAddrInst) {
const CopyAddrInst *CAI = cast<CopyAddrInst>(&SI);
Attr = (CAI->isInitializationOfDest() << 1) | CAI->isTakeOfSrc();
operand = cast<CopyAddrInst>(&SI)->getDest();
value = cast<CopyAddrInst>(&SI)->getSrc();
} else
llvm_unreachable("switch out of sync");
unsigned abbrCode = SILAbbrCodes[SILOneValueOneOperandLayout::Code];
SILOneValueOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), Attr, addValueRef(value),
value.getResultNumber(),
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand),
operand.getResultNumber());
break;
}
case ValueKind::RefElementAddrInst:
case ValueKind::StructElementAddrInst:
case ValueKind::StructExtractInst:
case ValueKind::InitEnumDataAddrInst:
case ValueKind::UncheckedEnumDataInst:
case ValueKind::UncheckedTakeEnumDataAddrInst:
case ValueKind::InjectEnumAddrInst: {
// Has a typed valueref and a field decl. We use SILOneValueOneOperandLayout
// where the field decl is streamed as a ValueID.
SILValue operand;
Decl *tDecl;
switch (SI.getKind()) {
default: llvm_unreachable("Out of sync with parent switch");
case ValueKind::RefElementAddrInst:
operand = cast<RefElementAddrInst>(&SI)->getOperand();
tDecl = cast<RefElementAddrInst>(&SI)->getField();
break;
case ValueKind::StructElementAddrInst:
operand = cast<StructElementAddrInst>(&SI)->getOperand();
tDecl = cast<StructElementAddrInst>(&SI)->getField();
break;
case ValueKind::StructExtractInst:
operand = cast<StructExtractInst>(&SI)->getOperand();
tDecl = cast<StructExtractInst>(&SI)->getField();
break;
case ValueKind::InitEnumDataAddrInst:
operand = cast<InitEnumDataAddrInst>(&SI)->getOperand();
tDecl = cast<InitEnumDataAddrInst>(&SI)->getElement();
break;
case ValueKind::UncheckedEnumDataInst:
operand = cast<UncheckedEnumDataInst>(&SI)->getOperand();
tDecl = cast<UncheckedEnumDataInst>(&SI)->getElement();
break;
case ValueKind::UncheckedTakeEnumDataAddrInst:
operand = cast<UncheckedTakeEnumDataAddrInst>(&SI)->getOperand();
tDecl = cast<UncheckedTakeEnumDataAddrInst>(&SI)->getElement();
break;
case ValueKind::InjectEnumAddrInst:
operand = cast<InjectEnumAddrInst>(&SI)->getOperand();
tDecl = cast<InjectEnumAddrInst>(&SI)->getElement();
break;
}
SILOneValueOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneValueOneOperandLayout::Code],
(unsigned)SI.getKind(), 0, S.addDeclRef(tDecl), 0,
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand), operand.getResultNumber());
break;
}
case ValueKind::StructInst: {
// Format: a type followed by a list of typed values. A typed value is
// expressed by 4 IDs: TypeID, TypeCategory, ValueID, ValueResultNumber.
const StructInst *StrI = cast<StructInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : StrI->getElements()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(StrI->getType().getSwiftRValueType()),
(unsigned)StrI->getType().getCategory(), ListOfValues);
break;
}
case ValueKind::TupleElementAddrInst:
case ValueKind::TupleExtractInst: {
SILValue operand;
unsigned FieldNo;
switch (SI.getKind()) {
default: llvm_unreachable("Out of sync with parent switch");
case ValueKind::TupleElementAddrInst:
operand = cast<TupleElementAddrInst>(&SI)->getOperand();
FieldNo = cast<TupleElementAddrInst>(&SI)->getFieldNo();
break;
case ValueKind::TupleExtractInst:
operand = cast<TupleExtractInst>(&SI)->getOperand();
FieldNo = cast<TupleExtractInst>(&SI)->getFieldNo();
break;
}
// Use OneTypeOneOperand layout where the field number is stored in TypeID.
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
FieldNo, 0,
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand), operand.getResultNumber());
break;
}
case ValueKind::TupleInst: {
// Format: a type followed by a list of values. A value is expressed by
// 2 IDs: ValueID, ValueResultNumber.
const TupleInst *TI = cast<TupleInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : TI->getElements()) {
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
unsigned abbrCode = SILAbbrCodes[SILOneTypeValuesLayout::Code];
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(TI->getType().getSwiftRValueType()),
(unsigned)TI->getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::EnumInst: {
// Format: a type, an operand and a decl ID. Use SILTwoOperandsLayout: type,
// (DeclID + hasOperand), and an operand.
const EnumInst *UI = cast<EnumInst>(&SI);
TypeID OperandTy = UI->hasOperand() ?
S.addTypeRef(UI->getOperand().getType().getSwiftRValueType()) : (TypeID)0;
unsigned OperandTyCategory = UI->hasOperand() ?
(unsigned)UI->getOperand().getType().getCategory() : 0;
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code], (unsigned)SI.getKind(), 0,
S.addTypeRef(UI->getType().getSwiftRValueType()),
(unsigned)UI->getType().getCategory(),
S.addDeclRef(UI->getElement()), UI->hasOperand(),
OperandTy, OperandTyCategory,
UI->hasOperand() ? addValueRef(UI->getOperand()) : (ValueID)0,
UI->hasOperand() ? UI->getOperand().getResultNumber() : 0);
break;
}
case ValueKind::WitnessMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC), and a type.
const WitnessMethodInst *AMI = cast<WitnessMethodInst>(&SI);
CanType Ty = AMI->getLookupType();
SILType Ty2 = AMI->getType(0);
SmallVector<ValueID, 8> ListOfValues;
handleSILDeclRef(S, AMI->getMember(), ListOfValues);
// Add an optional operand.
TypeID OperandTy =
AMI->hasOperand()
? S.addTypeRef(AMI->getOperand().getType().getSwiftRValueType())
: (TypeID)0;
unsigned OperandTyCategory =
AMI->hasOperand() ? (unsigned)AMI->getOperand().getType().getCategory()
: 0;
SILValue OptionalOpenedExistential =
AMI->hasOperand() ? AMI->getOperand() : SILValue();
auto OperandValueId = addValueRef(OptionalOpenedExistential);
SILInstWitnessMethodLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILInstWitnessMethodLayout::Code],
S.addTypeRef(Ty), 0, AMI->isVolatile(),
S.addTypeRef(Ty2.getSwiftRValueType()), (unsigned)Ty2.getCategory(),
OperandTy, OperandTyCategory, OperandValueId, ListOfValues);
S.writeConformance(AMI->getConformance(), SILAbbrCodes);
break;
}
case ValueKind::ClassMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC),
// and an operand.
const ClassMethodInst *CMI = cast<ClassMethodInst>(&SI);
SILType Ty = CMI->getType();
SmallVector<ValueID, 9> ListOfValues;
handleMethodInst(CMI, CMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case ValueKind::SuperMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC),
// and an operand.
const SuperMethodInst *SMI = cast<SuperMethodInst>(&SI);
SILType Ty = SMI->getType();
SmallVector<ValueID, 9> ListOfValues;
handleMethodInst(SMI, SMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case ValueKind::DynamicMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC),
// and an operand.
const DynamicMethodInst *DMI = cast<DynamicMethodInst>(&SI);
SILType Ty = DMI->getType();
SmallVector<ValueID, 9> ListOfValues;
handleMethodInst(DMI, DMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case ValueKind::DynamicMethodBranchInst: {
// Format: a typed value, a SILDeclRef, a BasicBlock ID for method,
// a BasicBlock ID for no method. Use SILOneTypeValuesLayout.
const DynamicMethodBranchInst *DMB = cast<DynamicMethodBranchInst>(&SI);
SmallVector<ValueID, 8> ListOfValues;
ListOfValues.push_back(addValueRef(DMB->getOperand()));
ListOfValues.push_back(DMB->getOperand().getResultNumber());
handleSILDeclRef(S, DMB->getMember(), ListOfValues);
ListOfValues.push_back(BasicBlockMap[DMB->getHasMethodBB()]);
ListOfValues.push_back(BasicBlockMap[DMB->getNoMethodBB()]);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(DMB->getOperand().getType().getSwiftRValueType()),
(unsigned)DMB->getOperand().getType().getCategory(), ListOfValues);
break;
}
case ValueKind::CheckedCastBranchInst: {
// Format: the cast kind, a typed value, a BasicBlock ID for success,
// a BasicBlock ID for failure. Uses SILOneTypeValuesLayout.
const CheckedCastBranchInst *CBI = cast<CheckedCastBranchInst>(&SI);
SmallVector<ValueID, 8> ListOfValues;
ListOfValues.push_back(CBI->isExact()),
ListOfValues.push_back(addValueRef(CBI->getOperand()));
ListOfValues.push_back(CBI->getOperand().getResultNumber());
ListOfValues.push_back(
S.addTypeRef(CBI->getOperand().getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)CBI->getOperand().getType().getCategory());
ListOfValues.push_back(BasicBlockMap[CBI->getSuccessBB()]);
ListOfValues.push_back(BasicBlockMap[CBI->getFailureBB()]);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(CBI->getCastType().getSwiftRValueType()),
(unsigned)CBI->getCastType().getCategory(),
ListOfValues);
break;
}
case ValueKind::CheckedCastAddrBranchInst: {
// Format: the cast kind, two typed values, a BasicBlock ID for
// success, a BasicBlock ID for failure. Uses SILOneTypeValuesLayout;
// the type is the type of the second (dest) operand.
auto CBI = cast<CheckedCastAddrBranchInst>(&SI);
ValueID listOfValues[] = {
toStableCastConsumptionKind(CBI->getConsumptionKind()),
S.addTypeRef(CBI->getSourceType()),
addValueRef(CBI->getSrc()),
CBI->getSrc().getResultNumber(),
S.addTypeRef(CBI->getSrc().getType().getSwiftRValueType()),
(unsigned)CBI->getSrc().getType().getCategory(),
S.addTypeRef(CBI->getTargetType()),
addValueRef(CBI->getDest()),
CBI->getDest().getResultNumber(),
BasicBlockMap[CBI->getSuccessBB()],
BasicBlockMap[CBI->getFailureBB()]
};
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(CBI->getDest().getType().getSwiftRValueType()),
(unsigned)CBI->getDest().getType().getCategory(),
llvm::makeArrayRef(listOfValues));
break;
}
case ValueKind::InitBlockStorageHeaderInst: {
auto IBSHI = cast<InitBlockStorageHeaderInst>(&SI);
SmallVector<ValueID, 6> ListOfValues;
ListOfValues.push_back(addValueRef(IBSHI->getBlockStorage()));
ListOfValues.push_back(IBSHI->getBlockStorage().getResultNumber());
ListOfValues.push_back(
S.addTypeRef(IBSHI->getBlockStorage().getType().getSwiftRValueType()));
// Always an address, don't need to save category
ListOfValues.push_back(addValueRef(IBSHI->getInvokeFunction()));
ListOfValues.push_back(IBSHI->getInvokeFunction().getResultNumber());
ListOfValues.push_back(
S.addTypeRef(IBSHI->getInvokeFunction().getType().getSwiftRValueType()));
// Always a value, don't need to save category
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(IBSHI->getType().getSwiftRValueType()),
(unsigned)IBSHI->getType().getCategory(),
ListOfValues);
}
}
// Non-void values get registered in the value table.
if (SI.hasValue()) {
addValueRef(&SI);
++InstID;
}
}
/// Depending on the RecordKind, we write the SILFunction table, the global
/// variable table, the table for SILVTable, or the table for SILWitnessTable.
static void writeIndexTable(const sil_index_block::ListLayout &List,
sil_index_block::RecordKind kind,
const SILSerializer::Table &table) {
assert((kind == sil_index_block::SIL_FUNC_NAMES ||
kind == sil_index_block::SIL_VTABLE_NAMES ||
kind == sil_index_block::SIL_GLOBALVAR_NAMES ||
kind == sil_index_block::SIL_WITNESSTABLE_NAMES) &&
"SIL function table, global, vtable and witness table are supported");
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<FuncTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0.
endian::Writer<little>(blobStream).write<uint32_t>(0);
tableOffset = generator.Emit(blobStream);
}
SmallVector<uint64_t, 8> scratch;
List.emit(scratch, kind, tableOffset, hashTableBlob);
}
void SILSerializer::writeIndexTables() {
BCBlockRAII restoreBlock(Out, SIL_INDEX_BLOCK_ID, 4);
sil_index_block::ListLayout List(Out);
sil_index_block::OffsetLayout Offset(Out);
if (!FuncTable.empty()) {
writeIndexTable(List, sil_index_block::SIL_FUNC_NAMES, FuncTable);
Offset.emit(ScratchRecord, sil_index_block::SIL_FUNC_OFFSETS, Funcs);
}
if (!VTableList.empty()) {
writeIndexTable(List, sil_index_block::SIL_VTABLE_NAMES, VTableList);
Offset.emit(ScratchRecord, sil_index_block::SIL_VTABLE_OFFSETS,
VTableOffset);
}
if (!GlobalVarList.empty()) {
writeIndexTable(List, sil_index_block::SIL_GLOBALVAR_NAMES, GlobalVarList);
Offset.emit(ScratchRecord, sil_index_block::SIL_GLOBALVAR_OFFSETS,
GlobalVarOffset);
}
if (!WitnessTableList.empty()) {
writeIndexTable(List, sil_index_block::SIL_WITNESSTABLE_NAMES, WitnessTableList);
Offset.emit(ScratchRecord, sil_index_block::SIL_WITNESSTABLE_OFFSETS,
WitnessTableOffset);
}
}
void SILSerializer::writeSILGlobalVar(const SILGlobalVariable &g) {
GlobalVarList[Ctx.getIdentifier(g.getName())] = GlobalVarID++;
GlobalVarOffset.push_back(Out.GetCurrentBitNo());
TypeID TyID = S.addTypeRef(g.getLoweredType().getSwiftType());
DeclID dID = S.addDeclRef(g.getDecl());
GlobalVarLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[GlobalVarLayout::Code],
toStableSILLinkage(g.getLinkage()),
(unsigned)g.isFragile(),
TyID, dID, unsigned(!g.isDefinition()));
}
void SILSerializer::writeSILVTable(const SILVTable &vt) {
VTableList[vt.getClass()->getName()] = VTableID++;
VTableOffset.push_back(Out.GetCurrentBitNo());
VTableLayout::emitRecord(Out, ScratchRecord, SILAbbrCodes[VTableLayout::Code],
S.addDeclRef(vt.getClass()));
for (auto &entry : vt.getEntries()) {
SmallVector<ValueID, 4> ListOfValues;
handleSILDeclRef(S, entry.first, ListOfValues);
FuncsToDeclare.insert(entry.second);
// Each entry is a pair of SILDeclRef and SILFunction.
VTableEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[VTableEntryLayout::Code],
// SILFunction name
S.addIdentifierRef(Ctx.getIdentifier(entry.second->getName())),
ListOfValues);
}
}
void SILSerializer::writeSILWitnessTable(const SILWitnessTable &wt) {
WitnessTableList[wt.getIdentifier()] = WitnessTableID++;
WitnessTableOffset.push_back(Out.GetCurrentBitNo());
WitnessTableLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[WitnessTableLayout::Code],
toStableSILLinkage(wt.getLinkage()),
unsigned(wt.isDeclaration()),
unsigned(wt.isFragile()));
S.writeConformance(wt.getConformance(), SILAbbrCodes);
// If we have a declaration, do not attempt to serialize entries.
if (wt.isDeclaration())
return;
for (auto &entry : wt.getEntries()) {
if (entry.getKind() == SILWitnessTable::BaseProtocol) {
auto &baseWitness = entry.getBaseProtocolWitness();
WitnessBaseEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessBaseEntryLayout::Code],
S.addDeclRef(baseWitness.Requirement));
S.writeConformance(baseWitness.Witness, SILAbbrCodes);
continue;
}
if (entry.getKind() == SILWitnessTable::AssociatedTypeProtocol) {
auto &assoc = entry.getAssociatedTypeProtocolWitness();
WitnessAssocProtocolLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[WitnessAssocProtocolLayout::Code],
S.addDeclRef(assoc.Requirement),
S.addDeclRef(assoc.Protocol));
S.writeConformance(assoc.Witness, SILAbbrCodes);
continue;
}
if (entry.getKind() == SILWitnessTable::AssociatedType) {
auto &assoc = entry.getAssociatedTypeWitness();
WitnessAssocEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessAssocEntryLayout::Code],
S.addDeclRef(assoc.Requirement),
S.addTypeRef(assoc.Witness));
continue;
}
auto &methodWitness = entry.getMethodWitness();
SmallVector<ValueID, 4> ListOfValues;
handleSILDeclRef(S, methodWitness.Requirement, ListOfValues);
FuncsToDeclare.insert(methodWitness.Witness);
IdentifierID witnessID = 0;
if (SILFunction *witness = methodWitness.Witness) {
witnessID = S.addIdentifierRef(Ctx.getIdentifier(witness->getName()));
}
WitnessMethodEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessMethodEntryLayout::Code],
// SILFunction name
witnessID,
ListOfValues);
}
}
/// Helper function for whether to emit a function body.
bool SILSerializer::shouldEmitFunctionBody(const SILFunction &F) {
// If F is a declaration, it has no body to emit...
if (F.isExternalDeclaration())
return false;
// If F is transparent, we should always emit its body.
if (F.isFragile())
return true;
// Otherwise serialize the body of the function only if we are asked to
// serialize everything.
return false;
}
void SILSerializer::writeSILBlock(const SILModule *SILMod) {
BCBlockRAII subBlock(Out, SIL_BLOCK_ID, 6);
registerSILAbbr<SILFunctionLayout>();
registerSILAbbr<SILBasicBlockLayout>();
registerSILAbbr<SILOneValueOneOperandLayout>();
registerSILAbbr<SILOneTypeLayout>();
registerSILAbbr<SILOneOperandLayout>();
registerSILAbbr<SILOneTypeOneOperandLayout>();
registerSILAbbr<SILInitExistentialLayout>();
registerSILAbbr<SILOneTypeValuesLayout>();
registerSILAbbr<SILTwoOperandsLayout>();
registerSILAbbr<SILInstApplyLayout>();
registerSILAbbr<SILInstNoOperandLayout>();
registerSILAbbr<VTableLayout>();
registerSILAbbr<VTableEntryLayout>();
registerSILAbbr<GlobalVarLayout>();
registerSILAbbr<WitnessTableLayout>();
registerSILAbbr<WitnessMethodEntryLayout>();
registerSILAbbr<WitnessBaseEntryLayout>();
registerSILAbbr<WitnessAssocProtocolLayout>();
registerSILAbbr<WitnessAssocEntryLayout>();
registerSILAbbr<SILGenericOuterParamsLayout>();
registerSILAbbr<SILInstCastLayout>();
registerSILAbbr<SILInstWitnessMethodLayout>();
// Register the abbreviation codes so these layouts can exist in both
// decl blocks and sil blocks.
// We have to make sure BOUND_GENERIC_SUBSTITUTION does not overlap with
// SIL-specific records.
registerSILAbbr<decls_block::BoundGenericSubstitutionLayout>();
registerSILAbbr<decls_block::NoConformanceLayout>();
registerSILAbbr<decls_block::NormalProtocolConformanceLayout>();
registerSILAbbr<decls_block::SpecializedProtocolConformanceLayout>();
registerSILAbbr<decls_block::InheritedProtocolConformanceLayout>();
registerSILAbbr<decls_block::NormalProtocolConformanceIdLayout>();
registerSILAbbr<decls_block::ProtocolConformanceXrefLayout>();
registerSILAbbr<decls_block::GenericParamListLayout>();
registerSILAbbr<decls_block::GenericParamLayout>();
registerSILAbbr<decls_block::GenericRequirementLayout>();
registerSILAbbr<decls_block::LastGenericRequirementLayout>();
for (const SILGlobalVariable &g : SILMod->getSILGlobals())
writeSILGlobalVar(g);
// Write out VTables first because it may require serializations of
// non-transparent SILFunctions (body is not needed).
// Go through all SILVTables in SILMod and write them if we should
// serialize everything.
// FIXME: Resilience: could write out vtable for fragile classes.
for (const SILVTable &vt : SILMod->getVTables()) {
if (ShouldSerializeAll &&
vt.getClass()->getModuleContext() == SILMod->getSwiftModule())
writeSILVTable(vt);
}
// Write out WitnessTables. For now, write out only if EnableSerializeAll.
for (const SILWitnessTable &wt : SILMod->getWitnessTables()) {
if (ShouldSerializeAll)
writeSILWitnessTable(wt);
}
// Go through all the SILFunctions in SILMod and write out any
// mandatory function bodies.
for (const SILFunction &F : *SILMod) {
if (shouldEmitFunctionBody(F) || ShouldSerializeAll)
writeSILFunction(F);
}
if (ShouldSerializeAll)
return;
// Now write function declarations for every function we've
// emitted a reference to without emitting a function body for.
for (const SILFunction &F : *SILMod) {
if (!shouldEmitFunctionBody(F) && FuncsToDeclare.count(&F))
writeSILFunction(F, true);
}
}
void SILSerializer::writeSILModule(const SILModule *SILMod) {
writeSILBlock(SILMod);
writeIndexTables();
}
void Serializer::writeSIL(const SILModule *SILMod, bool serializeAllSIL) {
if (!SILMod)
return;
SILSerializer SILSer(*this, M->Ctx, Out, serializeAllSIL);
SILSer.writeSILModule(SILMod);
}