Files
swift-mirror/stdlib/public/Concurrency/Task.cpp
Joe Groff d9798c0868 Concurrency: Redo non-_f variants of swift_task_create to accept closures as is.
In their previous form, the non-`_f` variants of these entry points were unused, and IRGen
lowered the `createAsyncTask` builtins to use the `_f` variants with a large amount of caller-side
codegen to manually unpack closure values. Amid all this, it also failed to make anyone responsible
for releasing the closure context after the task completed, causing every task creation to leak.
Redo the `swift_task_create_*` entry points to accept the two words of an async closure value
directly, and unpack the closure to get its invocation entry point and initial context size
inside the runtime. (Also get rid of the non-future `swift_task_create` variant, since it's unused
and it's subtly different in a lot of hairy ways from the future forms. Better to add it later
when it's needed than to have a broken unexercised version now.)
2021-03-08 16:54:19 -08:00

758 lines
26 KiB
C++

//===--- Task.cpp - Task object and management ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Object management routines for asynchronous task objects.
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/Concurrency.h"
#include "swift/ABI/Task.h"
#include "swift/ABI/TaskLocal.h"
#include "swift/ABI/Metadata.h"
#include "swift/Runtime/Mutex.h"
#include "swift/Runtime/HeapObject.h"
#include "TaskPrivate.h"
#include "AsyncCall.h"
#include "Debug.h"
#include <dispatch/dispatch.h>
#if !defined(_WIN32)
#include <dlfcn.h>
#endif
using namespace swift;
using FutureFragment = AsyncTask::FutureFragment;
using TaskGroup = swift::TaskGroup;
using TaskLocalInheritance = TaskLocal::TaskLocalInheritance;
void FutureFragment::destroy() {
auto queueHead = waitQueue.load(std::memory_order_acquire);
switch (queueHead.getStatus()) {
case Status::Executing:
assert(false && "destroying a task that never completed");
case Status::Success:
resultType->vw_destroy(getStoragePtr());
break;
case Status::Error:
swift_unknownObjectRelease(reinterpret_cast<OpaqueValue *>(getError()));
break;
}
}
FutureFragment::Status AsyncTask::waitFuture(AsyncTask *waitingTask) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
assert(isFuture());
auto fragment = futureFragment();
auto queueHead = fragment->waitQueue.load(std::memory_order_acquire);
while (true) {
switch (queueHead.getStatus()) {
case Status::Error:
case Status::Success:
// The task is done; we don't need to wait.
return queueHead.getStatus();
case Status::Executing:
// Task is now complete. We'll need to add ourselves to the queue.
break;
}
// Put the waiting task at the beginning of the wait queue.
waitingTask->getNextWaitingTask() = queueHead.getTask();
auto newQueueHead = WaitQueueItem::get(Status::Executing, waitingTask);
if (fragment->waitQueue.compare_exchange_weak(
queueHead, newQueueHead,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
// Escalate the priority of this task based on the priority
// of the waiting task.
swift_task_escalate(this, waitingTask->Flags.getPriority());
return FutureFragment::Status::Executing;
}
}
}
void AsyncTask::completeFuture(AsyncContext *context, ExecutorRef executor) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
assert(isFuture());
auto fragment = futureFragment();
// If an error was thrown, save it in the future fragment.
auto futureContext = static_cast<FutureAsyncContext *>(context);
bool hadErrorResult = false;
if (auto errorObject = *futureContext->errorResult) {
fragment->getError() = errorObject;
hadErrorResult = true;
}
// Update the status to signal completion.
auto newQueueHead = WaitQueueItem::get(
hadErrorResult ? Status::Error : Status::Success,
nullptr
);
auto queueHead = fragment->waitQueue.exchange(
newQueueHead, std::memory_order_acquire);
assert(queueHead.getStatus() == Status::Executing);
// If this is task group child, notify the parent group about the completion.
if (hasGroupChildFragment()) {
// then we must offer into the parent group that we completed,
// so it may `next()` poll completed child tasks in completion order.
auto group = groupChildFragment()->getGroup();
group->offer(this, context, executor);
}
// Schedule every waiting task on the executor.
auto waitingTask = queueHead.getTask();
while (waitingTask) {
// Find the next waiting task before we invalidate it by resuming
// the task.
auto nextWaitingTask = waitingTask->getNextWaitingTask();
// Fill in the return context.
auto waitingContext =
static_cast<TaskFutureWaitAsyncContext *>(waitingTask->ResumeContext);
if (hadErrorResult) {
waitingContext->fillWithError(fragment);
} else {
waitingContext->fillWithSuccess(fragment);
}
// Enqueue the waiter on the global executor.
// TODO: allow waiters to fill in a suggested executor
swift_task_enqueueGlobal(waitingTask);
// Move to the next task.
waitingTask = nextWaitingTask;
}
}
SWIFT_CC(swift)
static void destroyTask(SWIFT_CONTEXT HeapObject *obj) {
auto task = static_cast<AsyncTask*>(obj);
// For a future, destroy the result.
if (task->isFuture()) {
task->futureFragment()->destroy();
}
// Release any objects potentially held as task local values.
task->Local.destroy(task);
// The task execution itself should always hold a reference to it, so
// if we get here, we know the task has finished running, which means
// swift_task_complete should have been run, which will have torn down
// the task-local allocator. There's actually nothing else to clean up
// here.
free(task);
}
/// Heap metadata for an asynchronous task.
static FullMetadata<HeapMetadata> taskHeapMetadata = {
{
{
&destroyTask
},
{
/*value witness table*/ nullptr
}
},
{
MetadataKind::Task
}
};
const void *const swift::_swift_concurrency_debug_asyncTaskMetadata =
static_cast<Metadata *>(&taskHeapMetadata);
/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTask(AsyncTask *task, ExecutorRef executor,
SWIFT_ASYNC_CONTEXT AsyncContext *context) {
// Set that there's no longer a running task in the current thread.
_swift_task_clearCurrent();
// Destroy and deallocate any remaining task local items.
// We need to do this before we destroy the task local deallocator.
task->Local.destroy(task);
// Tear down the task-local allocator immediately;
// there's no need to wait for the object to be destroyed.
_swift_task_alloc_destroy(task);
// Complete the future.
if (task->isFuture()) {
task->completeFuture(context, executor);
}
// TODO: set something in the status?
// TODO: notify the parent somehow?
// TODO: remove this task from the child-task chain?
// Release the task, balancing the retain that a running task has on itself.
// If it was a group child task, it will remain until the group returns it.
swift_release(task);
}
/// The function that we put in the context of a simple task
/// to handle the final return from a closure.
SWIFT_CC(swiftasync)
static void completeTaskWithClosure(AsyncTask *task, ExecutorRef executor,
SWIFT_ASYNC_CONTEXT AsyncContext *context) {
// Release the closure context.
auto contextWithClosure = static_cast<FutureClosureAsyncContext*>(context);
swift_release(contextWithClosure->closureContext);
// Clean up the rest of the task.
return completeTask(task, executor, context);
}
/// All `swift_task_create*` variants funnel into this common implementation.
static AsyncTaskAndContext swift_task_create_group_future_impl(
JobFlags flags, AsyncTask *parent, TaskGroup *group,
const Metadata *futureResultType,
FutureAsyncSignature::FunctionType *function,
HeapObject * /* +1 */ closureContext,
size_t initialContextSize) {
assert((futureResultType != nullptr) == flags.task_isFuture());
assert(!flags.task_isFuture() ||
initialContextSize >= sizeof(FutureAsyncContext));
assert((parent != nullptr) == flags.task_isChildTask());
assert((group != nullptr) == flags.task_isGroupChildTask());
// Figure out the size of the header.
size_t headerSize = sizeof(AsyncTask);
if (parent) {
headerSize += sizeof(AsyncTask::ChildFragment);
}
if (flags.task_isGroupChildTask()) {
headerSize += sizeof(AsyncTask::GroupChildFragment);
}
if (futureResultType) {
headerSize += FutureFragment::fragmentSize(futureResultType);
}
headerSize = llvm::alignTo(headerSize, llvm::Align(alignof(AsyncContext)));
// Allocate the initial context together with the job.
// This means that we never get rid of this allocation.
size_t amountToAllocate = headerSize + initialContextSize;
assert(amountToAllocate % MaximumAlignment == 0);
void *allocation = malloc(amountToAllocate);
AsyncContext *initialContext =
reinterpret_cast<AsyncContext*>(
reinterpret_cast<char*>(allocation) + headerSize);
// Initialize the task so that resuming it will run the given
// function on the initial context.
AsyncTask *task =
new(allocation) AsyncTask(&taskHeapMetadata, flags,
function, initialContext);
// Initialize the child fragment if applicable.
if (parent) {
auto childFragment = task->childFragment();
new (childFragment) AsyncTask::ChildFragment(parent);
}
// Initialize the group child fragment if applicable.
if (flags.task_isGroupChildTask()) {
auto groupChildFragment = task->groupChildFragment();
new (groupChildFragment) AsyncTask::GroupChildFragment(group);
}
// Initialize the future fragment if applicable.
if (futureResultType) {
assert(task->isFuture());
auto futureFragment = task->futureFragment();
new (futureFragment) FutureFragment(futureResultType);
// Set up the context for the future so there is no error, and a successful
// result will be written into the future fragment's storage.
auto futureContext = static_cast<FutureAsyncContext *>(initialContext);
futureContext->errorResult = &futureFragment->getError();
futureContext->indirectResult = futureFragment->getStoragePtr();
}
// Stash the closure context in the future if there's room.
// We do this unconditionally because a null context value could still in
// theory be an expected context value (for instance, a captured boolean
// value could be represented as either nullptr or (void*)-1 on platforms
// where swift_retain ignores negative values). If the given entry point
// is not a closure invocation function, then stashing null into the context
// should be harmless, since it's just unused junk space at this point.
if (initialContextSize >= sizeof(FutureClosureAsyncContext)) {
auto futureClosureContext
= static_cast<FutureClosureAsyncContext *>(initialContext);
futureClosureContext->closureContext = closureContext;
} else {
assert(!closureContext && "got a context but nowhere to put it?!");
}
// Perform additional linking between parent and child task.
if (parent) {
// If the parent was already cancelled, we carry this flag forward to the child.
//
// In a task group we would not have allowed the `add` to create a child anymore,
// however better safe than sorry and `async let` are not expressed as task groups,
// so they may have been spawned in any case still.
if (swift_task_isCancelled(parent))
swift_task_cancel(task);
}
// Configure the initial context.
//
// FIXME: if we store a null pointer here using the standard ABI for
// signed null pointers, then we'll have to authenticate context pointers
// as if they might be null, even though the only time they ever might
// be is the final hop. Store a signed null instead.
initialContext->Parent = nullptr;
initialContext->ResumeParent
= closureContext ? &completeTaskWithClosure : &completeTask;
initialContext->ResumeParentExecutor = ExecutorRef::generic();
initialContext->Flags = AsyncContextKind::Ordinary;
initialContext->Flags.setShouldNotDeallocateInCallee(true);
// Initialize the task-local allocator.
// TODO: consider providing an initial pre-allocated first slab to the allocator.
_swift_task_alloc_initialize(task);
// TODO: if the allocator would be prepared earlier we could do this in some
// other existing if-parent if rather than adding another one here.
if (parent) {
// Initialize task locals with a link to the parent task.
task->Local.initializeLinkParent(task, parent);
}
return {task, initialContext};
}
AsyncTaskAndContext
swift::swift_task_create_f(JobFlags flags, AsyncTask *parent,
ThinNullaryAsyncSignature::FunctionType *function,
size_t initialContextSize) {
return swift_task_create_future_f(
flags, parent, nullptr, function, initialContextSize);
}
AsyncTaskAndContext swift::swift_task_create_future_f(
JobFlags flags, AsyncTask *parent,
const Metadata *futureResultType,
FutureAsyncSignature::FunctionType *function, size_t initialContextSize) {
assert(!flags.task_isGroupChildTask() &&
"use swift_task_create_group_future_f to initialize task group child tasks");
return swift_task_create_group_future_f(
flags, parent, /*group=*/nullptr, futureResultType,
function, initialContextSize);
}
AsyncTaskAndContext swift::swift_task_create_group_future_f(
JobFlags flags, AsyncTask *parent, TaskGroup *group,
const Metadata *futureResultType,
FutureAsyncSignature::FunctionType *function,
size_t initialContextSize) {
return swift_task_create_group_future_impl(flags, parent, group,
futureResultType,
function, nullptr,
initialContextSize);
}
namespace {
/// The header of a function context (closure captures) of
/// a thick async function with a non-null context.
struct ThickAsyncFunctionContext: HeapObject {
uint32_t ExpectedContextSize;
};
/// Extract the entry point address and initial context size from an async closure value.
template<typename AsyncSignature, uint16_t AuthDiscriminator>
SWIFT_ALWAYS_INLINE // so this doesn't hang out as a ptrauth gadget
std::pair<typename AsyncSignature::FunctionType *, size_t>
getAsyncClosureEntryPointAndContextSize(void *function,
HeapObject *functionContext) {
// If the function context is non-null, then the function pointer is
// an ordinary function pointer.
if (functionContext) {
function = swift_auth_code(function, AuthDiscriminator);
size_t contextSize =
static_cast<ThickAsyncFunctionContext*>(functionContext)
->ExpectedContextSize;
return {reinterpret_cast<typename AsyncSignature::FunctionType *>(function),
contextSize};
// Otherwise, the function pointer is an async function pointer.
} else {
auto fnPtr =
reinterpret_cast<const AsyncFunctionPointer<AsyncSignature> *>(function);
#if SWIFT_PTRAUTH
fnPtr = (const AsyncFunctionPointer<AsyncSignature> *)ptrauth_auth_data(
(void *)fnPtr, ptrauth_key_process_independent_code,
AuthDiscriminator);
#endif
return {
reinterpret_cast<typename AsyncSignature::FunctionType *>(fnPtr->Function.get()),
fnPtr->ExpectedContextSize};
}
}
}
AsyncTaskAndContext swift::swift_task_create_future(JobFlags flags,
AsyncTask *parent,
const Metadata *futureResultType,
void *closureEntry,
HeapObject * /* +1 */ closureContext) {
FutureAsyncSignature::FunctionType *taskEntry;
size_t initialContextSize;
std::tie(taskEntry, initialContextSize)
= getAsyncClosureEntryPointAndContextSize<
FutureAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncFutureFunction
>(closureEntry, closureContext);
return swift_task_create_group_future_impl(
flags, parent, nullptr, futureResultType,
taskEntry, closureContext,
initialContextSize);
}
AsyncTaskAndContext
swift::swift_task_create_group_future(
JobFlags flags, AsyncTask *parent, TaskGroup *group,
const Metadata *futureResultType,
void *closureEntry,
HeapObject * /*+1*/closureContext) {
FutureAsyncSignature::FunctionType *taskEntry;
size_t initialContextSize;
std::tie(taskEntry, initialContextSize)
= getAsyncClosureEntryPointAndContextSize<
FutureAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncFutureFunction
>(closureEntry, closureContext);
return swift_task_create_group_future_impl(
flags, parent, group, futureResultType,
taskEntry, closureContext,
initialContextSize);
}
void swift::swift_task_future_wait(
AsyncTask *waitingTask, ExecutorRef executor,
SWIFT_ASYNC_CONTEXT AsyncContext *rawContext) {
// Suspend the waiting task.
waitingTask->ResumeTask = rawContext->ResumeParent;
waitingTask->ResumeContext = rawContext;
auto context = static_cast<TaskFutureWaitAsyncContext *>(rawContext);
auto task = context->task;
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
return;
case FutureFragment::Status::Success:
// Run the task with a successful result.
context->fillWithSuccess(task->futureFragment());
// FIXME: force tail call
return waitingTask->runInFullyEstablishedContext(executor);
case FutureFragment::Status::Error:
fatalError(0, "future reported an error, but wait cannot throw");
}
}
void swift::swift_task_future_wait_throwing(
AsyncTask *waitingTask, ExecutorRef executor,
SWIFT_ASYNC_CONTEXT AsyncContext *rawContext) {
// Suspend the waiting task.
waitingTask->ResumeTask = rawContext->ResumeParent;
waitingTask->ResumeContext = rawContext;
auto context = static_cast<TaskFutureWaitAsyncContext *>(rawContext);
auto task = context->task;
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
return;
case FutureFragment::Status::Success:
// Run the task with a successful result.
context->fillWithSuccess(task->futureFragment());
// FIXME: force tail call
return waitingTask->runInFullyEstablishedContext(executor);
case FutureFragment::Status::Error:
// Run the task with an error result.
context->fillWithError(task->futureFragment());
// FIXME: force tail call
return waitingTask->runInFullyEstablishedContext(executor);
}
}
namespace {
#if SWIFT_CONCURRENCY_COOPERATIVE_GLOBAL_EXECUTOR
class RunAndBlockSemaphore {
bool Finished = false;
public:
void wait() {
donateThreadToGlobalExecutorUntil([](void *context) {
return *reinterpret_cast<bool*>(context);
}, &Finished);
assert(Finished && "ran out of tasks before we were signalled");
}
void signal() {
Finished = true;
}
};
#else
class RunAndBlockSemaphore {
ConditionVariable Queue;
ConditionVariable::Mutex Lock;
bool Finished = false;
public:
/// Wait for a signal.
void wait() {
Lock.withLockOrWait(Queue, [&] {
return Finished;
});
}
void signal() {
Lock.withLockThenNotifyAll(Queue, [&]{
Finished = true;
});
}
};
#endif
using RunAndBlockSignature =
AsyncSignature<void(HeapObject*), /*throws*/ false>;
struct RunAndBlockContext: AsyncContext {
const void *Function;
HeapObject *FunctionContext;
RunAndBlockSemaphore *Semaphore;
};
using RunAndBlockCalleeContext =
AsyncCalleeContext<RunAndBlockContext, RunAndBlockSignature>;
} // end anonymous namespace
/// Second half of the runAndBlock async function.
SWIFT_CC(swiftasync)
static void runAndBlock_finish(AsyncTask *task, ExecutorRef executor,
SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto calleeContext = static_cast<RunAndBlockCalleeContext*>(_context);
auto context = popAsyncContext(task, calleeContext);
context->Semaphore->signal();
return context->ResumeParent(task, executor, context);
}
/// First half of the runAndBlock async function.
SWIFT_CC(swiftasync)
static void runAndBlock_start(AsyncTask *task, ExecutorRef executor,
SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto callerContext = static_cast<RunAndBlockContext*>(_context);
RunAndBlockSignature::FunctionType *function;
size_t calleeContextSize;
auto functionContext = callerContext->FunctionContext;
std::tie(function, calleeContextSize)
= getAsyncClosureEntryPointAndContextSize<
RunAndBlockSignature,
SpecialPointerAuthDiscriminators::AsyncRunAndBlockFunction
>(const_cast<void*>(callerContext->Function), functionContext);
auto calleeContext =
pushAsyncContext<RunAndBlockSignature>(task, executor, callerContext,
calleeContextSize,
&runAndBlock_finish,
functionContext);
return function(task, executor, calleeContext);
}
// TODO: Remove this hack.
void swift::swift_task_runAndBlockThread(const void *function,
HeapObject *functionContext) {
RunAndBlockSemaphore semaphore;
// Set up a task that runs the runAndBlock async function above.
auto flags = JobFlags(JobKind::Task, JobPriority::Default);
auto pair = swift_task_create_f(flags,
/*parent*/ nullptr,
&runAndBlock_start,
sizeof(RunAndBlockContext));
auto context = static_cast<RunAndBlockContext*>(pair.InitialContext);
context->Function = function;
context->FunctionContext = functionContext;
context->Semaphore = &semaphore;
// Enqueue the task.
swift_task_enqueueGlobal(pair.Task);
// Wait until the task completes.
semaphore.wait();
}
size_t swift::swift_task_getJobFlags(AsyncTask *task) {
return task->Flags.getOpaqueValue();
}
namespace {
/// Structure that gets filled in when a task is suspended by `withUnsafeContinuation`.
struct AsyncContinuationContext {
// These fields are unnecessary for resuming a continuation.
void *Unused1;
void *Unused2;
// Storage slot for the error result, if any.
SwiftError *ErrorResult;
// Pointer to where to store a normal result.
OpaqueValue *NormalResult;
// Executor on which to resume execution.
ExecutorRef ResumeExecutor;
};
static void resumeTaskAfterContinuation(AsyncTask *task,
AsyncContinuationContext *context) {
swift_task_enqueue(task, context->ResumeExecutor);
}
}
SWIFT_CC(swift)
void swift::swift_continuation_resume(/* +1 */ OpaqueValue *result,
void *continuation,
const Metadata *resumeType) {
auto task = reinterpret_cast<AsyncTask*>(continuation);
auto context = reinterpret_cast<AsyncContinuationContext*>(task->ResumeContext);
resumeType->vw_initializeWithTake(context->NormalResult, result);
resumeTaskAfterContinuation(task, context);
}
SWIFT_CC(swift)
void swift::swift_continuation_throwingResume(/* +1 */ OpaqueValue *result,
void *continuation,
const Metadata *resumeType) {
return swift_continuation_resume(result, continuation, resumeType);
}
SWIFT_CC(swift)
void swift::swift_continuation_throwingResumeWithError(/* +1 */ SwiftError *error,
void *continuation,
const Metadata *resumeType) {
auto task = reinterpret_cast<AsyncTask*>(continuation);
auto context = reinterpret_cast<AsyncContinuationContext*>(task->ResumeContext);
context->ErrorResult = error;
resumeTaskAfterContinuation(task, context);
}
bool swift::swift_task_isCancelled(AsyncTask *task) {
return task->isCancelled();
}
CancellationNotificationStatusRecord*
swift::swift_task_addCancellationHandler(
AsyncTask *task, CancellationNotificationStatusRecord::FunctionType handler) {
void *allocation =
swift_task_alloc(task, sizeof(CancellationNotificationStatusRecord));
auto *record =
new (allocation) CancellationNotificationStatusRecord(
handler, /*arg=*/nullptr);
swift_task_addStatusRecord(task, record);
return record;
}
void swift::swift_task_removeCancellationHandler(
AsyncTask *task, CancellationNotificationStatusRecord *record) {
swift_task_removeStatusRecord(task, record);
swift_task_dealloc(task, record);
}
SWIFT_CC(swift)
void swift::swift_continuation_logFailedCheck(const char *message) {
swift_reportError(0, message);
}
void swift::swift_task_asyncMainDrainQueue() {
#if SWIFT_CONCURRENCY_COOPERATIVE_GLOBAL_EXECUTOR
bool Finished = false;
donateThreadToGlobalExecutorUntil([](void *context) {
return *reinterpret_cast<bool*>(context);
}, &Finished);
#else
#if defined(_WIN32)
static void(FAR *pfndispatch_main)(void) = NULL;
if (pfndispatch_main)
return pfndispatch_main();
HMODULE hModule = LoadLibraryW(L"dispatch.dll");
if (hModule == NULL)
abort();
pfndispatch_main =
reinterpret_cast<void (FAR *)(void)>(GetProcAddress(hModule,
"dispatch_main"));
if (pfndispatch_main == NULL)
abort();
pfndispatch_main();
#else
// CFRunLoop is not available on non-Darwin targets. Foundation has an
// implementation, but CoreFoundation is not meant to be exposed. We can only
// assume the existence of `CFRunLoopRun` on Darwin platforms, where the
// system provides an implementation of CoreFoundation.
#if defined(__APPLE__)
auto runLoop =
reinterpret_cast<void (*)(void)>(dlsym(RTLD_DEFAULT, "CFRunLoopRun"));
if (runLoop)
return runLoop();
#endif
dispatch_main();
#endif
#endif
}