Files
swift-mirror/lib/Sema/Constraint.cpp
Slava Pestov db58e02cb2 Sema: Hook up layout constraints to the solver
There were various problems with layout constraints either
being ignored or handled incorrectly. Now that I've exercised
this support with an upcoming patch, there are some fixes
here.

Also, introduce a new ExistentialLayout::getLayoutConstriant()
which returns a value for existentials which are class-constrained
but don't have a superclass or any class-constrained protocols;
an example would be AnyObject, or AnyObject & P for some
non-class protocol P.

NFC for now, since these layout-constrained existentials cannot
be constructed yet.
2017-04-13 21:17:05 -07:00

679 lines
25 KiB
C++

//===--- Constraint.cpp - Constraint in the Type Checker ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c Constraint class and its related types,
// which is used by the constraint-based type checker to describe a
// constraint that must be solved.
//
//===----------------------------------------------------------------------===//
#include "Constraint.h"
#include "ConstraintSystem.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Compiler.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
using namespace swift;
using namespace constraints;
Constraint::Constraint(ConstraintKind kind, ArrayRef<Constraint *> constraints,
ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(kind), HasRestriction(false), HasFix(false), IsActive(false),
IsDisabled(false), RememberChoice(false), IsFavored(false),
NumTypeVariables(typeVars.size()),
Nested(constraints), Locator(locator)
{
assert(kind == ConstraintKind::Disjunction);
std::uninitialized_copy(typeVars.begin(), typeVars.end(),
getTypeVariablesBuffer().begin());
}
Constraint::Constraint(ConstraintKind Kind, Type First, Type Second,
ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(Kind), HasRestriction(false), HasFix(false), IsActive(false),
IsDisabled(false), RememberChoice(false), IsFavored(false),
NumTypeVariables(typeVars.size()), Types { First, Second }, Locator(locator)
{
switch (Kind) {
case ConstraintKind::Bind:
case ConstraintKind::Equal:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::BridgingConversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::ArgumentTupleConversion:
case ConstraintKind::OperatorArgumentTupleConversion:
case ConstraintKind::OperatorArgumentConversion:
case ConstraintKind::ConformsTo:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::CheckedCast:
case ConstraintKind::SelfObjectOfProtocol:
case ConstraintKind::DynamicTypeOf:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::OptionalObject:
assert(!First.isNull());
assert(!Second.isNull());
break;
case ConstraintKind::ApplicableFunction:
assert(First->is<FunctionType>()
&& "The left-hand side type should be a function type");
break;
case ConstraintKind::ValueMember:
case ConstraintKind::UnresolvedValueMember:
llvm_unreachable("Wrong constructor for member constraint");
case ConstraintKind::Defaultable:
assert(!First.isNull());
assert(!Second.isNull());
break;
case ConstraintKind::BindOverload:
llvm_unreachable("Wrong constructor for overload binding constraint");
case ConstraintKind::Disjunction:
llvm_unreachable("Disjunction constraints should use create()");
}
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(ConstraintKind kind, Type first, Type second,
DeclName member, DeclContext *useDC,
FunctionRefKind functionRefKind,
ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(kind), HasRestriction(false), HasFix(false), IsActive(false),
IsDisabled(false), RememberChoice(false), IsFavored(false),
NumTypeVariables(typeVars.size()), Member { first, second, member, useDC },
Locator(locator)
{
assert(kind == ConstraintKind::ValueMember ||
kind == ConstraintKind::UnresolvedValueMember);
TheFunctionRefKind = static_cast<unsigned>(functionRefKind);
assert(getFunctionRefKind() == functionRefKind);
assert(member && "Member constraint has no member");
assert(useDC && "Member constraint has no use DC");
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(Type type, OverloadChoice choice, DeclContext *useDC,
ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(ConstraintKind::BindOverload),
HasRestriction(false), HasFix(false), IsActive(false), IsDisabled(false),
RememberChoice(false), IsFavored(false), NumTypeVariables(typeVars.size()),
Overload{type, choice, useDC}, Locator(locator)
{
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(ConstraintKind kind,
ConversionRestrictionKind restriction,
Type first, Type second, ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(kind), Restriction(restriction),
HasRestriction(true), HasFix(false), IsActive(false), IsDisabled(false),
RememberChoice(false), IsFavored(false), NumTypeVariables(typeVars.size()),
Types{ first, second }, Locator(locator)
{
assert(!first.isNull());
assert(!second.isNull());
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(ConstraintKind kind, Fix fix,
Type first, Type second, ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(kind), FixData(fix.getData()), TheFix(fix.getKind()),
HasRestriction(false), HasFix(true),
IsActive(false), IsDisabled(false), RememberChoice(false), IsFavored(false),
NumTypeVariables(typeVars.size()),
Types{ first, second }, Locator(locator)
{
assert(!first.isNull());
assert(!second.isNull());
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
ProtocolDecl *Constraint::getProtocol() const {
assert((Kind == ConstraintKind::ConformsTo ||
Kind == ConstraintKind::LiteralConformsTo ||
Kind == ConstraintKind::SelfObjectOfProtocol)
&& "Not a conformance constraint");
return Types.Second->castTo<ProtocolType>()->getDecl();
}
Constraint *Constraint::clone(ConstraintSystem &cs) const {
switch (getKind()) {
case ConstraintKind::Bind:
case ConstraintKind::Equal:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::BridgingConversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::ArgumentTupleConversion:
case ConstraintKind::OperatorArgumentTupleConversion:
case ConstraintKind::OperatorArgumentConversion:
case ConstraintKind::ConformsTo:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::CheckedCast:
case ConstraintKind::DynamicTypeOf:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::SelfObjectOfProtocol:
case ConstraintKind::ApplicableFunction:
case ConstraintKind::OptionalObject:
case ConstraintKind::Defaultable:
return create(cs, getKind(), getFirstType(), getSecondType(), getLocator());
case ConstraintKind::BindOverload:
return createBindOverload(cs, getFirstType(), getOverloadChoice(),
getOverloadUseDC(), getLocator());
case ConstraintKind::ValueMember:
case ConstraintKind::UnresolvedValueMember:
return createMember(cs, getKind(), getFirstType(), getSecondType(),
getMember(), getMemberUseDC(), getFunctionRefKind(),
getLocator());
case ConstraintKind::Disjunction:
return createDisjunction(cs, getNestedConstraints(), getLocator());
}
llvm_unreachable("Unhandled ConstraintKind in switch.");
}
void Constraint::print(llvm::raw_ostream &Out, SourceManager *sm) const {
if (Kind == ConstraintKind::Disjunction) {
Out << "disjunction";
if (shouldRememberChoice())
Out << " (remembered)";
if (Locator) {
Out << " [[";
Locator->dump(sm, Out);
Out << "]]";
}
Out << ":";
interleave(getNestedConstraints(),
[&](Constraint *constraint) {
if (constraint->isDisabled())
Out << "[disabled] ";
constraint->print(Out, sm);
},
[&] { Out << " or "; });
return;
}
getFirstType()->print(Out);
bool skipSecond = false;
switch (Kind) {
case ConstraintKind::Bind: Out << " bind "; break;
case ConstraintKind::Equal: Out << " equal "; break;
case ConstraintKind::BindParam: Out << " bind param "; break;
case ConstraintKind::BindToPointerType: Out << " bind to pointer "; break;
case ConstraintKind::Subtype: Out << " subtype "; break;
case ConstraintKind::Conversion: Out << " conv "; break;
case ConstraintKind::BridgingConversion: Out << " bridging conv "; break;
case ConstraintKind::ArgumentConversion: Out << " arg conv "; break;
case ConstraintKind::ArgumentTupleConversion:
Out << " arg tuple conv "; break;
case ConstraintKind::OperatorArgumentTupleConversion:
Out << " operator arg tuple conv "; break;
case ConstraintKind::OperatorArgumentConversion:
Out << " operator arg conv "; break;
case ConstraintKind::ConformsTo: Out << " conforms to "; break;
case ConstraintKind::LiteralConformsTo: Out << " literal conforms to "; break;
case ConstraintKind::CheckedCast: Out << " checked cast to "; break;
case ConstraintKind::SelfObjectOfProtocol: Out << " Self type of "; break;
case ConstraintKind::ApplicableFunction: Out << " applicable fn "; break;
case ConstraintKind::DynamicTypeOf: Out << " dynamicType type of "; break;
case ConstraintKind::EscapableFunctionOf: Out << " @escaping type of "; break;
case ConstraintKind::OpenedExistentialOf: Out << " opened archetype of "; break;
case ConstraintKind::OptionalObject:
Out << " optional with object type "; break;
case ConstraintKind::BindOverload: {
Out << " bound to ";
auto overload = getOverloadChoice();
auto printDecl = [&] {
auto decl = overload.getDecl();
decl->dumpRef(Out);
Out << " : " << decl->getInterfaceType();
if (!sm || !decl->getLoc().isValid()) return;
Out << " at ";
decl->getLoc().print(Out, *sm);
};
switch (overload.getKind()) {
case OverloadChoiceKind::Decl:
Out << "decl ";
printDecl();
break;
case OverloadChoiceKind::TypeDecl:
Out << "type decl ";
printDecl();
break;
case OverloadChoiceKind::DeclViaDynamic:
Out << "decl-via-dynamic ";
printDecl();
break;
case OverloadChoiceKind::DeclViaBridge:
Out << "decl-via-bridge ";
printDecl();
break;
case OverloadChoiceKind::DeclViaUnwrappedOptional:
Out << "decl-via-unwrapped-optional ";
printDecl();
break;
case OverloadChoiceKind::BaseType:
Out << "base type";
break;
case OverloadChoiceKind::TupleIndex:
Out << "tuple index " << overload.getTupleIndex();
break;
}
skipSecond = true;
break;
}
case ConstraintKind::ValueMember:
Out << "[." << Member.Member << ": value] == ";
break;
case ConstraintKind::UnresolvedValueMember:
Out << "[(implicit) ." << Member.Member << ": value] == ";
break;
case ConstraintKind::Defaultable:
Out << " can default to ";
break;
case ConstraintKind::Disjunction:
llvm_unreachable("disjunction handled above");
}
if (!skipSecond)
getSecondType()->print(Out);
if (auto restriction = getRestriction()) {
Out << ' ' << getName(*restriction);
}
if (auto fix = getFix()) {
Out << ' ';
fix->print(Out, nullptr);
}
if (Locator) {
Out << " [[";
Locator->dump(sm, Out);
Out << "]];";
}
}
void Constraint::dump(SourceManager *sm) const {
print(llvm::errs(), sm);
llvm::errs() << "\n";
}
void Constraint::dump(ConstraintSystem *CS) const {
// Print all type variables as $T0 instead of _ here.
llvm::SaveAndRestore<bool> X(CS->getASTContext().LangOpts.
DebugConstraintSolver, true);
// Disable MSVC warning: only for use within the debugger.
#if SWIFT_COMPILER_IS_MSVC
#pragma warning(push)
#pragma warning(disable: 4996)
#endif
dump(&CS->getASTContext().SourceMgr);
#if SWIFT_COMPILER_IS_MSVC
#pragma warning(pop)
#endif
}
StringRef swift::constraints::getName(ConversionRestrictionKind kind) {
switch (kind) {
case ConversionRestrictionKind::TupleToTuple:
return "[tuple-to-tuple]";
case ConversionRestrictionKind::ScalarToTuple:
return "[scalar-to-tuple]";
case ConversionRestrictionKind::DeepEquality:
return "[deep equality]";
case ConversionRestrictionKind::Superclass:
return "[superclass]";
case ConversionRestrictionKind::LValueToRValue:
return "[lvalue-to-rvalue]";
case ConversionRestrictionKind::Existential:
return "[existential]";
case ConversionRestrictionKind::MetatypeToExistentialMetatype:
return "[metatype-to-existential-metatype]";
case ConversionRestrictionKind::ExistentialMetatypeToMetatype:
return "[existential-metatype-to-metatype]";
case ConversionRestrictionKind::ValueToOptional:
return "[value-to-optional]";
case ConversionRestrictionKind::OptionalToOptional:
return "[optional-to-optional]";
case ConversionRestrictionKind::ClassMetatypeToAnyObject:
return "[class-metatype-to-object]";
case ConversionRestrictionKind::ExistentialMetatypeToAnyObject:
return "[existential-metatype-to-object]";
case ConversionRestrictionKind::ProtocolMetatypeToProtocolClass:
return "[protocol-metatype-to-object]";
case ConversionRestrictionKind::ArrayToPointer:
return "[array-to-pointer]";
case ConversionRestrictionKind::StringToPointer:
return "[string-to-pointer]";
case ConversionRestrictionKind::InoutToPointer:
return "[inout-to-pointer]";
case ConversionRestrictionKind::PointerToPointer:
return "[pointer-to-pointer]";
case ConversionRestrictionKind::ForceUnchecked:
return "[force-unchecked]";
case ConversionRestrictionKind::ArrayUpcast:
return "[array-upcast]";
case ConversionRestrictionKind::DictionaryUpcast:
return "[dictionary-upcast]";
case ConversionRestrictionKind::SetUpcast:
return "[set-upcast]";
case ConversionRestrictionKind::HashableToAnyHashable:
return "[hashable-to-anyhashable]";
case ConversionRestrictionKind::CFTollFreeBridgeToObjC:
return "[cf-toll-free-bridge-to-objc]";
case ConversionRestrictionKind::ObjCTollFreeBridgeToCF:
return "[objc-toll-free-bridge-to-cf]";
}
llvm_unreachable("bad conversion restriction kind");
}
Fix Fix::getForcedDowncast(ConstraintSystem &cs, Type toType) {
unsigned index = cs.FixedTypes.size();
cs.FixedTypes.push_back(toType);
return Fix(FixKind::ForceDowncast, index);
}
Type Fix::getTypeArgument(ConstraintSystem &cs) const {
assert(getKind() == FixKind::ForceDowncast);
return cs.FixedTypes[Data];
}
StringRef Fix::getName(FixKind kind) {
switch (kind) {
case FixKind::None:
return "prevent fixes";
case FixKind::ForceOptional:
return "fix: force optional";
case FixKind::OptionalChaining:
return "fix: optional chaining";
case FixKind::ForceDowncast:
return "fix: force downcast";
case FixKind::AddressOf:
return "fix: add address-of";
case FixKind::CoerceToCheckedCast:
return "fix: as to as!";
}
llvm_unreachable("Unhandled FixKind in switch.");
}
void Fix::print(llvm::raw_ostream &Out, ConstraintSystem *cs) const {
Out << '[' << getName(getKind());
if (getKind() == FixKind::ForceDowncast && cs) {
Out << " as! ";
Out << getTypeArgument(*cs).getString();
}
Out << ']';
}
void Fix::dump(ConstraintSystem *cs) const {
print(llvm::errs(), cs);
llvm::errs() << "\n";
}
/// Recursively gather the set of type variables referenced by this constraint.
static void
gatherReferencedTypeVars(Constraint *constraint,
SmallVectorImpl<TypeVariableType *> &typeVars) {
switch (constraint->getKind()) {
case ConstraintKind::Disjunction:
for (auto nested : constraint->getNestedConstraints())
gatherReferencedTypeVars(nested, typeVars);
return;
case ConstraintKind::ApplicableFunction:
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::Conversion:
case ConstraintKind::BridgingConversion:
case ConstraintKind::ArgumentTupleConversion:
case ConstraintKind::OperatorArgumentTupleConversion:
case ConstraintKind::OperatorArgumentConversion:
case ConstraintKind::CheckedCast:
case ConstraintKind::Equal:
case ConstraintKind::Subtype:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::ValueMember:
case ConstraintKind::DynamicTypeOf:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::OptionalObject:
case ConstraintKind::Defaultable:
case ConstraintKind::ConformsTo:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::SelfObjectOfProtocol:
constraint->getFirstType()->getTypeVariables(typeVars);
constraint->getSecondType()->getTypeVariables(typeVars);
break;
case ConstraintKind::BindOverload:
constraint->getFirstType()->getTypeVariables(typeVars);
// Special case: the base type of an overloading binding.
if (auto baseType = constraint->getOverloadChoice().getBaseType()) {
baseType->getTypeVariables(typeVars);
}
break;
}
}
/// Unique the given set of type variables.
static void uniqueTypeVariables(SmallVectorImpl<TypeVariableType *> &typeVars) {
// Remove any duplicate type variables.
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
typeVars.erase(std::remove_if(typeVars.begin(), typeVars.end(),
[&](TypeVariableType *typeVar) {
return !knownTypeVars.insert(typeVar).second;
}),
typeVars.end());
}
Constraint *Constraint::create(ConstraintSystem &cs, ConstraintKind kind,
Type first, Type second,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (first->hasTypeVariable())
first->getTypeVariables(typeVars);
if (second && second->hasTypeVariable())
second->getTypeVariables(typeVars);
uniqueTypeVariables(typeVars);
// Conformance constraints expect an existential on the right-hand side.
assert((kind != ConstraintKind::ConformsTo &&
kind != ConstraintKind::SelfObjectOfProtocol) ||
second->isExistentialType());
// Literal protocol conformances expect a protocol.
assert((kind != ConstraintKind::LiteralConformsTo) ||
second->is<ProtocolType>());
// Bridging constraints require bridging to be enabled.
assert(kind != ConstraintKind::BridgingConversion
|| cs.TC.Context.LangOpts.EnableObjCInterop);
// Create the constraint.
unsigned size = totalSizeToAlloc<TypeVariableType*>(typeVars.size());
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(kind, first, second, locator, typeVars);
}
Constraint *Constraint::createMember(ConstraintSystem &cs, ConstraintKind kind,
Type first, Type second, DeclName member,
DeclContext *useDC,
FunctionRefKind functionRefKind,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (first->hasTypeVariable())
first->getTypeVariables(typeVars);
if (second->hasTypeVariable())
second->getTypeVariables(typeVars);
uniqueTypeVariables(typeVars);
// Create the constraint.
unsigned size = totalSizeToAlloc<TypeVariableType*>(typeVars.size());
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(kind, first, second, member, useDC,
functionRefKind, locator, typeVars);
}
Constraint *Constraint::createBindOverload(ConstraintSystem &cs, Type type,
OverloadChoice choice,
DeclContext *useDC,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (type->hasTypeVariable())
type->getTypeVariables(typeVars);
if (auto baseType = choice.getBaseType()) {
baseType->getTypeVariables(typeVars);
}
// Create the constraint.
unsigned size = totalSizeToAlloc<TypeVariableType*>(typeVars.size());
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(type, choice, useDC, locator, typeVars);
}
Constraint *Constraint::createRestricted(ConstraintSystem &cs,
ConstraintKind kind,
ConversionRestrictionKind restriction,
Type first, Type second,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (first->hasTypeVariable())
first->getTypeVariables(typeVars);
if (second->hasTypeVariable())
second->getTypeVariables(typeVars);
uniqueTypeVariables(typeVars);
// Create the constraint.
unsigned size = totalSizeToAlloc<TypeVariableType*>(typeVars.size());
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(kind, restriction, first, second, locator,
typeVars);
}
Constraint *Constraint::createFixed(ConstraintSystem &cs, ConstraintKind kind,
Fix fix,
Type first, Type second,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (first->hasTypeVariable())
first->getTypeVariables(typeVars);
if (second->hasTypeVariable())
second->getTypeVariables(typeVars);
uniqueTypeVariables(typeVars);
// Create the constraint.
unsigned size = totalSizeToAlloc<TypeVariableType*>(typeVars.size());
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(kind, fix, first, second, locator, typeVars);
}
Constraint *Constraint::createDisjunction(ConstraintSystem &cs,
ArrayRef<Constraint *> constraints,
ConstraintLocator *locator,
RememberChoice_t rememberChoice) {
// Unwrap any disjunctions inside the disjunction constraint; we only allow
// disjunctions at the top level.
SmallVector<TypeVariableType *, 4> typeVars;
bool unwrappedAny = false;
SmallVector<Constraint *, 1> unwrapped;
unsigned index = 0;
for (auto constraint : constraints) {
// Gather type variables from this constraint.
gatherReferencedTypeVars(constraint, typeVars);
// If we have a nested disjunction, unwrap it.
if (constraint->getKind() == ConstraintKind::Disjunction) {
// If we haven't unwrapped anything before, copy all of the constraints
// we skipped.
if (!unwrappedAny) {
unwrapped.append(constraints.begin(), constraints.begin() + index);
unwrappedAny = true;
}
// Add all of the constraints in the disjunction.
unwrapped.append(constraint->getNestedConstraints().begin(),
constraint->getNestedConstraints().end());
} else if (unwrappedAny) {
// Since we unwrapped constraints before, add this constraint.
unwrapped.push_back(constraint);
}
++index;
}
// If we unwrapped anything, our list of constraints is the unwrapped list.
if (unwrappedAny)
constraints = unwrapped;
assert(!constraints.empty() && "Empty disjunction constraint");
// If there is a single constraint, this isn't a disjunction at all.
if (constraints.size() == 1) {
assert(!rememberChoice && "simplified an important disjunction?");
return constraints.front();
}
// Create the disjunction constraint.
uniqueTypeVariables(typeVars);
unsigned size = totalSizeToAlloc<TypeVariableType*>(typeVars.size());
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
auto disjunction = new (mem) Constraint(ConstraintKind::Disjunction,
cs.allocateCopy(constraints), locator, typeVars);
disjunction->RememberChoice = (bool) rememberChoice;
return disjunction;
}
void *Constraint::operator new(size_t bytes, ConstraintSystem& cs,
size_t alignment) {
return ::operator new (bytes, cs, alignment);
}