Files
swift-mirror/lib/ClangImporter/ClangImporter.cpp
Doug Gregor b374c099ac [Clang importer] Eliminate redundant imports of C++ fields as properties
A recent refactoring uncovered two places where we could end up
importing a C++ field declaration as a property more than once:

1. Importing the declaration context of a field in C++ mode can then
  go import all of the fields. In such a case, check that the field
  we're importing didn't happen already, and bail out early if it did.
  This is common practice in the Clang importer but wasn't happening here.
2. One caller to the function that imported a field from a C++ base
  class into its inheriting class (as a computed property) wasn't
  checking the cache, and therefore created a redundant version.

Fix both issues.
2023-06-03 10:03:10 -07:00

6906 lines
254 KiB
C++

//===--- ClangImporter.cpp - Import Clang Modules -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for loading Clang modules into Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/ClangImporter/ClangImporter.h"
#include "CFTypeInfo.h"
#include "ClangDerivedConformances.h"
#include "ClangDiagnosticConsumer.h"
#include "ClangIncludePaths.h"
#include "ImporterImpl.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/ConcreteDeclRef.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/ParseVersion.h"
#include "swift/Parse/Parser.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Mangle.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/ObjectFilePCHContainerOperations.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/Utils.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Parse/Parser.h"
#include "clang/Rewrite/Frontend/FrontendActions.h"
#include "clang/Rewrite/Frontend/Rewriters.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTWriter.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/FileCollector.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/VirtualOutputBackend.h"
#include "llvm/Support/YAMLParser.h"
#include <algorithm>
#include <memory>
#include <string>
using namespace swift;
using namespace importer;
// Commonly-used Clang classes.
using clang::CompilerInstance;
using clang::CompilerInvocation;
#pragma mark Internal data structures
namespace {
class HeaderImportCallbacks : public clang::PPCallbacks {
ClangImporter::Implementation &Impl;
public:
HeaderImportCallbacks(ClangImporter::Implementation &impl)
: Impl(impl) {}
void handleImport(const clang::Module *imported) {
if (!imported)
return;
Impl.ImportedHeaderExports.push_back(
const_cast<clang::Module *>(imported));
}
void InclusionDirective(clang::SourceLocation HashLoc,
const clang::Token &IncludeTok,
StringRef FileName,
bool IsAngled,
clang::CharSourceRange FilenameRange,
Optional<clang::FileEntryRef> File,
StringRef SearchPath,
StringRef RelativePath,
const clang::Module *Imported,
clang::SrcMgr::CharacteristicKind FileType) override {
handleImport(Imported);
}
void moduleImport(clang::SourceLocation ImportLoc,
clang::ModuleIdPath Path,
const clang::Module *Imported) override {
handleImport(Imported);
}
};
class PCHDeserializationCallbacks : public clang::ASTDeserializationListener {
ClangImporter::Implementation &Impl;
public:
explicit PCHDeserializationCallbacks(ClangImporter::Implementation &impl)
: Impl(impl) {}
void ModuleImportRead(clang::serialization::SubmoduleID ID,
clang::SourceLocation ImportLoc) override {
if (Impl.IsReadingBridgingPCH) {
Impl.PCHImportedSubmodules.push_back(ID);
}
}
};
class HeaderParsingASTConsumer : public clang::ASTConsumer {
SmallVector<clang::DeclGroupRef, 4> DeclGroups;
PCHDeserializationCallbacks PCHCallbacks;
public:
explicit HeaderParsingASTConsumer(ClangImporter::Implementation &impl)
: PCHCallbacks(impl) {}
void
HandleTopLevelDeclInObjCContainer(clang::DeclGroupRef decls) override {
DeclGroups.push_back(decls);
}
ArrayRef<clang::DeclGroupRef> getAdditionalParsedDecls() {
return DeclGroups;
}
clang::ASTDeserializationListener *GetASTDeserializationListener() override {
return &PCHCallbacks;
}
void reset() {
DeclGroups.clear();
}
};
class ParsingAction : public clang::ASTFrontendAction {
ASTContext &Ctx;
ClangImporter &Importer;
ClangImporter::Implementation &Impl;
const ClangImporterOptions &ImporterOpts;
std::string SwiftPCHHash;
public:
explicit ParsingAction(ASTContext &ctx,
ClangImporter &importer,
ClangImporter::Implementation &impl,
const ClangImporterOptions &importerOpts,
std::string swiftPCHHash)
: Ctx(ctx), Importer(importer), Impl(impl), ImporterOpts(importerOpts),
SwiftPCHHash(swiftPCHHash) {}
std::unique_ptr<clang::ASTConsumer>
CreateASTConsumer(clang::CompilerInstance &CI, StringRef InFile) override {
return std::make_unique<HeaderParsingASTConsumer>(Impl);
}
bool BeginSourceFileAction(clang::CompilerInstance &CI) override {
// Prefer frameworks over plain headers.
// We add search paths here instead of when building the initial invocation
// so that (a) we use the same code as search paths for imported modules,
// and (b) search paths are always added after -Xcc options.
SearchPathOptions &searchPathOpts = Ctx.SearchPathOpts;
for (const auto &framepath : searchPathOpts.getFrameworkSearchPaths()) {
Importer.addSearchPath(framepath.Path, /*isFramework*/true,
framepath.IsSystem);
}
for (const auto &path : searchPathOpts.getImportSearchPaths()) {
Importer.addSearchPath(path, /*isFramework*/false, /*isSystem=*/false);
}
auto PCH =
Importer.getOrCreatePCH(ImporterOpts, SwiftPCHHash, /*Cached=*/true);
if (PCH.has_value()) {
Impl.getClangInstance()->getPreprocessorOpts().ImplicitPCHInclude =
PCH.value();
Impl.IsReadingBridgingPCH = true;
Impl.setSinglePCHImport(PCH.value());
}
return true;
}
};
class StdStringMemBuffer : public llvm::MemoryBuffer {
const std::string storage;
const std::string name;
public:
StdStringMemBuffer(std::string &&source, StringRef name)
: storage(std::move(source)), name(name.str()) {
init(storage.data(), storage.data() + storage.size(),
/*null-terminated=*/true);
}
StringRef getBufferIdentifier() const override {
return name;
}
BufferKind getBufferKind() const override {
return MemoryBuffer_Malloc;
}
};
class ZeroFilledMemoryBuffer : public llvm::MemoryBuffer {
const std::string name;
public:
explicit ZeroFilledMemoryBuffer(size_t size, StringRef name)
: name(name.str()) {
assert(size > 0);
std::error_code error;
llvm::sys::MemoryBlock memory =
llvm::sys::Memory::allocateMappedMemory(size, nullptr,
llvm::sys::Memory::MF_READ,
error);
assert(!error && "failed to allocated read-only zero-filled memory");
init(static_cast<char *>(memory.base()),
static_cast<char *>(memory.base()) + memory.allocatedSize() - 1,
/*null-terminated*/true);
}
~ZeroFilledMemoryBuffer() override {
llvm::sys::MemoryBlock memory{const_cast<char *>(getBufferStart()),
getBufferSize()};
std::error_code error = llvm::sys::Memory::releaseMappedMemory(memory);
assert(!error && "failed to deallocate read-only zero-filled memory");
(void)error;
}
ZeroFilledMemoryBuffer(const ZeroFilledMemoryBuffer &) = delete;
ZeroFilledMemoryBuffer(ZeroFilledMemoryBuffer &&) = delete;
void operator=(const ZeroFilledMemoryBuffer &) = delete;
void operator=(ZeroFilledMemoryBuffer &&) = delete;
StringRef getBufferIdentifier() const override {
return name;
}
BufferKind getBufferKind() const override {
return MemoryBuffer_MMap;
}
};
} // end anonymous namespace
namespace {
class BridgingPPTracker : public clang::PPCallbacks {
ClangImporter::Implementation &Impl;
public:
BridgingPPTracker(ClangImporter::Implementation &Impl)
: Impl(Impl) {}
private:
static unsigned getNumModuleIdentifiers(const clang::Module *Mod) {
unsigned Result = 1;
while (Mod->Parent) {
Mod = Mod->Parent;
++Result;
}
return Result;
}
void InclusionDirective(clang::SourceLocation HashLoc,
const clang::Token &IncludeTok,
StringRef FileName,
bool IsAngled,
clang::CharSourceRange FilenameRange,
Optional<clang::FileEntryRef> File,
StringRef SearchPath,
StringRef RelativePath,
const clang::Module *Imported,
clang::SrcMgr::CharacteristicKind FileType) override{
if (!Imported) {
if (File)
Impl.BridgeHeaderFiles.insert(*File);
return;
}
// Synthesize identifier locations.
SmallVector<clang::SourceLocation, 4> IdLocs;
for (unsigned I = 0, E = getNumModuleIdentifiers(Imported); I != E; ++I)
IdLocs.push_back(HashLoc);
handleImport(HashLoc, IdLocs, Imported);
}
void moduleImport(clang::SourceLocation ImportLoc,
clang::ModuleIdPath Path,
const clang::Module *Imported) override {
if (!Imported)
return;
SmallVector<clang::SourceLocation, 4> IdLocs;
for (auto &P : Path)
IdLocs.push_back(P.second);
handleImport(ImportLoc, IdLocs, Imported);
}
void handleImport(clang::SourceLocation ImportLoc,
ArrayRef<clang::SourceLocation> IdLocs,
const clang::Module *Imported) {
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
clang::ImportDecl *ClangImport = clang::ImportDecl::Create(ClangCtx,
ClangCtx.getTranslationUnitDecl(),
ImportLoc,
const_cast<clang::Module*>(Imported),
IdLocs);
Impl.BridgeHeaderTopLevelImports.push_back(ClangImport);
}
void MacroDefined(const clang::Token &MacroNameTok,
const clang::MacroDirective *MD) override {
Impl.BridgeHeaderMacros.push_back(MacroNameTok.getIdentifierInfo());
}
};
class ClangImporterDependencyCollector : public clang::DependencyCollector
{
llvm::StringSet<> ExcludedPaths;
/// The FileCollector is used by LLDB to generate reproducers. It's not used
/// by Swift to track dependencies.
std::shared_ptr<llvm::FileCollectorBase> FileCollector;
const IntermoduleDepTrackingMode Mode;
public:
ClangImporterDependencyCollector(
IntermoduleDepTrackingMode Mode,
std::shared_ptr<llvm::FileCollectorBase> FileCollector)
: FileCollector(FileCollector), Mode(Mode) {}
void excludePath(StringRef filename) {
ExcludedPaths.insert(filename);
}
bool isClangImporterSpecialName(StringRef Filename) {
using ImporterImpl = ClangImporter::Implementation;
return (Filename == ImporterImpl::moduleImportBufferName
|| Filename == ImporterImpl::bridgingHeaderBufferName);
}
bool needSystemDependencies() override {
return Mode == IntermoduleDepTrackingMode::IncludeSystem;
}
bool sawDependency(StringRef Filename, bool FromClangModule,
bool IsSystem, bool IsClangModuleFile,
bool IsMissing) override {
if (!clang::DependencyCollector::sawDependency(Filename, FromClangModule,
IsSystem, IsClangModuleFile,
IsMissing))
return false;
// Currently preserving older ClangImporter behavior of ignoring .pcm
// file dependencies, but possibly revisit?
if (IsClangModuleFile
|| isClangImporterSpecialName(Filename)
|| ExcludedPaths.count(Filename))
return false;
return true;
}
void maybeAddDependency(StringRef Filename, bool FromModule, bool IsSystem,
bool IsModuleFile, bool IsMissing) override {
if (FileCollector)
FileCollector->addFile(Filename);
clang::DependencyCollector::maybeAddDependency(
Filename, FromModule, IsSystem, IsModuleFile, IsMissing);
}
};
} // end anonymous namespace
std::shared_ptr<clang::DependencyCollector>
ClangImporter::createDependencyCollector(
IntermoduleDepTrackingMode Mode,
std::shared_ptr<llvm::FileCollectorBase> FileCollector) {
return std::make_shared<ClangImporterDependencyCollector>(Mode,
FileCollector);
}
bool ClangImporter::isKnownCFTypeName(llvm::StringRef name) {
return CFPointeeInfo::isKnownCFTypeName(name);
}
void ClangImporter::Implementation::addBridgeHeaderTopLevelDecls(
clang::Decl *D) {
if (shouldIgnoreBridgeHeaderTopLevelDecl(D))
return;
BridgeHeaderTopLevelDecls.push_back(D);
}
bool importer::isForwardDeclOfType(const clang::Decl *D) {
if (auto *ID = dyn_cast<clang::ObjCInterfaceDecl>(D)) {
if (!ID->isThisDeclarationADefinition())
return true;
} else if (auto PD = dyn_cast<clang::ObjCProtocolDecl>(D)) {
if (!PD->isThisDeclarationADefinition())
return true;
} else if (auto TD = dyn_cast<clang::TagDecl>(D)) {
if (!TD->isThisDeclarationADefinition())
return true;
}
return false;
}
bool ClangImporter::Implementation::shouldIgnoreBridgeHeaderTopLevelDecl(
clang::Decl *D) {
return importer::isForwardDeclOfType(D);
}
ClangImporter::ClangImporter(ASTContext &ctx,
DependencyTracker *tracker,
DWARFImporterDelegate *dwarfImporterDelegate)
: ClangModuleLoader(tracker),
Impl(*new Implementation(ctx, dwarfImporterDelegate)) {
}
ClangImporter::~ClangImporter() {
delete &Impl;
}
#pragma mark Module loading
static bool clangSupportsPragmaAttributeWithSwiftAttr() {
clang::AttributeCommonInfo swiftAttrInfo(clang::SourceRange(),
clang::AttributeCommonInfo::AT_SwiftAttr,
clang::AttributeCommonInfo::AS_GNU);
auto swiftAttrParsedInfo = clang::ParsedAttrInfo::get(swiftAttrInfo);
return swiftAttrParsedInfo.IsSupportedByPragmaAttribute;
}
static inline bool isPCHFilenameExtension(StringRef path) {
return llvm::sys::path::extension(path)
.endswith(file_types::getExtension(file_types::TY_PCH));
}
void
importer::getNormalInvocationArguments(
std::vector<std::string> &invocationArgStrs,
ASTContext &ctx) {
const auto &LangOpts = ctx.LangOpts;
const llvm::Triple &triple = LangOpts.Target;
SearchPathOptions &searchPathOpts = ctx.SearchPathOpts;
ClangImporterOptions &importerOpts = ctx.ClangImporterOpts;
auto languageVersion = ctx.LangOpts.EffectiveLanguageVersion;
if (isPCHFilenameExtension(importerOpts.BridgingHeader)) {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-include-pch", importerOpts.BridgingHeader
});
}
// If there are no shims in the resource dir, add a search path in the SDK.
SmallString<128> shimsPath(searchPathOpts.RuntimeResourcePath);
llvm::sys::path::append(shimsPath, "shims");
if (!llvm::sys::fs::exists(shimsPath)) {
shimsPath = searchPathOpts.getSDKPath();
llvm::sys::path::append(shimsPath, "usr", "lib", "swift", "shims");
invocationArgStrs.insert(invocationArgStrs.end(),
{"-isystem", std::string(shimsPath.str())});
}
// Construct the invocation arguments for the current target.
// Add target-independent options first.
invocationArgStrs.insert(invocationArgStrs.end(), {
// Don't emit LLVM IR.
"-fsyntax-only",
// Enable block support.
"-fblocks",
languageVersion.preprocessorDefinition("__swift__", {10000, 100, 1}),
"-fretain-comments-from-system-headers",
"-isystem", searchPathOpts.RuntimeResourcePath,
});
// Enable Position Independence. `-fPIC` is not supported on Windows, which
// is implicitly position independent.
if (!triple.isOSWindows())
invocationArgStrs.insert(invocationArgStrs.end(), {"-fPIC"});
// Enable modules.
invocationArgStrs.insert(invocationArgStrs.end(), {
"-fmodules",
"-Xclang", "-fmodule-feature", "-Xclang", "swift"
});
bool EnableCXXInterop = LangOpts.EnableCXXInterop;
if (LangOpts.EnableObjCInterop) {
invocationArgStrs.insert(invocationArgStrs.end(), {"-fobjc-arc"});
// TODO: Investigate whether 7.0 is a suitable default version.
if (!triple.isOSDarwin())
invocationArgStrs.insert(invocationArgStrs.end(),
{"-fobjc-runtime=ios-7.0"});
invocationArgStrs.insert(invocationArgStrs.end(), {
"-x", EnableCXXInterop ? "objective-c++" : "objective-c",
});
} else {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-x", EnableCXXInterop ? "c++" : "c",
});
}
{
const clang::LangStandard &stdcxx =
#if defined(CLANG_DEFAULT_STD_CXX)
*clang::LangStandard::getLangStandardForName(CLANG_DEFAULT_STD_CXX);
#else
clang::LangStandard::getLangStandardForKind(
clang::LangStandard::lang_gnucxx14);
#endif
const clang::LangStandard &stdc =
#if defined(CLANG_DEFAULT_STD_C)
*clang::LangStandard::getLangStandardForName(CLANG_DEFAULT_STD_C);
#else
clang::LangStandard::getLangStandardForKind(
clang::LangStandard::lang_gnu11);
#endif
invocationArgStrs.insert(invocationArgStrs.end(), {
(Twine("-std=") + StringRef(EnableCXXInterop ? stdcxx.getName()
: stdc.getName())).str()
});
}
if (LangOpts.EnableCXXInterop) {
if (auto path = getCxxShimModuleMapPath(searchPathOpts, triple)) {
invocationArgStrs.push_back((Twine("-fmodule-map-file=") + *path).str());
}
}
// Set C language options.
if (triple.isOSDarwin()) {
invocationArgStrs.insert(invocationArgStrs.end(), {
// Avoid including the iso646.h header because some headers from OS X
// frameworks are broken by it.
"-D_ISO646_H_", "-D__ISO646_H",
// Request new APIs from AppKit.
"-DSWIFT_SDK_OVERLAY_APPKIT_EPOCH=2",
// Request new APIs from Foundation.
"-DSWIFT_SDK_OVERLAY_FOUNDATION_EPOCH=8",
// Request new APIs from SceneKit.
"-DSWIFT_SDK_OVERLAY2_SCENEKIT_EPOCH=3",
// Request new APIs from GameplayKit.
"-DSWIFT_SDK_OVERLAY_GAMEPLAYKIT_EPOCH=1",
// Request new APIs from SpriteKit.
"-DSWIFT_SDK_OVERLAY_SPRITEKIT_EPOCH=1",
// Request new APIs from CoreImage.
"-DSWIFT_SDK_OVERLAY_COREIMAGE_EPOCH=2",
// Request new APIs from libdispatch.
"-DSWIFT_SDK_OVERLAY_DISPATCH_EPOCH=2",
// Request new APIs from libpthread
"-DSWIFT_SDK_OVERLAY_PTHREAD_EPOCH=1",
// Request new APIs from CoreGraphics.
"-DSWIFT_SDK_OVERLAY_COREGRAPHICS_EPOCH=0",
// Request new APIs from UIKit.
"-DSWIFT_SDK_OVERLAY_UIKIT_EPOCH=2",
// Backwards compatibility for headers that were checking this instead of
// '__swift__'.
"-DSWIFT_CLASS_EXTRA=",
});
// Indicate that using '__attribute__((swift_attr))' with '@Sendable' and
// '@_nonSendable' on Clang declarations is fully supported, including the
// 'attribute push' pragma.
if (clangSupportsPragmaAttributeWithSwiftAttr())
invocationArgStrs.push_back( "-D__SWIFT_ATTR_SUPPORTS_SENDABLE_DECLS=1");
// Get the version of this compiler and pass it to C/Objective-C
// declarations.
auto V = version::getCurrentCompilerVersion();
if (!V.empty()) {
// Note: Prior to Swift 5.7, the "Y" version component was omitted and the
// "X" component resided in its digits.
invocationArgStrs.insert(invocationArgStrs.end(), {
V.preprocessorDefinition("__SWIFT_COMPILER_VERSION",
{1000000000000, // X
1000000000, // Y
1000000, // Z
1000, // a
1}), // b
});
}
} else {
// Ideally we should turn this on for all Glibc targets that are actually
// using Glibc or a libc that respects that flag. This will cause some
// source breakage however (specifically with strerror_r()) on Linux
// without a workaround.
if (triple.isOSFuchsia() || triple.isAndroid()) {
// Many of the modern libc features are hidden behind feature macros like
// _GNU_SOURCE or _XOPEN_SOURCE.
invocationArgStrs.insert(invocationArgStrs.end(), {
"-D_GNU_SOURCE",
});
}
if (triple.isOSWindows()) {
switch (triple.getArch()) {
default: llvm_unreachable("unsupported Windows architecture");
case llvm::Triple::arm:
case llvm::Triple::thumb:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_ARM_"});
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_ARM64_"});
break;
case llvm::Triple::x86:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_X86_"});
break;
case llvm::Triple::x86_64:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_AMD64_"});
break;
}
}
}
if (searchPathOpts.getSDKPath().empty()) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back("-nostdsysteminc");
} else {
if (triple.isWindowsMSVCEnvironment()) {
llvm::SmallString<261> path; // MAX_PATH + 1
path = searchPathOpts.getSDKPath();
llvm::sys::path::append(path, "usr", "include");
llvm::sys::path::native(path);
invocationArgStrs.push_back("-isystem");
invocationArgStrs.push_back(std::string(path.str()));
} else {
// On Darwin, Clang uses -isysroot to specify the include
// system root. On other targets, it seems to use --sysroot.
invocationArgStrs.push_back(triple.isOSDarwin() ? "-isysroot"
: "--sysroot");
invocationArgStrs.push_back(searchPathOpts.getSDKPath().str());
}
}
const std::string &moduleCachePath = importerOpts.ModuleCachePath;
if (!moduleCachePath.empty() && !importerOpts.DisableImplicitClangModules) {
invocationArgStrs.push_back("-fmodules-cache-path=");
invocationArgStrs.back().append(moduleCachePath);
}
if (importerOpts.DisableImplicitClangModules) {
invocationArgStrs.push_back("-fno-implicit-modules");
invocationArgStrs.push_back("-fno-implicit-module-maps");
}
if (ctx.SearchPathOpts.DisableModulesValidateSystemDependencies) {
invocationArgStrs.push_back("-fno-modules-validate-system-headers");
} else {
invocationArgStrs.push_back("-fmodules-validate-system-headers");
}
if (importerOpts.DetailedPreprocessingRecord) {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-Xclang", "-detailed-preprocessing-record",
"-Xclang", "-fmodule-format=raw",
});
} else {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-Xclang", "-fmodule-format=obj",
});
}
// Enable API notes alongside headers/in frameworks.
invocationArgStrs.push_back("-fapinotes-modules");
invocationArgStrs.push_back("-fapinotes-swift-version=" +
languageVersion.asAPINotesVersionString());
invocationArgStrs.push_back("-iapinotes-modules");
invocationArgStrs.push_back((llvm::Twine(searchPathOpts.RuntimeResourcePath) +
llvm::sys::path::get_separator() +
"apinotes").str());
}
static void
getEmbedBitcodeInvocationArguments(std::vector<std::string> &invocationArgStrs,
ASTContext &ctx) {
invocationArgStrs.insert(invocationArgStrs.end(), {
// Backend mode.
"-fembed-bitcode",
// ...but Clang isn't doing the emission.
"-fsyntax-only",
"-x", "ir",
});
}
void
importer::addCommonInvocationArguments(
std::vector<std::string> &invocationArgStrs,
ASTContext &ctx, bool ignoreClangTarget) {
using ImporterImpl = ClangImporter::Implementation;
llvm::Triple triple = ctx.LangOpts.Target;
// Use clang specific target triple if given.
if (ctx.LangOpts.ClangTarget.has_value() && !ignoreClangTarget) {
triple = ctx.LangOpts.ClangTarget.value();
}
SearchPathOptions &searchPathOpts = ctx.SearchPathOpts;
const ClangImporterOptions &importerOpts = ctx.ClangImporterOpts;
invocationArgStrs.push_back("-target");
invocationArgStrs.push_back(triple.str());
if (ctx.LangOpts.SDKVersion) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back(
"-target-sdk-version=" + ctx.LangOpts.SDKVersion->getAsString());
}
invocationArgStrs.push_back(ImporterImpl::moduleImportBufferName);
if (ctx.LangOpts.EnableAppExtensionRestrictions) {
invocationArgStrs.push_back("-fapplication-extension");
}
if (!importerOpts.TargetCPU.empty()) {
invocationArgStrs.push_back("-mcpu=" + importerOpts.TargetCPU);
} else if (triple.isOSDarwin()) {
// Special case CPU based on known deployments:
// - arm64 deploys to apple-a7
// - arm64 on macOS
// - arm64 for iOS/tvOS/watchOS simulators
// - arm64e deploys to apple-a12
// and arm64e (everywhere) and arm64e macOS defaults to the "apple-a12" CPU
// for Darwin, but Clang only detects this if we use -arch.
if (triple.getArchName() == "arm64e")
invocationArgStrs.push_back("-mcpu=apple-a12");
else if (triple.isAArch64() && triple.isMacOSX())
invocationArgStrs.push_back("-mcpu=apple-a12");
else if (triple.isAArch64() && triple.isSimulatorEnvironment() &&
(triple.isiOS() || triple.isWatchOS()))
invocationArgStrs.push_back("-mcpu=apple-a12");
else if (triple.getArch() == llvm::Triple::aarch64 ||
triple.getArch() == llvm::Triple::aarch64_32 ||
triple.getArch() == llvm::Triple::aarch64_be) {
invocationArgStrs.push_back("-mcpu=apple-a7");
}
} else if (triple.getArch() == llvm::Triple::systemz) {
invocationArgStrs.push_back("-march=z13");
}
if (triple.getArch() == llvm::Triple::x86_64) {
// Enable double wide atomic intrinsics on every x86_64 target.
// (This is the default on Darwin, but not so on other platforms.)
invocationArgStrs.push_back("-mcx16");
}
if (llvm::Optional<StringRef> R = ctx.SearchPathOpts.getWinSDKRoot()) {
invocationArgStrs.emplace_back("-Xmicrosoft-windows-sdk-root");
invocationArgStrs.emplace_back(*R);
}
if (llvm::Optional<StringRef> V = ctx.SearchPathOpts.getWinSDKVersion()) {
invocationArgStrs.emplace_back("-Xmicrosoft-windows-sdk-version");
invocationArgStrs.emplace_back(*V);
}
if (llvm::Optional<StringRef> R = ctx.SearchPathOpts.getVCToolsRoot()) {
invocationArgStrs.emplace_back("-Xmicrosoft-visualc-tools-root");
invocationArgStrs.emplace_back(*R);
}
if (llvm::Optional<StringRef> V = ctx.SearchPathOpts.getVCToolsVersion()) {
invocationArgStrs.emplace_back("-Xmicrosoft-visualc-tools-version");
invocationArgStrs.emplace_back(*V);
}
if (!importerOpts.Optimization.empty()) {
invocationArgStrs.push_back(importerOpts.Optimization);
}
const std::string &overrideResourceDir = importerOpts.OverrideResourceDir;
if (overrideResourceDir.empty()) {
llvm::SmallString<128> resourceDir(searchPathOpts.RuntimeResourcePath);
// Adjust the path to refer to our copy of the Clang resource directory
// under 'lib/swift/clang', which is either a real resource directory or a
// symlink to one inside of a full Clang installation.
//
// The rationale for looking under the Swift resource directory and not
// assuming that the Clang resource directory is located next to it is that
// Swift, when installed separately, should not need to install files in
// directories that are not "owned" by it.
llvm::sys::path::append(resourceDir, "clang");
// Set the Clang resource directory to the path we computed.
invocationArgStrs.push_back("-resource-dir");
invocationArgStrs.push_back(std::string(resourceDir.str()));
} else {
invocationArgStrs.push_back("-resource-dir");
invocationArgStrs.push_back(overrideResourceDir);
}
if (!importerOpts.IndexStorePath.empty()) {
invocationArgStrs.push_back("-index-store-path");
invocationArgStrs.push_back(importerOpts.IndexStorePath);
}
invocationArgStrs.push_back("-fansi-escape-codes");
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back("-no-opaque-pointers");
if (importerOpts.ValidateModulesOnce) {
invocationArgStrs.push_back("-fmodules-validate-once-per-build-session");
invocationArgStrs.push_back("-fbuild-session-file=" + importerOpts.BuildSessionFilePath);
}
for (auto extraArg : importerOpts.ExtraArgs) {
invocationArgStrs.push_back(extraArg);
}
}
bool ClangImporter::canReadPCH(StringRef PCHFilename) {
if (!llvm::sys::fs::exists(PCHFilename))
return false;
// FIXME: The following attempts to do an initial ReadAST invocation to verify
// the PCH, without causing trouble for the existing CompilerInstance.
// Look into combining creating the ASTReader along with verification + update
// if necessary, so that we can create and use one ASTReader in the common case
// when there is no need for update.
clang::CompilerInstance CI(Impl.Instance->getPCHContainerOperations(),
&Impl.Instance->getModuleCache());
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
invocation->getPreprocessorOpts().DisablePCHOrModuleValidation =
clang::DisableValidationForModuleKind::None;
invocation->getHeaderSearchOpts().ModulesValidateSystemHeaders = true;
invocation->getLangOpts()->NeededByPCHOrCompilationUsesPCH = true;
invocation->getLangOpts()->CacheGeneratedPCH = true;
// If the underlying invocation is allowing PCH errors, then it "can be read",
// even if it has its error bit set. Thus, don't override
// `AllowPCHWithCompilerErrors`.
// ClangImporter::create adds a remapped MemoryBuffer that we don't need
// here. Moreover, it's a raw pointer owned by the preprocessor options; if
// we don't clear the range then both the original and new CompilerInvocation
// will try to free it.
invocation->getPreprocessorOpts().RemappedFileBuffers.clear();
CI.setInvocation(std::move(invocation));
CI.setTarget(&Impl.Instance->getTarget());
CI.setDiagnostics(
&*clang::CompilerInstance::createDiagnostics(new clang::DiagnosticOptions()));
// Note: Reusing the file manager is safe; this is a component that's already
// reused when building PCM files for the module cache.
CI.createSourceManager(Impl.Instance->getFileManager());
auto &clangSrcMgr = CI.getSourceManager();
auto FID = clangSrcMgr.createFileID(
std::make_unique<ZeroFilledMemoryBuffer>(1, "<main>"));
clangSrcMgr.setMainFileID(FID);
auto &diagConsumer = CI.getDiagnosticClient();
diagConsumer.BeginSourceFile(CI.getLangOpts());
SWIFT_DEFER {
diagConsumer.EndSourceFile();
};
// Pass in TU_Complete, which is the default mode for the Preprocessor
// constructor and the right one for reading a PCH.
CI.createPreprocessor(clang::TU_Complete);
CI.createASTContext();
CI.createASTReader();
clang::ASTReader &Reader = *CI.getASTReader();
auto failureCapabilities =
clang::ASTReader::ARR_Missing |
clang::ASTReader::ARR_OutOfDate |
clang::ASTReader::ARR_VersionMismatch;
auto result = Reader.ReadAST(PCHFilename, clang::serialization::MK_PCH,
clang::SourceLocation(), failureCapabilities);
switch (result) {
case clang::ASTReader::Success:
return true;
case clang::ASTReader::Failure:
case clang::ASTReader::Missing:
case clang::ASTReader::OutOfDate:
case clang::ASTReader::VersionMismatch:
return false;
case clang::ASTReader::ConfigurationMismatch:
case clang::ASTReader::HadErrors:
assert(0 && "unexpected ASTReader failure for PCH validation");
return false;
}
llvm_unreachable("unhandled result");
}
std::string ClangImporter::getOriginalSourceFile(StringRef PCHFilename) {
return clang::ASTReader::getOriginalSourceFile(
PCHFilename.str(), Impl.Instance->getFileManager(),
Impl.Instance->getPCHContainerReader(), Impl.Instance->getDiagnostics());
}
Optional<std::string>
ClangImporter::getPCHFilename(const ClangImporterOptions &ImporterOptions,
StringRef SwiftPCHHash, bool &isExplicit) {
if (isPCHFilenameExtension(ImporterOptions.BridgingHeader)) {
isExplicit = true;
return ImporterOptions.BridgingHeader;
}
isExplicit = false;
const auto &BridgingHeader = ImporterOptions.BridgingHeader;
const auto &PCHOutputDir = ImporterOptions.PrecompiledHeaderOutputDir;
if (SwiftPCHHash.empty() || BridgingHeader.empty() || PCHOutputDir.empty()) {
return None;
}
SmallString<256> PCHBasename { llvm::sys::path::filename(BridgingHeader) };
llvm::sys::path::replace_extension(PCHBasename, "");
PCHBasename.append("-swift_");
PCHBasename.append(SwiftPCHHash);
PCHBasename.append("-clang_");
PCHBasename.append(getClangModuleHash());
PCHBasename.append(".pch");
SmallString<256> PCHFilename { PCHOutputDir };
llvm::sys::path::append(PCHFilename, PCHBasename);
return PCHFilename.str().str();
}
Optional<std::string>
ClangImporter::getOrCreatePCH(const ClangImporterOptions &ImporterOptions,
StringRef SwiftPCHHash, bool Cached) {
bool isExplicit;
auto PCHFilename = getPCHFilename(ImporterOptions, SwiftPCHHash,
isExplicit);
if (!PCHFilename.has_value()) {
return None;
}
if (!isExplicit && !ImporterOptions.PCHDisableValidation &&
!canReadPCH(PCHFilename.value())) {
StringRef parentDir = llvm::sys::path::parent_path(PCHFilename.value());
std::error_code EC = llvm::sys::fs::create_directories(parentDir);
if (EC) {
llvm::errs() << "failed to create directory '" << parentDir << "': "
<< EC.message();
return None;
}
auto FailedToEmit = emitBridgingPCH(ImporterOptions.BridgingHeader,
PCHFilename.value(), Cached);
if (FailedToEmit) {
return None;
}
}
return PCHFilename.value();
}
std::vector<std::string>
ClangImporter::getClangArguments(ASTContext &ctx, bool ignoreClangTarget) {
std::vector<std::string> invocationArgStrs;
// When creating from driver commands, clang expects this to be like an actual
// command line. So we need to pass in "clang" for argv[0]
if (!ctx.ClangImporterOpts.DirectClangCC1ModuleBuild)
invocationArgStrs.push_back(ctx.ClangImporterOpts.clangPath);
if (ctx.ClangImporterOpts.ExtraArgsOnly) {
invocationArgStrs.insert(invocationArgStrs.end(),
ctx.ClangImporterOpts.ExtraArgs.begin(),
ctx.ClangImporterOpts.ExtraArgs.end());
return invocationArgStrs;
}
switch (ctx.ClangImporterOpts.Mode) {
case ClangImporterOptions::Modes::Normal:
case ClangImporterOptions::Modes::PrecompiledModule:
getNormalInvocationArguments(invocationArgStrs, ctx);
break;
case ClangImporterOptions::Modes::EmbedBitcode:
getEmbedBitcodeInvocationArguments(invocationArgStrs, ctx);
break;
}
addCommonInvocationArguments(invocationArgStrs, ctx, ignoreClangTarget);
return invocationArgStrs;
}
std::unique_ptr<clang::CompilerInvocation> ClangImporter::createClangInvocation(
ClangImporter *importer, const ClangImporterOptions &importerOpts,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
ArrayRef<std::string> invocationArgStrs,
std::vector<std::string> *CC1Args) {
std::vector<const char *> invocationArgs;
invocationArgs.reserve(invocationArgStrs.size());
for (auto &argStr : invocationArgStrs)
invocationArgs.push_back(argStr.c_str());
llvm::IntrusiveRefCntPtr<clang::DiagnosticsEngine> clangDiags;
std::unique_ptr<clang::CompilerInvocation> CI;
if (importerOpts.DirectClangCC1ModuleBuild) {
// In this mode, we bypass createInvocationFromCommandLine, which goes
// through the Clang driver, and use strictly cc1 arguments to instantiate a
// clang Instance directly, assuming that the set of '-Xcc <X>' frontend flags is
// fully sufficient to do so.
// Because we are bypassing the Clang driver, we must populate
// the diagnostic options here explicitly.
std::unique_ptr<clang::DiagnosticOptions> clangDiagOpts =
clang::CreateAndPopulateDiagOpts(invocationArgs);
auto *diagClient = new ClangDiagnosticConsumer(
importer->Impl, *clangDiagOpts, importerOpts.DumpClangDiagnostics);
clangDiags = clang::CompilerInstance::createDiagnostics(
clangDiagOpts.release(), diagClient,
/*owned*/ true);
// Finally, use the CC1 command-line and the diagnostic engine
// to instantiate our Invocation.
CI = std::make_unique<clang::CompilerInvocation>();
if (!clang::CompilerInvocation::CreateFromArgs(
*CI, invocationArgs, *clangDiags, invocationArgs[0]))
return nullptr;
} else {
// Set up a temporary diagnostic client to report errors from parsing the
// command line, which may be important for Swift clients if, for example,
// they're using -Xcc options. Unfortunately this diagnostic engine has to
// use the default options because the /actual/ options haven't been parsed
// yet.
//
// The long-term client for Clang diagnostics is set up below, after the
// clang::CompilerInstance is created.
llvm::IntrusiveRefCntPtr<clang::DiagnosticOptions> tempDiagOpts{
new clang::DiagnosticOptions};
auto *tempDiagClient = new ClangDiagnosticConsumer(
importer->Impl, *tempDiagOpts, importerOpts.DumpClangDiagnostics);
clangDiags = clang::CompilerInstance::createDiagnostics(tempDiagOpts.get(),
tempDiagClient,
/*owned*/ true);
clang::CreateInvocationOptions CIOpts;
CIOpts.VFS = VFS;
CIOpts.Diags = clangDiags;
CIOpts.RecoverOnError = false;
CIOpts.CC1Args = CC1Args;
CIOpts.ProbePrecompiled = true;
CI = clang::createInvocation(invocationArgs, std::move(CIOpts));
}
if (!CI) {
return CI;
}
// FIXME: clang fails to generate a module if there is a `-fmodule-map-file`
// argument pointing to a missing file.
// Such missing module files occur frequently in SourceKit. If the files are
// missing, SourceKit fails to build SwiftShims (which wouldn't have required
// the missing module file), thus fails to load the stdlib and hence looses
// all semantic functionality.
// To work around this issue, drop all `-fmodule-map-file` arguments pointing
// to missing files and report the error that clang would throw manually.
// rdar://77516546 is tracking that the clang importer should be more
// resilient and provide a module even if there were building it.
auto TempVFS = clang::createVFSFromCompilerInvocation(
*CI, *clangDiags,
VFS ? VFS : importer->Impl.SwiftContext.SourceMgr.getFileSystem());
std::vector<std::string> FilteredModuleMapFiles;
for (auto ModuleMapFile : CI->getFrontendOpts().ModuleMapFiles) {
if (TempVFS->exists(ModuleMapFile)) {
FilteredModuleMapFiles.push_back(ModuleMapFile);
} else {
importer->Impl.diagnose(SourceLoc(), diag::module_map_not_found,
ModuleMapFile);
}
}
CI->getFrontendOpts().ModuleMapFiles = FilteredModuleMapFiles;
return CI;
}
std::unique_ptr<ClangImporter>
ClangImporter::create(ASTContext &ctx,
std::string swiftPCHHash, DependencyTracker *tracker,
DWARFImporterDelegate *dwarfImporterDelegate) {
std::unique_ptr<ClangImporter> importer{
new ClangImporter(ctx, tracker, dwarfImporterDelegate)};
auto &importerOpts = ctx.ClangImporterOpts;
if (isPCHFilenameExtension(importerOpts.BridgingHeader)) {
importer->Impl.setSinglePCHImport(importerOpts.BridgingHeader);
importer->Impl.IsReadingBridgingPCH = true;
if (tracker) {
// Currently ignoring dependency on bridging .pch files because they are
// temporaries; if and when they are no longer temporaries, this condition
// should be removed.
auto &coll = static_cast<ClangImporterDependencyCollector &>(
*tracker->getClangCollector());
coll.excludePath(importerOpts.BridgingHeader);
}
}
auto fileMapping = getClangInvocationFileMapping(ctx);
// Wrap Swift's FS to allow Clang to override the working directory
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS =
llvm::vfs::RedirectingFileSystem::create(
fileMapping.redirectedFiles, true, *ctx.SourceMgr.getFileSystem());
if (!fileMapping.overridenFiles.empty()) {
llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> overridenVFS =
new llvm::vfs::InMemoryFileSystem();
for (const auto &file : fileMapping.overridenFiles) {
auto contents = ctx.Allocate<char>(file.second.size() + 1);
std::copy(file.second.begin(), file.second.end(), contents.begin());
// null terminate the buffer.
contents[contents.size() - 1] = '\0';
overridenVFS->addFile(file.first, 0,
llvm::MemoryBuffer::getMemBuffer(
StringRef(contents.begin(), contents.size() - 1)));
}
llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> overlayVFS =
new llvm::vfs::OverlayFileSystem(VFS);
VFS = overlayVFS;
overlayVFS->pushOverlay(overridenVFS);
}
// Create a new Clang compiler invocation.
{
importer->Impl.ClangArgs = getClangArguments(ctx);
ArrayRef<std::string> invocationArgStrs = importer->Impl.ClangArgs;
if (importerOpts.DumpClangDiagnostics) {
llvm::errs() << "'";
llvm::interleave(
invocationArgStrs, [](StringRef arg) { llvm::errs() << arg; },
[] { llvm::errs() << "' '"; });
llvm::errs() << "'\n";
}
importer->Impl.Invocation = createClangInvocation(
importer.get(), importerOpts, VFS, invocationArgStrs);
if (!importer->Impl.Invocation)
return nullptr;
}
{
// Create an almost-empty memory buffer.
auto sourceBuffer = llvm::MemoryBuffer::getMemBuffer(
"extern int __swift __attribute__((unavailable));",
Implementation::moduleImportBufferName);
clang::PreprocessorOptions &ppOpts =
importer->Impl.Invocation->getPreprocessorOpts();
ppOpts.addRemappedFile(Implementation::moduleImportBufferName,
sourceBuffer.release());
}
// Install a Clang module file extension to build Swift name lookup tables.
importer->Impl.Invocation->getFrontendOpts().ModuleFileExtensions.push_back(
std::make_shared<SwiftNameLookupExtension>(
importer->Impl.BridgingHeaderLookupTable,
importer->Impl.LookupTables, importer->Impl.SwiftContext,
importer->Impl.getBufferImporterForDiagnostics(),
importer->Impl.platformAvailability));
// Create a compiler instance.
{
// The Clang modules produced by ClangImporter are always embedded in an
// ObjectFilePCHContainer and contain -gmodules debug info.
importer->Impl.Invocation->getCodeGenOpts().DebugTypeExtRefs = true;
auto PCHContainerOperations =
std::make_shared<clang::PCHContainerOperations>();
PCHContainerOperations->registerWriter(
std::make_unique<clang::ObjectFilePCHContainerWriter>());
PCHContainerOperations->registerReader(
std::make_unique<clang::ObjectFilePCHContainerReader>());
importer->Impl.Instance.reset(
new clang::CompilerInstance(std::move(PCHContainerOperations)));
}
auto &instance = *importer->Impl.Instance;
instance.setInvocation(importer->Impl.Invocation);
if (tracker)
instance.addDependencyCollector(tracker->getClangCollector());
{
// Now set up the real client for Clang diagnostics---configured with proper
// options---as opposed to the temporary one we made above.
auto actualDiagClient = std::make_unique<ClangDiagnosticConsumer>(
importer->Impl, instance.getDiagnosticOpts(),
importerOpts.DumpClangDiagnostics);
instance.createDiagnostics(actualDiagClient.release());
}
// Set up the file manager.
{
VFS = clang::createVFSFromCompilerInvocation(
instance.getInvocation(), instance.getDiagnostics(), std::move(VFS));
instance.createFileManager(VFS);
}
// Don't stop emitting messages if we ever can't load a module.
// FIXME: This is actually a general problem: any "fatal" error could mess up
// the CompilerInvocation when we're not in "show diagnostics after fatal
// error" mode.
clang::DiagnosticsEngine &clangDiags = instance.getDiagnostics();
clangDiags.setSeverity(clang::diag::err_module_not_found,
clang::diag::Severity::Error,
clang::SourceLocation());
clangDiags.setSeverity(clang::diag::err_module_not_built,
clang::diag::Severity::Error,
clang::SourceLocation());
clangDiags.setFatalsAsError(ctx.Diags.getShowDiagnosticsAfterFatalError());
// Use Clang to configure/save options for Swift IRGen/CodeGen
if (ctx.LangOpts.ClangTarget.has_value()) {
// If '-clang-target' is set, create a mock invocation with the Swift triple
// to configure CodeGen and Target options for Swift compilation.
auto swiftTargetClangArgs = getClangArguments(ctx, true);
ArrayRef<std::string> invocationArgStrs = swiftTargetClangArgs;
auto swiftTargetClangInvocation = createClangInvocation(
importer.get(), importerOpts, VFS, invocationArgStrs);
if (!swiftTargetClangInvocation)
return nullptr;
importer->Impl.setSwiftTargetInfo(clang::TargetInfo::CreateTargetInfo(
clangDiags, swiftTargetClangInvocation->TargetOpts));
importer->Impl.setSwiftCodeGenOptions(new clang::CodeGenOptions(
swiftTargetClangInvocation->getCodeGenOpts()));
} else {
// Just use the existing Invocation's directly
importer->Impl.setSwiftTargetInfo(clang::TargetInfo::CreateTargetInfo(
clangDiags, importer->Impl.Invocation->TargetOpts));
importer->Impl.setSwiftCodeGenOptions(
new clang::CodeGenOptions(importer->Impl.Invocation->getCodeGenOpts()));
}
// Create the associated action.
importer->Impl.Action.reset(new ParsingAction(ctx, *importer,
importer->Impl,
importerOpts,
swiftPCHHash));
auto *action = importer->Impl.Action.get();
// Execute the action. We effectively inline most of
// CompilerInstance::ExecuteAction here, because we need to leave the AST
// open for future module loading.
// FIXME: This has to be cleaned up on the Clang side before we can improve
// things here.
// Create the target instance.
instance.setTarget(
clang::TargetInfo::CreateTargetInfo(clangDiags,
instance.getInvocation().TargetOpts));
if (!instance.hasTarget())
return nullptr;
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
instance.getTarget().adjust(clangDiags, instance.getLangOpts());
if (importerOpts.Mode == ClangImporterOptions::Modes::EmbedBitcode)
return importer;
// ClangImporter always sets this in Normal mode, so we need to make sure to
// set it before bailing out early when configuring ClangImporter for
// precompiled modules. This is not a benign langopt, so forgetting this (for
// example, if we combined the early exit below with the one above) would make
// the compiler instance used to emit PCMs incompatible with the one used to
// read them later.
instance.getLangOpts().NeededByPCHOrCompilationUsesPCH = true;
// Clang implicitly enables this by default in C++20 mode.
instance.getLangOpts().ModulesLocalVisibility = false;
if (importerOpts.Mode == ClangImporterOptions::Modes::PrecompiledModule)
return importer;
bool canBegin = action->BeginSourceFile(instance,
instance.getFrontendOpts().Inputs[0]);
if (!canBegin)
return nullptr; // there was an error related to the compiler arguments.
clang::Preprocessor &clangPP = instance.getPreprocessor();
clangPP.enableIncrementalProcessing();
// Setup Preprocessor callbacks before initialing the parser to make sure
// we catch implicit includes.
auto ppTracker = std::make_unique<BridgingPPTracker>(importer->Impl);
clangPP.addPPCallbacks(std::move(ppTracker));
instance.createASTReader();
// Manually run the action, so that the TU stays open for additional parsing.
instance.createSema(action->getTranslationUnitKind(), nullptr);
importer->Impl.Parser.reset(new clang::Parser(clangPP, instance.getSema(),
/*SkipFunctionBodies=*/false));
clangPP.EnterMainSourceFile();
importer->Impl.Parser->Initialize();
importer->Impl.nameImporter.reset(new NameImporter(
importer->Impl.SwiftContext, importer->Impl.platformAvailability,
importer->Impl.getClangSema()));
// FIXME: These decls are not being parsed correctly since (a) some of the
// callbacks are still being added, and (b) the logic to parse them has
// changed.
clang::Parser::DeclGroupPtrTy parsed;
clang::Sema::ModuleImportState importState =
clang::Sema::ModuleImportState::NotACXX20Module;
while (!importer->Impl.Parser->ParseTopLevelDecl(parsed, importState)) {
for (auto *D : parsed.get()) {
importer->Impl.addBridgeHeaderTopLevelDecls(D);
if (auto named = dyn_cast<clang::NamedDecl>(D)) {
addEntryToLookupTable(*importer->Impl.BridgingHeaderLookupTable, named,
*importer->Impl.nameImporter);
}
}
}
// FIXME: This is missing implicit includes.
auto *CB = new HeaderImportCallbacks(importer->Impl);
clangPP.addPPCallbacks(std::unique_ptr<clang::PPCallbacks>(CB));
// Create the selectors we'll be looking for.
auto &clangContext = importer->Impl.Instance->getASTContext();
importer->Impl.objectAtIndexedSubscript
= clangContext.Selectors.getUnarySelector(
&clangContext.Idents.get("objectAtIndexedSubscript"));
clang::IdentifierInfo *setObjectAtIndexedSubscriptIdents[2] = {
&clangContext.Idents.get("setObject"),
&clangContext.Idents.get("atIndexedSubscript")
};
importer->Impl.setObjectAtIndexedSubscript
= clangContext.Selectors.getSelector(2, setObjectAtIndexedSubscriptIdents);
importer->Impl.objectForKeyedSubscript
= clangContext.Selectors.getUnarySelector(
&clangContext.Idents.get("objectForKeyedSubscript"));
clang::IdentifierInfo *setObjectForKeyedSubscriptIdents[2] = {
&clangContext.Idents.get("setObject"),
&clangContext.Idents.get("forKeyedSubscript")
};
importer->Impl.setObjectForKeyedSubscript
= clangContext.Selectors.getSelector(2, setObjectForKeyedSubscriptIdents);
// Set up the imported header module.
auto *importedHeaderModule =
ModuleDecl::create(ctx.getIdentifier(CLANG_HEADER_MODULE_NAME), ctx);
importer->Impl.ImportedHeaderUnit =
new (ctx) ClangModuleUnit(*importedHeaderModule, importer->Impl, nullptr);
importedHeaderModule->addFile(*importer->Impl.ImportedHeaderUnit);
importedHeaderModule->setHasResolvedImports();
importer->Impl.IsReadingBridgingPCH = false;
return importer;
}
bool ClangImporter::addSearchPath(StringRef newSearchPath, bool isFramework,
bool isSystem) {
clang::FileManager &fileMgr = Impl.Instance->getFileManager();
auto optionalEntry = fileMgr.getOptionalDirectoryRef(newSearchPath);
if (!optionalEntry)
return true;
auto entry = *optionalEntry;
auto &headerSearchInfo = Impl.getClangPreprocessor().getHeaderSearchInfo();
auto exists = std::any_of(headerSearchInfo.search_dir_begin(),
headerSearchInfo.search_dir_end(),
[&](const clang::DirectoryLookup &lookup) -> bool {
if (isFramework)
return lookup.getFrameworkDir() == &entry.getDirEntry();
return lookup.getDir() == &entry.getDirEntry();
});
if (exists) {
// Don't bother adding a search path that's already there. Clang would have
// removed it via deduplication at the time the search path info gets built.
return false;
}
auto kind = isSystem ? clang::SrcMgr::C_System : clang::SrcMgr::C_User;
headerSearchInfo.AddSearchPath({entry, kind, isFramework},
/*isAngled=*/true);
// In addition to changing the current preprocessor directly, we still need
// to change the options structure for future module-building.
Impl.Instance->getHeaderSearchOpts().AddPath(newSearchPath,
isSystem ? clang::frontend::System : clang::frontend::Angled,
isFramework,
/*IgnoreSysRoot=*/true);
return false;
}
clang::SourceLocation
ClangImporter::Implementation::getNextIncludeLoc() {
clang::SourceManager &srcMgr = getClangInstance()->getSourceManager();
if (!DummyIncludeBuffer.isValid()) {
clang::SourceLocation includeLoc =
srcMgr.getLocForStartOfFile(srcMgr.getMainFileID());
// Picking the beginning of the main FileID as include location is also what
// the clang PCH mechanism is doing (see
// clang::ASTReader::getImportLocation()). Choose the next source location
// here to avoid having the exact same import location as the clang PCH.
// Otherwise, if we are using a PCH for bridging header, we'll have
// problems with source order comparisons of clang source locations not
// being deterministic.
includeLoc = includeLoc.getLocWithOffset(1);
DummyIncludeBuffer = srcMgr.createFileID(
std::make_unique<ZeroFilledMemoryBuffer>(
256*1024, StringRef(moduleImportBufferName)),
clang::SrcMgr::C_User, /*LoadedID*/0, /*LoadedOffset*/0, includeLoc);
}
clang::SourceLocation clangImportLoc =
srcMgr.getLocForStartOfFile(DummyIncludeBuffer)
.getLocWithOffset(IncludeCounter++);
assert(srcMgr.isInFileID(clangImportLoc, DummyIncludeBuffer) &&
"confused Clang's source manager with our fake locations");
return clangImportLoc;
}
bool ClangImporter::Implementation::importHeader(
ModuleDecl *adapter, StringRef headerName, SourceLoc diagLoc,
bool trackParsedSymbols,
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer,
bool implicitImport) {
// Don't even try to load the bridging header if the Clang AST is in a bad
// state. It could cause a crash.
auto &clangDiags = getClangASTContext().getDiagnostics();
if (clangDiags.hasUnrecoverableErrorOccurred() &&
!getClangInstance()->getPreprocessorOpts().AllowPCHWithCompilerErrors)
return true;
assert(adapter);
ImportedHeaderOwners.push_back(adapter);
bool hadError = clangDiags.hasErrorOccurred();
clang::SourceManager &sourceMgr = getClangInstance()->getSourceManager();
clang::FileID bufferID = sourceMgr.createFileID(std::move(sourceBuffer),
clang::SrcMgr::C_User,
/*LoadedID=*/0,
/*LoadedOffset=*/0,
getNextIncludeLoc());
auto &consumer =
static_cast<HeaderParsingASTConsumer &>(Instance->getASTConsumer());
consumer.reset();
clang::Preprocessor &pp = getClangPreprocessor();
pp.EnterSourceFile(bufferID, /*Dir=*/nullptr, /*Loc=*/{});
// Force the import to occur.
pp.LookAhead(0);
SmallVector<clang::DeclGroupRef, 16> allParsedDecls;
auto handleParsed = [&](clang::DeclGroupRef parsed) {
if (trackParsedSymbols) {
for (auto *D : parsed) {
addBridgeHeaderTopLevelDecls(D);
}
}
allParsedDecls.push_back(parsed);
};
clang::Parser::DeclGroupPtrTy parsed;
clang::Sema::ModuleImportState importState =
clang::Sema::ModuleImportState::NotACXX20Module;
while (!Parser->ParseTopLevelDecl(parsed, importState)) {
if (parsed)
handleParsed(parsed.get());
for (auto additionalParsedGroup : consumer.getAdditionalParsedDecls())
handleParsed(additionalParsedGroup);
consumer.reset();
}
// We're trying to discourage (and eventually deprecate) the use of implicit
// bridging-header imports triggered by IMPORTED_HEADER blocks in
// modules. There are two sub-cases to consider:
//
// #1 The implicit import actually occurred.
//
// #2 The user explicitly -import-objc-header'ed some header or PCH that
// makes the implicit import redundant.
//
// It's not obvious how to exactly differentiate these cases given the
// interface clang gives us, but we only want to warn on case #1, and the
// non-emptiness of allParsedDecls is a _definite_ sign that we're in case
// #1. So we treat that as an approximation of the condition we're after, and
// accept that we might fail to warn in the odd case where "the import
// occurred" but didn't introduce any new decls.
//
// We also want to limit (for now) the warning in case #1 to invocations that
// requested an explicit bridging header, because otherwise the warning will
// complain in a very common scenario (unit test w/o bridging header imports
// application w/ bridging header) that we don't yet have Xcode automation
// to correct. The fix would be explicitly importing on the command line.
if (implicitImport && !allParsedDecls.empty() &&
BridgingHeaderExplicitlyRequested) {
diagnose(
diagLoc, diag::implicit_bridging_header_imported_from_module,
llvm::sys::path::filename(headerName), adapter->getName());
}
// We can't do this as we're parsing because we may want to resolve naming
// conflicts between the things we've parsed.
for (auto group : allParsedDecls)
for (auto *D : group)
if (auto named = dyn_cast<clang::NamedDecl>(D))
addEntryToLookupTable(*BridgingHeaderLookupTable, named,
getNameImporter());
pp.EndSourceFile();
bumpGeneration();
// Add any defined macros to the bridging header lookup table.
addMacrosToLookupTable(*BridgingHeaderLookupTable, getNameImporter());
// Finish loading any extra modules that were (transitively) imported.
handleDeferredImports(diagLoc);
// Wrap all Clang imports under a Swift import decl.
for (auto &Import : BridgeHeaderTopLevelImports) {
if (auto *ClangImport = Import.dyn_cast<clang::ImportDecl*>()) {
Import = createImportDecl(SwiftContext, adapter, ClangImport, {});
}
}
// Finalize the lookup table, which may fail.
finalizeLookupTable(*BridgingHeaderLookupTable, getNameImporter(),
getBufferImporterForDiagnostics());
// FIXME: What do we do if there was already an error?
if (!hadError && clangDiags.hasErrorOccurred() &&
!getClangInstance()->getPreprocessorOpts().AllowPCHWithCompilerErrors) {
diagnose(diagLoc, diag::bridging_header_error, headerName);
return true;
}
return false;
}
bool ClangImporter::importHeader(StringRef header, ModuleDecl *adapter,
off_t expectedSize, time_t expectedModTime,
StringRef cachedContents, SourceLoc diagLoc) {
clang::FileManager &fileManager = Impl.Instance->getFileManager();
auto headerFile = fileManager.getFile(header, /*OpenFile=*/true);
if (headerFile && (*headerFile)->getSize() == expectedSize &&
(*headerFile)->getModificationTime() == expectedModTime) {
return importBridgingHeader(header, adapter, diagLoc, false, true);
}
// If we've made it to here, this is some header other than the bridging
// header, which means we can no longer rely on one file's modification time
// to invalidate code completion caches. :-(
Impl.setSinglePCHImport(None);
if (!cachedContents.empty() && cachedContents.back() == '\0')
cachedContents = cachedContents.drop_back();
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer{
llvm::MemoryBuffer::getMemBuffer(cachedContents, header)
};
return Impl.importHeader(adapter, header, diagLoc, /*trackParsedSymbols=*/false,
std::move(sourceBuffer), true);
}
bool ClangImporter::importBridgingHeader(StringRef header, ModuleDecl *adapter,
SourceLoc diagLoc,
bool trackParsedSymbols,
bool implicitImport) {
if (isPCHFilenameExtension(header)) {
Impl.ImportedHeaderOwners.push_back(adapter);
// We already imported this with -include-pch above, so we should have
// collected a bunch of PCH-encoded module imports that we just need to
// replay in handleDeferredImports.
Impl.handleDeferredImports(diagLoc);
return false;
}
clang::FileManager &fileManager = Impl.Instance->getFileManager();
auto headerFile = fileManager.getFile(header, /*OpenFile=*/true);
if (!headerFile) {
Impl.diagnose(diagLoc, diag::bridging_header_missing, header);
return true;
}
llvm::SmallString<128> importLine;
if (Impl.SwiftContext.LangOpts.EnableObjCInterop)
importLine = "#import \"";
else
importLine = "#include \"";
importLine += header;
importLine += "\"\n";
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer{
llvm::MemoryBuffer::getMemBufferCopy(
importLine, Implementation::bridgingHeaderBufferName)
};
return Impl.importHeader(adapter, header, diagLoc, trackParsedSymbols,
std::move(sourceBuffer), implicitImport);
}
std::string ClangImporter::getBridgingHeaderContents(StringRef headerPath,
off_t &fileSize,
time_t &fileModTime) {
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
invocation->getFrontendOpts().DisableFree = false;
invocation->getFrontendOpts().Inputs.clear();
invocation->getFrontendOpts().Inputs.push_back(
clang::FrontendInputFile(headerPath, clang::Language::ObjC));
invocation->getPreprocessorOpts().resetNonModularOptions();
clang::CompilerInstance rewriteInstance(
Impl.Instance->getPCHContainerOperations(),
&Impl.Instance->getModuleCache());
rewriteInstance.setInvocation(invocation);
rewriteInstance.createDiagnostics(new clang::IgnoringDiagConsumer);
clang::FileManager &fileManager = Impl.Instance->getFileManager();
rewriteInstance.setFileManager(&fileManager);
rewriteInstance.createSourceManager(fileManager);
rewriteInstance.setTarget(&Impl.Instance->getTarget());
std::string result;
bool success = llvm::CrashRecoveryContext().RunSafelyOnThread([&] {
// A much simpler version of clang::RewriteIncludesAction that lets us
// write to an in-memory buffer.
class RewriteIncludesAction : public clang::PreprocessorFrontendAction {
raw_ostream &OS;
void ExecuteAction() override {
clang::CompilerInstance &compiler = getCompilerInstance();
clang::RewriteIncludesInInput(compiler.getPreprocessor(), &OS,
compiler.getPreprocessorOutputOpts());
}
public:
explicit RewriteIncludesAction(raw_ostream &os) : OS(os) {}
};
llvm::raw_string_ostream os(result);
RewriteIncludesAction action(os);
rewriteInstance.ExecuteAction(action);
});
success |= !rewriteInstance.getDiagnostics().hasErrorOccurred();
if (!success) {
Impl.diagnose({}, diag::could_not_rewrite_bridging_header);
return "";
}
if (auto fileInfo = fileManager.getFile(headerPath)) {
fileSize = (*fileInfo)->getSize();
fileModTime = (*fileInfo)->getModificationTime();
}
return result;
}
/// Returns the appropriate source input language based on language options.
static clang::Language getLanguageFromOptions(
const clang::LangOptions *LangOpts) {
if (LangOpts->OpenCL)
return clang::Language::OpenCL;
if (LangOpts->CUDA)
return clang::Language::CUDA;
if (LangOpts->ObjC)
return LangOpts->CPlusPlus ?
clang::Language::ObjCXX : clang::Language::ObjC;
return LangOpts->CPlusPlus ? clang::Language::CXX : clang::Language::C;
}
/// Wraps the given frontend action in an index data recording action if the
/// frontend options have an index store path specified.
static
std::unique_ptr<clang::FrontendAction> wrapActionForIndexingIfEnabled(
const clang::FrontendOptions &FrontendOpts,
std::unique_ptr<clang::FrontendAction> action) {
if (!FrontendOpts.IndexStorePath.empty()) {
return clang::index::createIndexDataRecordingAction(
FrontendOpts, std::move(action));
}
return action;
}
std::unique_ptr<clang::CompilerInstance>
ClangImporter::cloneCompilerInstanceForPrecompiling() {
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
auto &PPOpts = invocation->getPreprocessorOpts();
PPOpts.resetNonModularOptions();
auto &FrontendOpts = invocation->getFrontendOpts();
FrontendOpts.DisableFree = false;
FrontendOpts.Inputs.clear();
auto clonedInstance = std::make_unique<clang::CompilerInstance>(
Impl.Instance->getPCHContainerOperations(),
&Impl.Instance->getModuleCache());
clonedInstance->setInvocation(std::move(invocation));
clonedInstance->createDiagnostics(&Impl.Instance->getDiagnosticClient(),
/*ShouldOwnClient=*/false);
clang::FileManager &fileManager = Impl.Instance->getFileManager();
clonedInstance->setFileManager(&fileManager);
clonedInstance->createSourceManager(fileManager);
clonedInstance->setTarget(&Impl.Instance->getTarget());
clonedInstance->setOutputBackend(Impl.SwiftContext.OutputBackend);
return clonedInstance;
}
bool ClangImporter::emitBridgingPCH(
StringRef headerPath, StringRef outputPCHPath, bool cached) {
auto emitInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = emitInstance->getInvocation();
auto LangOpts = invocation.getLangOpts();
LangOpts->NeededByPCHOrCompilationUsesPCH = true;
LangOpts->CacheGeneratedPCH = cached;
auto language = getLanguageFromOptions(LangOpts);
auto inputFile = clang::FrontendInputFile(headerPath, language);
auto &FrontendOpts = invocation.getFrontendOpts();
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OutputFile = outputPCHPath.str();
FrontendOpts.ProgramAction = clang::frontend::GeneratePCH;
auto action = wrapActionForIndexingIfEnabled(
FrontendOpts, std::make_unique<clang::GeneratePCHAction>());
emitInstance->ExecuteAction(*action);
if (emitInstance->getDiagnostics().hasErrorOccurred() &&
!emitInstance->getPreprocessorOpts().AllowPCHWithCompilerErrors) {
Impl.diagnose({}, diag::bridging_header_pch_error,
outputPCHPath, headerPath);
return true;
}
return false;
}
bool ClangImporter::runPreprocessor(
StringRef inputPath, StringRef outputPath) {
auto emitInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = emitInstance->getInvocation();
auto LangOpts = invocation.getLangOpts();
auto &OutputOpts = invocation.getPreprocessorOutputOpts();
OutputOpts.ShowCPP = 1;
OutputOpts.ShowComments = 0;
OutputOpts.ShowLineMarkers = 0;
OutputOpts.ShowMacros = 0;
OutputOpts.ShowMacroComments = 0;
auto language = getLanguageFromOptions(LangOpts);
auto inputFile = clang::FrontendInputFile(inputPath, language);
auto &FrontendOpts = invocation.getFrontendOpts();
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OutputFile = outputPath.str();
FrontendOpts.ProgramAction = clang::frontend::PrintPreprocessedInput;
auto action = wrapActionForIndexingIfEnabled(
FrontendOpts, std::make_unique<clang::PrintPreprocessedAction>());
emitInstance->ExecuteAction(*action);
return emitInstance->getDiagnostics().hasErrorOccurred();
}
bool ClangImporter::emitPrecompiledModule(
StringRef moduleMapPath, StringRef moduleName, StringRef outputPath) {
auto emitInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = emitInstance->getInvocation();
auto LangOpts = invocation.getLangOpts();
LangOpts->setCompilingModule(clang::LangOptions::CMK_ModuleMap);
LangOpts->ModuleName = moduleName.str();
LangOpts->CurrentModule = LangOpts->ModuleName;
auto language = getLanguageFromOptions(LangOpts);
auto &FrontendOpts = invocation.getFrontendOpts();
auto inputFile = clang::FrontendInputFile(
moduleMapPath, clang::InputKind(
language, clang::InputKind::ModuleMap, false),
FrontendOpts.IsSystemModule);
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OriginalModuleMap = moduleMapPath.str();
FrontendOpts.OutputFile = outputPath.str();
FrontendOpts.ProgramAction = clang::frontend::GenerateModule;
auto action = wrapActionForIndexingIfEnabled(
FrontendOpts,
std::make_unique<clang::GenerateModuleFromModuleMapAction>());
emitInstance->ExecuteAction(*action);
if (emitInstance->getDiagnostics().hasErrorOccurred() &&
!FrontendOpts.AllowPCMWithCompilerErrors) {
Impl.diagnose({}, diag::emit_pcm_error, outputPath, moduleMapPath);
return true;
}
return false;
}
bool ClangImporter::dumpPrecompiledModule(
StringRef modulePath, StringRef outputPath) {
auto dumpInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = dumpInstance->getInvocation();
auto inputFile = clang::FrontendInputFile(
modulePath, clang::InputKind(
clang::Language::Unknown, clang::InputKind::Precompiled, false));
auto &FrontendOpts = invocation.getFrontendOpts();
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OutputFile = outputPath.str();
auto action = std::make_unique<clang::DumpModuleInfoAction>();
dumpInstance->ExecuteAction(*action);
if (dumpInstance->getDiagnostics().hasErrorOccurred()) {
Impl.diagnose({}, diag::dump_pcm_error, modulePath);
return true;
}
return false;
}
void ClangImporter::collectVisibleTopLevelModuleNames(
SmallVectorImpl<Identifier> &names) const {
SmallVector<clang::Module *, 32> Modules;
Impl.getClangPreprocessor().getHeaderSearchInfo().collectAllModules(Modules);
for (auto &M : Modules) {
if (!M->isAvailable())
continue;
names.push_back(
Impl.SwiftContext.getIdentifier(M->getTopLevelModuleName()));
}
}
void ClangImporter::collectSubModuleNames(
ImportPath::Module path,
std::vector<std::string> &names) const {
auto &clangHeaderSearch = Impl.getClangPreprocessor().getHeaderSearchInfo();
// Look up the top-level module first.
clang::Module *clangModule = clangHeaderSearch.lookupModule(
path.front().Item.str(), /*ImportLoc=*/clang::SourceLocation(),
/*AllowSearch=*/true, /*AllowExtraModuleMapSearch=*/true);
if (!clangModule)
return;
clang::Module *submodule = clangModule;
for (auto component : path.getSubmodulePath()) {
submodule = submodule->findSubmodule(component.Item.str());
if (!submodule)
return;
}
for (auto sub : submodule->submodules())
names.push_back(sub->Name);
}
bool ClangImporter::isModuleImported(const clang::Module *M) {
return M->NameVisibility == clang::Module::NameVisibilityKind::AllVisible;
}
static std::string getScalaNodeText(llvm::yaml::Node *N) {
SmallString<32> Buffer;
return cast<llvm::yaml::ScalarNode>(N)->getValue(Buffer).str();
}
bool ClangImporter::canImportModule(ImportPath::Module modulePath,
ModuleVersionInfo *versionInfo,
bool isTestableDependencyLookup) {
// Look up the top-level module to see if it exists.
auto &clangHeaderSearch = Impl.getClangPreprocessor().getHeaderSearchInfo();
auto topModule = modulePath.front();
clang::Module *clangModule = clangHeaderSearch.lookupModule(
topModule.Item.str(), /*ImportLoc=*/clang::SourceLocation(),
/*AllowSearch=*/true, /*AllowExtraModuleMapSearch=*/true);
if (!clangModule) {
return false;
}
clang::Module::Requirement r;
clang::Module::UnresolvedHeaderDirective mh;
clang::Module *m;
auto &ctx = Impl.getClangASTContext();
auto &lo = ctx.getLangOpts();
auto &ti = getModuleAvailabilityTarget();
auto available = clangModule->isAvailable(lo, ti, r, mh, m);
if (!available)
return false;
if (modulePath.hasSubmodule()) {
for (auto &component : modulePath.getSubmodulePath()) {
clangModule = clangModule->findSubmodule(component.Item.str());
// Special case: a submodule named "Foo.Private" can be moved to a
// top-level module named "Foo_Private". Clang has special support for
// this.
if (!clangModule && component.Item.str() == "Private" &&
(&component) == (&modulePath.getRaw()[1])) {
clangModule = clangHeaderSearch.lookupModule(
(topModule.Item.str() + "_Private").str(),
/*ImportLoc=*/clang::SourceLocation(),
/*AllowSearch=*/true,
/*AllowExtraModuleMapSearch=*/true);
}
if (!clangModule || !clangModule->isAvailable(lo, ti, r, mh, m)) {
return false;
}
}
}
if (!versionInfo)
return true;
assert(available);
llvm::VersionTuple currentVersion;
StringRef path = getClangASTContext().getSourceManager()
.getFilename(clangModule->DefinitionLoc);
// Look for the .tbd file inside .framework dir to get the project version
// number.
std::string fwName = (llvm::Twine(topModule.Item.str()) + ".framework").str();
auto pos = path.find(fwName);
while (pos != StringRef::npos) {
llvm::SmallString<256> buffer(path.substr(0, pos + fwName.size()));
llvm::sys::path::append(buffer, llvm::Twine(topModule.Item.str()) + ".tbd");
auto tbdPath = buffer.str();
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> tbdBufOrErr =
llvm::MemoryBuffer::getFile(tbdPath);
// .tbd file doesn't exist, break.
if (!tbdBufOrErr) {
break;
}
StringRef tbdBuffer = tbdBufOrErr->get()->getBuffer();
// Use a new source manager instead of the one from ASTContext because we
// don't want the Json file to be persistent.
SourceManager SM;
llvm::yaml::Stream Stream(llvm::MemoryBufferRef(tbdBuffer, tbdPath),
SM.getLLVMSourceMgr());
auto DI = Stream.begin();
assert(DI != Stream.end() && "Failed to read a document");
llvm::yaml::Node *N = DI->getRoot();
assert(N && "Failed to find a root");
auto *pairs = dyn_cast_or_null<llvm::yaml::MappingNode>(N);
if (!pairs)
break;
for (auto &keyValue: *pairs) {
auto key = getScalaNodeText(keyValue.getKey());
// Look for field "current-version" in the .tbd file.
if (key == "current-version") {
auto ver = getScalaNodeText(keyValue.getValue());
currentVersion.tryParse(ver);
break;
}
}
break;
}
versionInfo->setVersion(currentVersion,
ModuleVersionSourceKind::ClangModuleTBD);
return true;
}
ModuleDecl *ClangImporter::Implementation::loadModuleClang(
SourceLoc importLoc, ImportPath::Module path) {
auto &clangHeaderSearch = getClangPreprocessor().getHeaderSearchInfo();
auto realModuleName = SwiftContext.getRealModuleName(path.front().Item).str();
// For explicit module build, module should always exist but module map might
// not be exist. Go straight to module loader.
if (Instance->getInvocation().getLangOpts()->ImplicitModules) {
// Look up the top-level module first, to see if it exists at all.
clang::Module *clangModule = clangHeaderSearch.lookupModule(
realModuleName, /*ImportLoc=*/clang::SourceLocation(),
/*AllowSearch=*/true, /*AllowExtraModuleMapSearch=*/true);
if (!clangModule)
return nullptr;
}
// Convert the Swift import path over to a Clang import path.
SmallVector<std::pair<clang::IdentifierInfo *, clang::SourceLocation>, 4>
clangPath;
bool isTopModuleComponent = true;
for (auto component : path) {
StringRef item = isTopModuleComponent? realModuleName:
component.Item.str();
isTopModuleComponent = false;
clangPath.emplace_back(
getClangPreprocessor().getIdentifierInfo(item),
exportSourceLoc(component.Loc));
}
auto &rawDiagClient = Instance->getDiagnosticClient();
auto &diagClient = static_cast<ClangDiagnosticConsumer &>(rawDiagClient);
auto loadModule = [&](clang::ModuleIdPath path,
clang::Module::NameVisibilityKind visibility)
-> clang::ModuleLoadResult {
auto importRAII =
diagClient.handleImport(clangPath.front().first, importLoc);
std::string preservedIndexStorePathOption;
auto &clangFEOpts = Instance->getFrontendOpts();
if (!clangFEOpts.IndexStorePath.empty()) {
StringRef moduleName = path[0].first->getName();
// Ignore the SwiftShims module for the index data.
if (moduleName == SwiftContext.SwiftShimsModuleName.str()) {
preservedIndexStorePathOption = clangFEOpts.IndexStorePath;
clangFEOpts.IndexStorePath.clear();
}
}
clang::SourceLocation clangImportLoc = getNextIncludeLoc();
clang::ModuleLoadResult result =
Instance->loadModule(clangImportLoc, path, visibility,
/*IsInclusionDirective=*/false);
if (!preservedIndexStorePathOption.empty()) {
// Restore the -index-store-path option.
clangFEOpts.IndexStorePath = preservedIndexStorePathOption;
}
if (result && (visibility == clang::Module::AllVisible)) {
getClangPreprocessor().makeModuleVisible(result, clangImportLoc);
}
return result;
};
// Now load the top-level module, so that we can check if the submodule
// exists without triggering a fatal error.
auto clangModule = loadModule(clangPath.front(), clang::Module::AllVisible);
if (!clangModule)
return nullptr;
// If we're asked to import the top-level module then we're done here.
auto *topSwiftModule = finishLoadingClangModule(clangModule, importLoc);
if (path.size() == 1) {
return topSwiftModule;
}
// Verify that the submodule exists.
clang::Module *submodule = clangModule;
for (auto &component : path.getSubmodulePath()) {
submodule = submodule->findSubmodule(component.Item.str());
// Special case: a submodule named "Foo.Private" can be moved to a top-level
// module named "Foo_Private". Clang has special support for this.
// We're limiting this to just submodules named "Private" because this will
// put the Clang AST in a fatal error state if it /doesn't/ exist.
if (!submodule && component.Item.str() == "Private" &&
(&component) == (&path.getRaw()[1])) {
submodule = loadModule(llvm::makeArrayRef(clangPath).slice(0, 2),
clang::Module::Hidden);
}
if (!submodule) {
// FIXME: Specialize the error for a missing submodule?
return nullptr;
}
}
// Finally, load the submodule and make it visible.
clangModule = loadModule(clangPath, clang::Module::AllVisible);
if (!clangModule)
return nullptr;
return finishLoadingClangModule(clangModule, importLoc);
}
ModuleDecl *
ClangImporter::loadModule(SourceLoc importLoc,
ImportPath::Module path,
bool AllowMemoryCache) {
return Impl.loadModule(importLoc, path);
}
ModuleDecl *ClangImporter::Implementation::loadModule(
SourceLoc importLoc, ImportPath::Module path) {
ModuleDecl *MD = nullptr;
ASTContext &ctx = getNameImporter().getContext();
// `CxxStdlib` is the only accepted spelling of the C++ stdlib module name.
if (path.front().Item.is("std"))
return nullptr;
if (path.front().Item == ctx.Id_CxxStdlib) {
ImportPath::Builder adjustedPath(ctx.getIdentifier("std"), importLoc);
adjustedPath.append(path.getSubmodulePath());
path = adjustedPath.copyTo(ctx).getModulePath(ImportKind::Module);
}
if (!DisableSourceImport)
MD = loadModuleClang(importLoc, path);
if (!MD)
MD = loadModuleDWARF(importLoc, path);
return MD;
}
ModuleDecl *ClangImporter::Implementation::finishLoadingClangModule(
const clang::Module *clangModule, SourceLoc importLoc) {
assert(clangModule);
// Bump the generation count.
bumpGeneration();
// Force load overlays for all imported modules.
// FIXME: This forces the creation of wrapper modules for all imports as
// well, and may do unnecessary work.
ClangModuleUnit *wrapperUnit = getWrapperForModule(clangModule, importLoc);
ModuleDecl *result = wrapperUnit->getParentModule();
if (!ModuleWrappers[clangModule].getInt()) {
ModuleWrappers[clangModule].setInt(true);
(void) namelookup::getAllImports(result);
}
if (clangModule->isSubModule()) {
finishLoadingClangModule(clangModule->getTopLevelModule(), importLoc);
} else {
if (!SwiftContext.getLoadedModule(result->getName()))
SwiftContext.addLoadedModule(result);
}
return result;
}
// Run through the set of deferred imports -- either those referenced by
// submodule ID from a bridging PCH, or those already loaded as clang::Modules
// in response to an import directive in a bridging header -- and call
// finishLoadingClangModule on each.
void ClangImporter::Implementation::handleDeferredImports(SourceLoc diagLoc) {
clang::ASTReader &R = *Instance->getASTReader();
llvm::SmallSet<clang::serialization::SubmoduleID, 32> seenSubmodules;
for (clang::serialization::SubmoduleID ID : PCHImportedSubmodules) {
if (!seenSubmodules.insert(ID).second)
continue;
ImportedHeaderExports.push_back(R.getSubmodule(ID));
}
PCHImportedSubmodules.clear();
// Avoid a for-in loop because in unusual situations we can end up pulling in
// another bridging header while we finish loading the modules that are
// already here. This is a brittle situation but it's outside what's
// officially supported with bridging headers: app targets and unit tests
// only. Unfortunately that's not enforced.
for (size_t i = 0; i < ImportedHeaderExports.size(); ++i) {
(void)finishLoadingClangModule(ImportedHeaderExports[i], diagLoc);
}
}
ModuleDecl *ClangImporter::getImportedHeaderModule() const {
return Impl.ImportedHeaderUnit->getParentModule();
}
ModuleDecl *
ClangImporter::getWrapperForModule(const clang::Module *mod,
bool returnOverlayIfPossible) const {
auto clangUnit = Impl.getWrapperForModule(mod);
if (returnOverlayIfPossible && clangUnit->getOverlayModule())
return clangUnit->getOverlayModule();
return clangUnit->getParentModule();
}
PlatformAvailability::PlatformAvailability(const LangOptions &langOpts)
: platformKind(targetPlatform(langOpts)) {
switch (platformKind) {
case PlatformKind::iOS:
case PlatformKind::iOSApplicationExtension:
case PlatformKind::macCatalyst:
case PlatformKind::macCatalystApplicationExtension:
case PlatformKind::tvOS:
case PlatformKind::tvOSApplicationExtension:
deprecatedAsUnavailableMessage =
"APIs deprecated as of iOS 7 and earlier are unavailable in Swift";
asyncDeprecatedAsUnavailableMessage =
"APIs deprecated as of iOS 12 and earlier are not imported as 'async'";
break;
case PlatformKind::watchOS:
case PlatformKind::watchOSApplicationExtension:
deprecatedAsUnavailableMessage = "";
asyncDeprecatedAsUnavailableMessage =
"APIs deprecated as of watchOS 5 and earlier are not imported as "
"'async'";
break;
case PlatformKind::macOS:
case PlatformKind::macOSApplicationExtension:
deprecatedAsUnavailableMessage =
"APIs deprecated as of macOS 10.9 and earlier are unavailable in Swift";
asyncDeprecatedAsUnavailableMessage =
"APIs deprecated as of macOS 10.14 and earlier are not imported as "
"'async'";
break;
case PlatformKind::OpenBSD:
deprecatedAsUnavailableMessage = "";
break;
case PlatformKind::Windows:
deprecatedAsUnavailableMessage = "";
break;
case PlatformKind::none:
break;
}
}
bool PlatformAvailability::isPlatformRelevant(StringRef name) const {
switch (platformKind) {
case PlatformKind::macOS:
return name == "macos";
case PlatformKind::macOSApplicationExtension:
return name == "macos" || name == "macos_app_extension";
case PlatformKind::iOS:
return name == "ios";
case PlatformKind::iOSApplicationExtension:
return name == "ios" || name == "ios_app_extension";
case PlatformKind::macCatalyst:
return name == "ios" || name == "maccatalyst";
case PlatformKind::macCatalystApplicationExtension:
return name == "ios" || name == "ios_app_extension" ||
name == "maccatalyst" || name == "maccatalyst_app_extension";
case PlatformKind::tvOS:
return name == "tvos";
case PlatformKind::tvOSApplicationExtension:
return name == "tvos" || name == "tvos_app_extension";
case PlatformKind::watchOS:
return name == "watchos";
case PlatformKind::watchOSApplicationExtension:
return name == "watchos" || name == "watchos_app_extension";
case PlatformKind::OpenBSD:
return name == "openbsd";
case PlatformKind::Windows:
return name == "windows";
case PlatformKind::none:
return false;
}
llvm_unreachable("Unexpected platform");
}
bool PlatformAvailability::treatDeprecatedAsUnavailable(
const clang::Decl *clangDecl, const llvm::VersionTuple &version,
bool isAsync) const {
assert(!version.empty() && "Must provide version when deprecated");
unsigned major = version.getMajor();
Optional<unsigned> minor = version.getMinor();
switch (platformKind) {
case PlatformKind::none:
llvm_unreachable("version but no platform?");
case PlatformKind::macOS:
case PlatformKind::macOSApplicationExtension:
// Anything deprecated by macOS 10.14 is unavailable for async import
// in Swift.
if (isAsync && !clangDecl->hasAttr<clang::SwiftAsyncAttr>()) {
return major < 10 ||
(major == 10 && (!minor.has_value() || minor.value() <= 14));
}
// Anything deprecated in OSX 10.9.x and earlier is unavailable in Swift.
return major < 10 ||
(major == 10 && (!minor.has_value() || minor.value() <= 9));
case PlatformKind::iOS:
case PlatformKind::iOSApplicationExtension:
case PlatformKind::tvOS:
case PlatformKind::tvOSApplicationExtension:
// Anything deprecated by iOS 12 is unavailable for async import
// in Swift.
if (isAsync && !clangDecl->hasAttr<clang::SwiftAsyncAttr>()) {
return major <= 12;
}
// Anything deprecated in iOS 7.x and earlier is unavailable in Swift.
return major <= 7;
case PlatformKind::macCatalyst:
case PlatformKind::macCatalystApplicationExtension:
// ClangImporter does not yet support macCatalyst.
return false;
case PlatformKind::watchOS:
case PlatformKind::watchOSApplicationExtension:
// Anything deprecated by watchOS 5.0 is unavailable for async import
// in Swift.
if (isAsync && !clangDecl->hasAttr<clang::SwiftAsyncAttr>()) {
return major <= 5;
}
// No deprecation filter on watchOS
return false;
case PlatformKind::OpenBSD:
// No deprecation filter on OpenBSD
return false;
case PlatformKind::Windows:
// No deprecation filter on Windows
return false;
}
llvm_unreachable("Unexpected platform");
}
ClangImporter::Implementation::Implementation(
ASTContext &ctx, DWARFImporterDelegate *dwarfImporterDelegate)
: SwiftContext(ctx), ImportForwardDeclarations(
ctx.ClangImporterOpts.ImportForwardDeclarations),
DisableSwiftBridgeAttr(ctx.ClangImporterOpts.DisableSwiftBridgeAttr),
BridgingHeaderExplicitlyRequested(
!ctx.ClangImporterOpts.BridgingHeader.empty()),
DisableOverlayModules(ctx.ClangImporterOpts.DisableOverlayModules),
EnableClangSPI(ctx.ClangImporterOpts.EnableClangSPI),
importSymbolicCXXDecls(
ctx.LangOpts.hasFeature(Feature::ImportSymbolicCXXDecls)),
IsReadingBridgingPCH(false),
CurrentVersion(ImportNameVersion::fromOptions(ctx.LangOpts)),
Walker(DiagnosticWalker(*this)), BuffersForDiagnostics(ctx.SourceMgr),
BridgingHeaderLookupTable(new SwiftLookupTable(nullptr)),
platformAvailability(ctx.LangOpts), nameImporter(),
DisableSourceImport(ctx.ClangImporterOpts.DisableSourceImport),
DWARFImporter(dwarfImporterDelegate) {}
ClangImporter::Implementation::~Implementation() {
#ifndef NDEBUG
SwiftContext.SourceMgr.verifyAllBuffers();
#endif
}
ClangImporter::Implementation::DiagnosticWalker::DiagnosticWalker(
ClangImporter::Implementation &Impl)
: Impl(Impl) {}
bool ClangImporter::Implementation::DiagnosticWalker::TraverseDecl(
clang::Decl *D) {
// In some cases, diagnostic notes about types (ex: built-in types) do not
// have an obvious source location at which to display diagnostics. We
// provide the location of the closest decl as a reasonable choice.
llvm::SaveAndRestore<clang::SourceLocation> sar{TypeReferenceSourceLocation,
D->getBeginLoc()};
return clang::RecursiveASTVisitor<DiagnosticWalker>::TraverseDecl(D);
}
bool ClangImporter::Implementation::DiagnosticWalker::TraverseParmVarDecl(
clang::ParmVarDecl *D) {
// When the ClangImporter imports functions / methods, the return
// type is first imported, followed by parameter types in order of
// declaration. If any type fails to import, the import of the function /
// method is aborted. This means any parameters after the first to fail to
// import (the first could be the return type) will not have diagnostics
// attached. Even though these remaining parameters may have unimportable
// types, we avoid diagnosing these types as a type diagnosis without a
// "parameter not imported" note on the referencing param decl is inconsistent
// behaviour and could be confusing.
if (Impl.ImportDiagnostics[D].size()) {
// Since the parameter decl in question has been diagnosed (we didn't bail
// before importing this param) continue the traversal as normal.
return clang::RecursiveASTVisitor<DiagnosticWalker>::TraverseParmVarDecl(D);
}
// If the decl in question has not been diagnosed, traverse "as normal" except
// avoid traversing to the referenced typed. Note the traversal has been
// simplified greatly and may need to be modified to support some future
// diagnostics.
if (!getDerived().shouldTraversePostOrder())
if (!WalkUpFromParmVarDecl(D))
return false;
if (clang::DeclContext *declContext = dyn_cast<clang::DeclContext>(D)) {
for (auto *Child : declContext->decls()) {
if (!canIgnoreChildDeclWhileTraversingDeclContext(Child))
if (!TraverseDecl(Child))
return false;
}
}
if (getDerived().shouldTraversePostOrder())
if (!WalkUpFromParmVarDecl(D))
return false;
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::VisitDecl(
clang::Decl *D) {
Impl.emitDiagnosticsForTarget(D);
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::VisitMacro(
const clang::MacroInfo *MI) {
Impl.emitDiagnosticsForTarget(MI);
for (const clang::Token &token : MI->tokens()) {
Impl.emitDiagnosticsForTarget(&token);
}
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::
VisitObjCObjectPointerType(clang::ObjCObjectPointerType *T) {
// If an ObjCInterface is pointed to, diagnose it.
if (const clang::ObjCInterfaceDecl *decl = T->getInterfaceDecl()) {
Impl.emitDiagnosticsForTarget(decl);
}
// Diagnose any protocols the pointed to type conforms to.
for (auto cp = T->qual_begin(), cpEnd = T->qual_end(); cp != cpEnd; ++cp) {
Impl.emitDiagnosticsForTarget(*cp);
}
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::VisitType(
clang::Type *T) {
if (TypeReferenceSourceLocation.isValid())
Impl.emitDiagnosticsForTarget(T, TypeReferenceSourceLocation);
return true;
}
ClangModuleUnit *ClangImporter::Implementation::getWrapperForModule(
const clang::Module *underlying, SourceLoc diagLoc) {
auto &cacheEntry = ModuleWrappers[underlying];
if (ClangModuleUnit *cached = cacheEntry.getPointer())
return cached;
// FIXME: Handle hierarchical names better.
Identifier name = underlying->Name == "std"
? SwiftContext.Id_CxxStdlib
: SwiftContext.getIdentifier(underlying->Name);
auto wrapper = ModuleDecl::create(name, SwiftContext);
wrapper->setIsSystemModule(underlying->IsSystem);
wrapper->setIsNonSwiftModule();
wrapper->setHasResolvedImports();
auto file = new (SwiftContext) ClangModuleUnit(*wrapper, *this,
underlying);
wrapper->addFile(*file);
SwiftContext.getClangModuleLoader()->findOverlayFiles(diagLoc, wrapper, file);
cacheEntry.setPointer(file);
return file;
}
ClangModuleUnit *ClangImporter::Implementation::getClangModuleForDecl(
const clang::Decl *D,
bool allowForwardDeclaration) {
auto maybeModule = getClangSubmoduleForDecl(D, allowForwardDeclaration);
if (!maybeModule)
return nullptr;
if (!maybeModule.value())
return ImportedHeaderUnit;
// Get the parent module because currently we don't represent submodules with
// ClangModuleUnit.
auto *M = maybeModule.value()->getTopLevelModule();
return getWrapperForModule(M);
}
void ClangImporter::Implementation::addImportDiagnostic(
ImportDiagnosticTarget target, Diagnostic &&diag,
clang::SourceLocation loc) {
ImportDiagnostic importDiag = ImportDiagnostic(target, diag, loc);
if (SwiftContext.LangOpts.DisableExperimentalClangImporterDiagnostics ||
CollectedDiagnostics.count(importDiag))
return;
CollectedDiagnostics.insert(importDiag);
ImportDiagnostics[target].push_back(importDiag);
}
#pragma mark Source locations
clang::SourceLocation
ClangImporter::Implementation::exportSourceLoc(SourceLoc loc) {
// FIXME: Implement!
return clang::SourceLocation();
}
SourceLoc
ClangImporter::Implementation::importSourceLoc(clang::SourceLocation loc) {
// FIXME: Implement!
return SourceLoc();
}
SourceRange
ClangImporter::Implementation::importSourceRange(clang::SourceRange loc) {
// FIXME: Implement!
return SourceRange();
}
#pragma mark Importing names
clang::DeclarationName
ClangImporter::Implementation::exportName(Identifier name) {
// FIXME: When we start dealing with C++, we can map over some operator
// names.
if (name.empty() || name.isOperator())
return clang::DeclarationName();
// Map the identifier. If it's some kind of keyword, it can't be mapped.
auto ident = &Instance->getASTContext().Idents.get(name.str());
if (ident->getTokenID() != clang::tok::identifier)
return clang::DeclarationName();
return ident;
}
Identifier
ClangImporter::Implementation::importIdentifier(
const clang::IdentifierInfo *identifier,
StringRef removePrefix)
{
if (!identifier) return Identifier();
StringRef name = identifier->getName();
// Remove the prefix, if any.
if (!removePrefix.empty()) {
if (name.startswith(removePrefix)) {
name = name.slice(removePrefix.size(), name.size());
}
}
// Get the Swift identifier.
return SwiftContext.getIdentifier(name);
}
ObjCSelector ClangImporter::Implementation::importSelector(
clang::Selector selector) {
auto &ctx = SwiftContext;
// Handle zero-argument selectors directly.
if (selector.isUnarySelector()) {
Identifier name;
if (auto id = selector.getIdentifierInfoForSlot(0))
name = ctx.getIdentifier(id->getName());
return ObjCSelector(ctx, 0, name);
}
SmallVector<Identifier, 2> pieces;
for (auto i = 0u, n = selector.getNumArgs(); i != n; ++i) {
Identifier piece;
if (auto id = selector.getIdentifierInfoForSlot(i))
piece = ctx.getIdentifier(id->getName());
pieces.push_back(piece);
}
return ObjCSelector(ctx, pieces.size(), pieces);
}
clang::Selector
ClangImporter::Implementation::exportSelector(DeclName name,
bool allowSimpleName) {
if (!allowSimpleName && name.isSimpleName())
return {};
clang::ASTContext &ctx = getClangASTContext();
SmallVector<clang::IdentifierInfo *, 8> pieces;
pieces.push_back(exportName(name.getBaseIdentifier()).getAsIdentifierInfo());
auto argNames = name.getArgumentNames();
if (argNames.empty())
return ctx.Selectors.getNullarySelector(pieces.front());
if (!argNames.front().empty())
return {};
argNames = argNames.slice(1);
for (Identifier argName : argNames)
pieces.push_back(exportName(argName).getAsIdentifierInfo());
return ctx.Selectors.getSelector(pieces.size(), pieces.data());
}
clang::Selector
ClangImporter::Implementation::exportSelector(ObjCSelector selector) {
SmallVector<clang::IdentifierInfo *, 4> pieces;
for (auto piece : selector.getSelectorPieces())
pieces.push_back(exportName(piece).getAsIdentifierInfo());
return getClangASTContext().Selectors.getSelector(selector.getNumArgs(),
pieces.data());
}
/// Determine whether the given method potentially conflicts with the
/// setter for a property in the given protocol.
static bool
isPotentiallyConflictingSetter(const clang::ObjCProtocolDecl *proto,
const clang::ObjCMethodDecl *method) {
auto sel = method->getSelector();
if (sel.getNumArgs() != 1)
return false;
clang::IdentifierInfo *setterID = sel.getIdentifierInfoForSlot(0);
if (!setterID || !setterID->getName().startswith("set"))
return false;
for (auto *prop : proto->properties()) {
if (prop->getSetterName() == sel)
return true;
}
return false;
}
bool importer::shouldSuppressDeclImport(const clang::Decl *decl) {
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(decl)) {
// First check if we're actually in a Swift class.
auto dc = decl->getDeclContext();
if (hasNativeSwiftDecl(cast<clang::ObjCContainerDecl>(dc)))
return true;
// If this member is a method that is a getter or setter for a
// property, don't add it into the table. property names and
// getter names (by choosing to only have a property).
//
// Note that this is suppressed for certain accessibility declarations,
// which are imported as getter/setter pairs and not properties.
if (objcMethod->isPropertyAccessor()) {
// Suppress the import of this method when the corresponding
// property is not suppressed.
return !shouldSuppressDeclImport(
objcMethod->findPropertyDecl(/*CheckOverrides=*/false));
}
// If the method was declared within a protocol, check that it
// does not conflict with the setter of a property.
if (auto proto = dyn_cast<clang::ObjCProtocolDecl>(dc))
return isPotentiallyConflictingSetter(proto, objcMethod);
return false;
}
if (auto objcProperty = dyn_cast<clang::ObjCPropertyDecl>(decl)) {
// First check if we're actually in a Swift class.
auto dc = objcProperty->getDeclContext();
if (hasNativeSwiftDecl(cast<clang::ObjCContainerDecl>(dc)))
return true;
// Suppress certain properties; import them as getter/setter pairs instead.
if (shouldImportPropertyAsAccessors(objcProperty))
return true;
// Check whether there is a superclass method for the getter that
// is *not* suppressed, in which case we will need to suppress
// this property.
auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(dc);
if (!objcClass) {
if (auto objcCategory = dyn_cast<clang::ObjCCategoryDecl>(dc)) {
// If the enclosing category is invalid, suppress this declaration.
if (objcCategory->isInvalidDecl()) return true;
objcClass = objcCategory->getClassInterface();
}
}
if (objcClass) {
if (auto objcSuperclass = objcClass->getSuperClass()) {
auto getterMethod =
objcSuperclass->lookupMethod(objcProperty->getGetterName(),
objcProperty->isInstanceProperty());
if (getterMethod && !shouldSuppressDeclImport(getterMethod))
return true;
}
}
return false;
}
if (isa<clang::BuiltinTemplateDecl>(decl)) {
return true;
}
return false;
}
#pragma mark Name lookup
const clang::TypedefNameDecl *
ClangImporter::Implementation::lookupTypedef(clang::DeclarationName name) {
clang::Sema &sema = Instance->getSema();
clang::LookupResult lookupResult(sema, name,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (sema.LookupName(lookupResult, /*scope=*/nullptr)) {
for (auto decl : lookupResult) {
if (auto typedefDecl =
dyn_cast<clang::TypedefNameDecl>(decl->getUnderlyingDecl()))
return typedefDecl;
}
}
return nullptr;
}
static bool isDeclaredInModule(const ClangModuleUnit *ModuleFilter,
const Decl *VD) {
// Sometimes imported decls get put into the clang header module. If we
// found one of these decls, don't filter it out.
if (VD->getModuleContext()->getName().str() == CLANG_HEADER_MODULE_NAME) {
return true;
}
auto ContainingUnit = VD->getDeclContext()->getModuleScopeContext();
return ModuleFilter == ContainingUnit;
}
static const clang::Module *
getClangOwningModule(ClangNode Node, const clang::ASTContext &ClangCtx) {
assert(!Node.getAsModule() && "not implemented for modules");
if (const clang::Decl *D = Node.getAsDecl()) {
auto ExtSource = ClangCtx.getExternalSource();
assert(ExtSource);
auto originalDecl = D;
if (auto functionDecl = dyn_cast<clang::FunctionDecl>(D)) {
if (auto pattern = functionDecl->getTemplateInstantiationPattern()) {
// Function template instantiations don't have an owning Clang module.
// Let's use the owning module of the template pattern.
originalDecl = pattern;
}
}
return ExtSource->getModule(originalDecl->getOwningModuleID());
}
if (const clang::ModuleMacro *M = Node.getAsModuleMacro())
return M->getOwningModule();
// A locally-defined MacroInfo does not have an owning module.
assert(Node.getAsMacroInfo());
return nullptr;
}
static const clang::Module *
getClangTopLevelOwningModule(ClangNode Node,
const clang::ASTContext &ClangCtx) {
const clang::Module *OwningModule = getClangOwningModule(Node, ClangCtx);
if (!OwningModule)
return nullptr;
return OwningModule->getTopLevelModule();
}
static bool isVisibleFromModule(const ClangModuleUnit *ModuleFilter,
ValueDecl *VD) {
assert(ModuleFilter);
auto ContainingUnit = VD->getDeclContext()->getModuleScopeContext();
if (ModuleFilter == ContainingUnit)
return true;
// The rest of this function is looking to see if the Clang entity that
// caused VD to be imported has redeclarations in the filter module.
auto Wrapper = dyn_cast<ClangModuleUnit>(ContainingUnit);
if (!Wrapper)
return false;
ASTContext &Ctx = ContainingUnit->getASTContext();
auto *Importer = static_cast<ClangImporter *>(Ctx.getClangModuleLoader());
auto ClangNode = Importer->getEffectiveClangNode(VD);
// Macros can be "redeclared" by putting an equivalent definition in two
// different modules. (We don't actually check the equivalence.)
// FIXME: We're also not checking if the redeclaration is in /this/ module.
if (ClangNode.getAsMacro())
return true;
const clang::Decl *D = ClangNode.castAsDecl();
auto &ClangASTContext = ModuleFilter->getClangASTContext();
// We don't handle Clang submodules; pop everything up to the top-level
// module.
auto OwningClangModule = getClangTopLevelOwningModule(ClangNode,
ClangASTContext);
if (OwningClangModule == ModuleFilter->getClangModule())
return true;
// Friends from class templates don't have an owning module. Just return true.
if (isa<clang::FunctionDecl>(D) &&
cast<clang::FunctionDecl>(D)->isThisDeclarationInstantiatedFromAFriendDefinition())
return true;
// Handle redeclarable Clang decls by checking each redeclaration.
bool IsTagDecl = isa<clang::TagDecl>(D);
if (!(IsTagDecl || isa<clang::FunctionDecl>(D) || isa<clang::VarDecl>(D) ||
isa<clang::TypedefNameDecl>(D) || isa<clang::NamespaceDecl>(D))) {
return false;
}
for (auto Redeclaration : D->redecls()) {
if (Redeclaration == D)
continue;
// For enums, structs, and unions, only count definitions when looking to
// see what other modules they appear in.
if (IsTagDecl) {
auto TD = cast<clang::TagDecl>(Redeclaration);
if (!TD->isCompleteDefinition() &&
!TD->isThisDeclarationADemotedDefinition())
continue;
}
auto OwningClangModule = getClangTopLevelOwningModule(Redeclaration,
ClangASTContext);
if (OwningClangModule == ModuleFilter->getClangModule())
return true;
}
return false;
}
namespace {
class ClangVectorDeclConsumer : public clang::VisibleDeclConsumer {
std::vector<clang::NamedDecl *> results;
public:
ClangVectorDeclConsumer() = default;
void FoundDecl(clang::NamedDecl *ND, clang::NamedDecl *Hiding,
clang::DeclContext *Ctx, bool InBaseClass) override {
if (!ND->getIdentifier())
return;
if (ND->isModulePrivate())
return;
results.push_back(ND);
}
llvm::MutableArrayRef<clang::NamedDecl *> getResults() {
return results;
}
};
class FilteringVisibleDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
const ClangModuleUnit *ModuleFilter;
public:
FilteringVisibleDeclConsumer(swift::VisibleDeclConsumer &consumer,
const ClangModuleUnit *CMU)
: NextConsumer(consumer), ModuleFilter(CMU) {
assert(CMU);
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (!VD->hasClangNode() || isVisibleFromModule(ModuleFilter, VD))
NextConsumer.foundDecl(VD, Reason, dynamicLookupInfo);
}
};
class FilteringDeclaredDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
const ClangModuleUnit *ModuleFilter;
public:
FilteringDeclaredDeclConsumer(swift::VisibleDeclConsumer &consumer,
const ClangModuleUnit *CMU)
: NextConsumer(consumer), ModuleFilter(CMU) {
assert(CMU && CMU->isTopLevel() && "Only top-level modules supported");
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (isDeclaredInModule(ModuleFilter, VD)) {
NextConsumer.foundDecl(VD, Reason, dynamicLookupInfo);
}
}
};
/// A hack to hide particular types in the "Darwin" module on Apple platforms.
class DarwinLegacyFilterDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
clang::ASTContext &ClangASTContext;
bool shouldDiscard(ValueDecl *VD) {
if (!VD->hasClangNode())
return false;
const clang::Module *clangModule = getClangOwningModule(VD->getClangNode(),
ClangASTContext);
if (!clangModule)
return false;
if (clangModule->Name == "MacTypes") {
if (!VD->hasName() || VD->getBaseName().isSpecial())
return true;
return llvm::StringSwitch<bool>(VD->getBaseIdentifier().str())
.Cases("OSErr", "OSStatus", "OptionBits", false)
.Cases("FourCharCode", "OSType", false)
.Case("Boolean", false)
.Case("kUnknownType", false)
.Cases("UTF32Char", "UniChar", "UTF16Char", "UTF8Char", false)
.Case("ProcessSerialNumber", false)
.Default(true);
}
if (clangModule->Parent &&
clangModule->Parent->Name == "CarbonCore") {
return llvm::StringSwitch<bool>(clangModule->Name)
.Cases("BackupCore", "DiskSpaceRecovery", "MacErrors", false)
.Case("UnicodeUtilities", false)
.Default(true);
}
if (clangModule->Parent &&
clangModule->Parent->Name == "OSServices") {
// Note that this is a list of things to /drop/ rather than to /keep/.
// We're more likely to see new, modern headers added to OSServices.
return llvm::StringSwitch<bool>(clangModule->Name)
.Cases("IconStorage", "KeychainCore", "Power", true)
.Cases("SecurityCore", "SystemSound", true)
.Cases("WSMethodInvocation", "WSProtocolHandler", "WSTypes", true)
.Default(false);
}
return false;
}
public:
DarwinLegacyFilterDeclConsumer(swift::VisibleDeclConsumer &consumer,
clang::ASTContext &clangASTContext)
: NextConsumer(consumer), ClangASTContext(clangASTContext) {}
static bool needsFiltering(const clang::Module *topLevelModule) {
return topLevelModule && (topLevelModule->Name == "Darwin" ||
topLevelModule->Name == "CoreServices");
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (!shouldDiscard(VD))
NextConsumer.foundDecl(VD, Reason, dynamicLookupInfo);
}
};
} // unnamed namespace
/// Translate a MacroDefinition to a ClangNode, either a ModuleMacro for
/// a definition imported from a module or a MacroInfo for a macro defined
/// locally.
ClangNode getClangNodeForMacroDefinition(clang::MacroDefinition &M) {
if (!M.getModuleMacros().empty())
return ClangNode(M.getModuleMacros().back()->getMacroInfo());
if (auto *MD = M.getLocalDirective())
return ClangNode(MD->getMacroInfo());
return ClangNode();
}
void ClangImporter::lookupBridgingHeaderDecls(
llvm::function_ref<bool(ClangNode)> filter,
llvm::function_ref<void(Decl*)> receiver) const {
for (auto &Import : Impl.BridgeHeaderTopLevelImports) {
auto ImportD = Import.get<ImportDecl*>();
if (filter(ImportD->getClangDecl()))
receiver(ImportD);
}
for (auto *ClangD : Impl.BridgeHeaderTopLevelDecls) {
if (filter(ClangD)) {
if (auto *ND = dyn_cast<clang::NamedDecl>(ClangD)) {
if (Decl *imported = Impl.importDeclReal(ND, Impl.CurrentVersion))
receiver(imported);
}
}
}
auto &ClangPP = Impl.getClangPreprocessor();
for (clang::IdentifierInfo *II : Impl.BridgeHeaderMacros) {
auto MD = ClangPP.getMacroDefinition(II);
if (auto macroNode = getClangNodeForMacroDefinition(MD)) {
if (filter(macroNode)) {
auto MI = macroNode.getAsMacro();
Identifier Name = Impl.getNameImporter().importMacroName(II, MI);
if (Decl *imported = Impl.importMacro(Name, macroNode))
receiver(imported);
}
}
}
}
bool ClangImporter::lookupDeclsFromHeader(StringRef Filename,
llvm::function_ref<bool(ClangNode)> filter,
llvm::function_ref<void(Decl*)> receiver) const {
llvm::Expected<clang::FileEntryRef> ExpectedFile =
getClangPreprocessor().getFileManager().getFileRef(Filename);
if (!ExpectedFile)
return true;
clang::FileEntryRef File = *ExpectedFile;
auto &ClangCtx = getClangASTContext();
auto &ClangSM = ClangCtx.getSourceManager();
auto &ClangPP = getClangPreprocessor();
// Look up the header in the includes of the bridging header.
if (Impl.BridgeHeaderFiles.count(File)) {
auto headerFilter = [&](ClangNode ClangN) -> bool {
if (ClangN.isNull())
return false;
auto ClangLoc = ClangSM.getFileLoc(ClangN.getLocation());
if (ClangLoc.isInvalid())
return false;
Optional<clang::FileEntryRef> LocRef =
ClangSM.getFileEntryRefForID(ClangSM.getFileID(ClangLoc));
if (!LocRef || *LocRef != File)
return false;
return filter(ClangN);
};
lookupBridgingHeaderDecls(headerFilter, receiver);
return false;
}
clang::FileID FID = ClangSM.translateFile(File);
if (FID.isInvalid())
return false;
// Look up the header in the ASTReader.
if (ClangSM.isLoadedFileID(FID)) {
// Decls.
SmallVector<clang::Decl *, 32> Decls;
unsigned Length = ClangSM.getFileIDSize(FID);
ClangCtx.getExternalSource()->FindFileRegionDecls(FID, 0, Length, Decls);
for (auto *ClangD : Decls) {
if (Impl.shouldIgnoreBridgeHeaderTopLevelDecl(ClangD))
continue;
if (filter(ClangD)) {
if (auto *ND = dyn_cast<clang::NamedDecl>(ClangD)) {
if (Decl *imported = Impl.importDeclReal(ND, Impl.CurrentVersion))
receiver(imported);
}
}
}
// Macros.
for (const auto &Iter : ClangPP.macros()) {
auto *II = Iter.first;
auto MD = ClangPP.getMacroDefinition(II);
MD.forAllDefinitions([&](clang::MacroInfo *Info) {
if (Info->isBuiltinMacro())
return;
auto Loc = Info->getDefinitionLoc();
if (Loc.isInvalid() || ClangSM.getFileID(Loc) != FID)
return;
ClangNode MacroNode = Info;
if (filter(MacroNode)) {
auto Name = Impl.getNameImporter().importMacroName(II, Info);
if (auto *Imported = Impl.importMacro(Name, MacroNode))
receiver(Imported);
}
});
}
// FIXME: Module imports inside that header.
return false;
}
return true; // no info found about that header.
}
void ClangImporter::lookupValue(DeclName name, VisibleDeclConsumer &consumer) {
Impl.forEachLookupTable([&](SwiftLookupTable &table) -> bool {
Impl.lookupValue(table, name, consumer);
return false;
});
}
ClangNode ClangImporter::getEffectiveClangNode(const Decl *decl) const {
// Directly...
if (auto clangNode = decl->getClangNode())
return clangNode;
// Or via the nested "Code" enum.
if (auto *errorWrapper = dyn_cast<StructDecl>(decl)) {
if (auto *code = Impl.lookupErrorCodeEnum(errorWrapper))
if (auto clangNode = code->getClangNode())
return clangNode;
}
return ClangNode();
}
void ClangImporter::lookupTypeDecl(
StringRef rawName, ClangTypeKind kind,
llvm::function_ref<void(TypeDecl *)> receiver) {
clang::DeclarationName clangName(
&Impl.Instance->getASTContext().Idents.get(rawName));
SmallVector<clang::Sema::LookupNameKind, 1> lookupKinds;
switch (kind) {
case ClangTypeKind::Typedef:
lookupKinds.push_back(clang::Sema::LookupOrdinaryName);
break;
case ClangTypeKind::Tag:
lookupKinds.push_back(clang::Sema::LookupTagName);
lookupKinds.push_back(clang::Sema::LookupNamespaceName);
break;
case ClangTypeKind::ObjCProtocol:
lookupKinds.push_back(clang::Sema::LookupObjCProtocolName);
break;
}
// Perform name lookup into the global scope.
auto &sema = Impl.Instance->getSema();
bool foundViaClang = false;
for (auto lookupKind : lookupKinds) {
clang::LookupResult lookupResult(sema, clangName, clang::SourceLocation(),
lookupKind);
if (!Impl.DisableSourceImport &&
sema.LookupName(lookupResult, /*Scope=*/ sema.TUScope)) {
for (auto clangDecl : lookupResult) {
if (!isa<clang::TypeDecl>(clangDecl) &&
!isa<clang::NamespaceDecl>(clangDecl) &&
!isa<clang::ObjCContainerDecl>(clangDecl) &&
!isa<clang::ObjCCompatibleAliasDecl>(clangDecl)) {
continue;
}
Decl *imported = Impl.importDecl(clangDecl, Impl.CurrentVersion);
// Namespaces are imported as extensions for enums.
if (auto ext = dyn_cast_or_null<ExtensionDecl>(imported)) {
imported = ext->getExtendedNominal();
}
if (auto *importedType = dyn_cast_or_null<TypeDecl>(imported)) {
foundViaClang = true;
receiver(importedType);
}
}
}
}
// If Clang couldn't find the type, query the DWARFImporterDelegate.
if (!foundViaClang)
Impl.lookupTypeDeclDWARF(rawName, kind, receiver);
}
void ClangImporter::lookupRelatedEntity(
StringRef rawName, ClangTypeKind kind, StringRef relatedEntityKind,
llvm::function_ref<void(TypeDecl *)> receiver) {
using CISTAttr = ClangImporterSynthesizedTypeAttr;
if (relatedEntityKind ==
CISTAttr::manglingNameForKind(CISTAttr::Kind::NSErrorWrapper) ||
relatedEntityKind ==
CISTAttr::manglingNameForKind(CISTAttr::Kind::NSErrorWrapperAnon)) {
auto underlyingKind = ClangTypeKind::Tag;
if (relatedEntityKind ==
CISTAttr::manglingNameForKind(CISTAttr::Kind::NSErrorWrapperAnon)) {
underlyingKind = ClangTypeKind::Typedef;
}
lookupTypeDecl(rawName, underlyingKind,
[this, receiver] (const TypeDecl *foundType) {
auto *enumDecl =
dyn_cast_or_null<clang::EnumDecl>(foundType->getClangDecl());
if (!enumDecl)
return;
if (!Impl.getEnumInfo(enumDecl).isErrorEnum())
return;
auto *enclosingType =
dyn_cast<NominalTypeDecl>(foundType->getDeclContext());
if (!enclosingType)
return;
receiver(enclosingType);
});
}
}
void ClangModuleUnit::lookupVisibleDecls(ImportPath::Access accessPath,
VisibleDeclConsumer &consumer,
NLKind lookupKind) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// FIXME: Respect the access path.
FilteringVisibleDeclConsumer filterConsumer(consumer, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filterConsumer,
getClangASTContext());
swift::VisibleDeclConsumer *actualConsumer = &filterConsumer;
if (lookupKind == NLKind::UnqualifiedLookup &&
DarwinLegacyFilterDeclConsumer::needsFiltering(clangModule)) {
actualConsumer = &darwinFilterConsumer;
}
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupVisibleDecls(*lookupTable, *actualConsumer);
}
}
namespace {
class VectorDeclPtrConsumer : public swift::VisibleDeclConsumer {
public:
SmallVectorImpl<Decl *> &Results;
explicit VectorDeclPtrConsumer(SmallVectorImpl<Decl *> &Decls)
: Results(Decls) {}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo) override {
Results.push_back(VD);
}
};
} // unnamed namespace
// FIXME(https://github.com/apple/swift-docc/issues/190): Should submodules still be crawled for the symbol graph?
bool ClangModuleUnit::shouldCollectDisplayDecls() const { return isTopLevel(); }
void ClangModuleUnit::getTopLevelDecls(SmallVectorImpl<Decl*> &results) const {
VectorDeclPtrConsumer consumer(results);
FilteringDeclaredDeclConsumer filterConsumer(consumer, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filterConsumer,
getClangASTContext());
const clang::Module *topLevelModule =
clangModule ? clangModule->getTopLevelModule() : nullptr;
swift::VisibleDeclConsumer *actualConsumer = &filterConsumer;
if (DarwinLegacyFilterDeclConsumer::needsFiltering(topLevelModule))
actualConsumer = &darwinFilterConsumer;
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(topLevelModule)) {
// Search it.
owner.lookupVisibleDecls(*lookupTable, *actualConsumer);
// Add the extensions produced by importing categories.
for (auto category : lookupTable->categories()) {
if (auto extension = cast_or_null<ExtensionDecl>(
owner.importDecl(category, owner.CurrentVersion,
/*UseCanonical*/false))) {
results.push_back(extension);
}
}
auto findEnclosingExtension = [](Decl *importedDecl) -> ExtensionDecl * {
for (auto importedDC = importedDecl->getDeclContext();
!importedDC->isModuleContext();
importedDC = importedDC->getParent()) {
if (auto ext = dyn_cast<ExtensionDecl>(importedDC))
return ext;
}
return nullptr;
};
// Retrieve all of the globals that will be mapped to members.
// FIXME: Since we don't represent Clang submodules as Swift
// modules, we're getting everything.
llvm::SmallPtrSet<ExtensionDecl *, 8> knownExtensions;
for (auto entry : lookupTable->allGlobalsAsMembers()) {
auto decl = entry.get<clang::NamedDecl *>();
Decl *importedDecl = owner.importDecl(decl, owner.CurrentVersion);
if (!importedDecl) continue;
// Find the enclosing extension, if there is one.
ExtensionDecl *ext = findEnclosingExtension(importedDecl);
if (ext && knownExtensions.insert(ext).second)
results.push_back(ext);
// If this is a compatibility typealias, the canonical type declaration
// may exist in another extension.
auto alias = dyn_cast<TypeAliasDecl>(importedDecl);
if (!alias || !alias->isCompatibilityAlias()) continue;
auto aliasedTy = alias->getUnderlyingType();
ext = nullptr;
importedDecl = nullptr;
// Note: We can't use getAnyGeneric() here because `aliasedTy`
// might be typealias.
if (auto Ty = dyn_cast<TypeAliasType>(aliasedTy.getPointer()))
importedDecl = Ty->getDecl();
else if (auto Ty = dyn_cast<AnyGenericType>(aliasedTy.getPointer()))
importedDecl = Ty->getDecl();
if (!importedDecl) continue;
ext = findEnclosingExtension(importedDecl);
if (ext && knownExtensions.insert(ext).second)
results.push_back(ext);
}
}
}
ImportDecl *swift::createImportDecl(ASTContext &Ctx,
DeclContext *DC,
ClangNode ClangN,
ArrayRef<clang::Module *> Exported) {
auto *ImportedMod = ClangN.getClangModule();
assert(ImportedMod);
ImportPath::Builder importPath;
auto *TmpMod = ImportedMod;
while (TmpMod) {
// If this is a C++ stdlib module, print its name as `CxxStdlib` instead of
// `std`. `CxxStdlib` is the only accepted spelling of the C++ stdlib module
// name in Swift.
Identifier moduleName = !TmpMod->isSubModule() && TmpMod->Name == "std"
? Ctx.Id_CxxStdlib
: Ctx.getIdentifier(TmpMod->Name);
importPath.push_back(moduleName);
TmpMod = TmpMod->Parent;
}
std::reverse(importPath.begin(), importPath.end());
bool IsExported = false;
for (auto *ExportedMod : Exported) {
if (ImportedMod == ExportedMod) {
IsExported = true;
break;
}
}
auto *ID = ImportDecl::create(Ctx, DC, SourceLoc(),
ImportKind::Module, SourceLoc(),
importPath.get(), ClangN);
if (IsExported)
ID->getAttrs().add(new (Ctx) ExportedAttr(/*IsImplicit=*/false));
return ID;
}
static void getImportDecls(ClangModuleUnit *ClangUnit, const clang::Module *M,
SmallVectorImpl<Decl *> &Results) {
assert(M);
SmallVector<clang::Module *, 1> Exported;
M->getExportedModules(Exported);
ASTContext &Ctx = ClangUnit->getASTContext();
for (auto *ImportedMod : M->Imports) {
auto *ID = createImportDecl(Ctx, ClangUnit, ImportedMod, Exported);
Results.push_back(ID);
}
}
void ClangModuleUnit::getDisplayDecls(SmallVectorImpl<Decl*> &results, bool recursive) const {
if (clangModule)
getImportDecls(const_cast<ClangModuleUnit *>(this), clangModule, results);
getTopLevelDecls(results);
}
void ClangModuleUnit::lookupValue(DeclName name, NLKind lookupKind,
OptionSet<ModuleLookupFlags> flags,
SmallVectorImpl<ValueDecl*> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
VectorDeclConsumer vectorWriter(results);
FilteringVisibleDeclConsumer filteringConsumer(vectorWriter, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filteringConsumer,
getClangASTContext());
swift::VisibleDeclConsumer *consumer = &filteringConsumer;
if (lookupKind == NLKind::UnqualifiedLookup &&
DarwinLegacyFilterDeclConsumer::needsFiltering(clangModule)) {
consumer = &darwinFilterConsumer;
}
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupValue(*lookupTable, name, *consumer);
}
}
bool ClangImporter::Implementation::isVisibleClangEntry(
const clang::NamedDecl *clangDecl) {
// For a declaration, check whether the declaration is hidden.
clang::Sema &clangSema = getClangSema();
if (clangSema.isVisible(clangDecl)) return true;
// Is any redeclaration visible?
for (auto redecl : clangDecl->redecls()) {
if (clangSema.isVisible(cast<clang::NamedDecl>(redecl))) return true;
}
return false;
}
bool ClangImporter::Implementation::isVisibleClangEntry(
SwiftLookupTable::SingleEntry entry) {
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
return isVisibleClangEntry(clangDecl);
}
// If it's a macro from a module, check whether the module has been imported.
if (auto moduleMacro = entry.dyn_cast<clang::ModuleMacro *>()) {
clang::Module *module = moduleMacro->getOwningModule();
return module->NameVisibility == clang::Module::AllVisible;
}
return true;
}
TypeDecl *
ClangModuleUnit::lookupNestedType(Identifier name,
const NominalTypeDecl *baseType) const {
// Special case for error code enums: try looking directly into the struct
// first. But only if it looks like a synthesized error wrapped struct.
if (name == getASTContext().Id_Code &&
!baseType->hasClangNode() &&
isa<StructDecl>(baseType)) {
auto *wrapperStruct = cast<StructDecl>(baseType);
if (auto *codeEnum = owner.lookupErrorCodeEnum(wrapperStruct))
return codeEnum;
// Otherwise, fall back and try via lookup table.
}
auto lookupTable = owner.findLookupTable(clangModule);
if (!lookupTable)
return nullptr;
auto baseTypeContext = owner.getEffectiveClangContext(baseType);
if (!baseTypeContext)
return nullptr;
// FIXME: This is very similar to what's in Implementation::lookupValue and
// Implementation::loadAllMembers.
SmallVector<TypeDecl *, 2> results;
for (auto entry : lookupTable->lookup(SerializedSwiftName(name.str()),
baseTypeContext)) {
// If the entry is not visible, skip it.
if (!owner.isVisibleClangEntry(entry)) continue;
auto *clangDecl = entry.dyn_cast<clang::NamedDecl *>();
if (!clangDecl)
continue;
const auto *clangTypeDecl = clangDecl->getMostRecentDecl();
bool anyMatching = false;
TypeDecl *originalDecl = nullptr;
owner.forEachDistinctName(clangTypeDecl,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
if (anyMatching)
return true;
if (!newName.getDeclName().isSimpleName(name))
return true;
auto decl = dyn_cast_or_null<TypeDecl>(
owner.importDeclReal(clangTypeDecl, nameVersion));
if (!decl)
return false;
if (!originalDecl)
originalDecl = decl;
else if (originalDecl == decl)
return true;
auto *importedContext = decl->getDeclContext()->getSelfNominalTypeDecl();
if (importedContext != baseType)
return true;
assert(decl->getName() == name &&
"importFullName behaved differently from importDecl");
results.push_back(decl);
anyMatching = true;
return true;
});
}
if (results.size() != 1) {
// It's possible that two types were import-as-member'd onto the same base
// type with the same name. In this case, fall back to regular lookup.
return nullptr;
}
return results.front();
}
void ClangImporter::loadExtensions(NominalTypeDecl *nominal,
unsigned previousGeneration) {
// Determine the effective Clang context for this Swift nominal type.
auto effectiveClangContext = Impl.getEffectiveClangContext(nominal);
if (!effectiveClangContext) return;
// For an Objective-C class, import all of the visible categories.
if (auto objcClass = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
effectiveClangContext.getAsDeclContext())) {
SmallVector<clang::NamedDecl *, 4> DelayedCategories;
// Simply importing the categories adds them to the list of extensions.
for (const auto *Cat : objcClass->known_categories()) {
if (getClangSema().isVisible(Cat)) {
Impl.importDeclReal(Cat, Impl.CurrentVersion);
}
}
}
// Dig through each of the Swift lookup tables, creating extensions
// where needed.
(void)Impl.forEachLookupTable([&](SwiftLookupTable &table) -> bool {
// FIXME: If we already looked at this for this generation,
// skip.
for (auto entry : table.allGlobalsAsMembersInContext(effectiveClangContext)) {
// If the entry is not visible, skip it.
if (!Impl.isVisibleClangEntry(entry)) continue;
if (auto decl = entry.dyn_cast<clang::NamedDecl *>()) {
// Import the context of this declaration, which has the
// side effect of creating instantiations.
(void)Impl.importDeclContextOf(decl, effectiveClangContext);
} else {
llvm_unreachable("Macros cannot be imported as members.");
}
}
return false;
});
}
void ClangImporter::loadObjCMethods(
NominalTypeDecl *typeDecl,
ObjCSelector selector,
bool isInstanceMethod,
unsigned previousGeneration,
llvm::TinyPtrVector<AbstractFunctionDecl *> &methods) {
// TODO: We don't currently need to load methods from imported ObjC protocols.
auto classDecl = dyn_cast<ClassDecl>(typeDecl);
if (!classDecl)
return;
const auto *objcClass =
dyn_cast_or_null<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
if (!objcClass)
return;
// Collect the set of visible Objective-C methods with this selector.
clang::Selector clangSelector = Impl.exportSelector(selector);
AbstractFunctionDecl *method = nullptr;
auto *objcMethod = objcClass->lookupMethod(
clangSelector, isInstanceMethod,
/*shallowCategoryLookup=*/false,
/*followSuper=*/false);
if (objcMethod) {
// If we found a property accessor, import the property.
if (objcMethod->isPropertyAccessor())
(void)Impl.importDecl(objcMethod->findPropertyDecl(true),
Impl.CurrentVersion);
method = dyn_cast_or_null<AbstractFunctionDecl>(
Impl.importDecl(objcMethod, Impl.CurrentVersion));
}
// If we didn't find anything, we're done.
if (method == nullptr)
return;
// If we did find something, it might be a duplicate of something we found
// earlier, because we aren't tracking generation counts for Clang modules.
// Filter out the duplicates.
// FIXME: We shouldn't need to do this.
if (!llvm::is_contained(methods, method))
methods.push_back(method);
}
void
ClangModuleUnit::lookupClassMember(ImportPath::Access accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
VectorDeclConsumer consumer(results);
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupObjCMembers(*lookupTable, name, consumer);
}
}
void ClangModuleUnit::lookupClassMembers(ImportPath::Access accessPath,
VisibleDeclConsumer &consumer) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupAllObjCMembers(*lookupTable, consumer);
}
}
void ClangModuleUnit::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// Map the selector into a Clang selector.
auto clangSelector = owner.exportSelector(selector);
if (clangSelector.isNull()) return;
// Collect all of the Objective-C methods with this selector.
SmallVector<clang::ObjCMethodDecl *, 8> objcMethods;
auto &clangSema = owner.getClangSema();
clangSema.CollectMultipleMethodsInGlobalPool(clangSelector,
objcMethods,
/*InstanceFirst=*/true,
/*CheckTheOther=*/false);
clangSema.CollectMultipleMethodsInGlobalPool(clangSelector,
objcMethods,
/*InstanceFirst=*/false,
/*CheckTheOther=*/false);
// Import the methods.
auto &clangCtx = clangSema.getASTContext();
for (auto objcMethod : objcMethods) {
// Verify that this method came from this module.
auto owningClangModule = getClangTopLevelOwningModule(objcMethod, clangCtx);
if (owningClangModule != clangModule) continue;
if (shouldSuppressDeclImport(objcMethod))
continue;
// If we found a property accessor, import the property.
if (objcMethod->isPropertyAccessor())
(void)owner.importDecl(objcMethod->findPropertyDecl(true),
owner.CurrentVersion);
Decl *imported = owner.importDecl(objcMethod, owner.CurrentVersion);
if (!imported) continue;
if (auto func = dyn_cast<AbstractFunctionDecl>(imported))
results.push_back(func);
// If there is an alternate declaration, also look at it.
for (auto alternate : owner.getAlternateDecls(imported)) {
if (auto func = dyn_cast<AbstractFunctionDecl>(alternate))
results.push_back(func);
}
}
}
void ClangModuleUnit::collectLinkLibraries(
ModuleDecl::LinkLibraryCallback callback) const {
if (!clangModule)
return;
// Skip this lib name in favor of export_as name.
if (clangModule->UseExportAsModuleLinkName)
return;
for (auto clangLinkLib : clangModule->LinkLibraries) {
LibraryKind kind;
if (clangLinkLib.IsFramework)
kind = LibraryKind::Framework;
else
kind = LibraryKind::Library;
callback(LinkLibrary(clangLinkLib.Library, kind));
}
}
StringRef ClangModuleUnit::getFilename() const {
if (!clangModule) {
StringRef SinglePCH = owner.getSinglePCHImport();
if (SinglePCH.empty())
return "<imports>";
else
return SinglePCH;
}
if (const clang::FileEntry *F = clangModule->getASTFile())
if (!F->getName().empty())
return F->getName();
return StringRef();
}
StringRef ClangModuleUnit::getLoadedFilename() const {
if (const clang::FileEntry *F = clangModule->getASTFile())
return F->getName();
return StringRef();
}
clang::TargetInfo &ClangImporter::getModuleAvailabilityTarget() const {
return Impl.Instance->getTarget();
}
clang::TargetInfo &ClangImporter::getTargetInfo() const {
return *Impl.getSwiftTargetInfo();
}
clang::ASTContext &ClangImporter::getClangASTContext() const {
return Impl.getClangASTContext();
}
clang::Preprocessor &ClangImporter::getClangPreprocessor() const {
return Impl.getClangPreprocessor();
}
const clang::CompilerInstance &ClangImporter::getClangInstance() const {
return *Impl.Instance;
}
const clang::Module *ClangImporter::getClangOwningModule(ClangNode Node) const {
return Impl.getClangOwningModule(Node);
}
const clang::Module *
ClangImporter::Implementation::getClangOwningModule(ClangNode Node) const {
return ::getClangOwningModule(Node, getClangASTContext());
}
bool ClangImporter::hasTypedef(const clang::Decl *typeDecl) const {
return Impl.DeclsWithSuperfluousTypedefs.count(typeDecl);
}
clang::Sema &ClangImporter::getClangSema() const {
return Impl.getClangSema();
}
clang::CodeGenOptions &ClangImporter::getCodeGenOpts() const {
return *Impl.getSwiftCodeGenOptions();
}
std::string ClangImporter::getClangModuleHash() const {
return Impl.Invocation->getModuleHash(Impl.Instance->getDiagnostics());
}
Optional<Decl *>
ClangImporter::importDeclCached(const clang::NamedDecl *ClangDecl) {
return Impl.importDeclCached(ClangDecl, Impl.CurrentVersion);
}
void ClangImporter::printStatistics() const {
Impl.Instance->getASTReader()->PrintStats();
}
void ClangImporter::verifyAllModules() {
#ifndef NDEBUG
if (Impl.VerifiedDeclsCounter == Impl.ImportedDecls.size())
return;
// Collect the Decls before verifying them; the act of verifying may cause
// more decls to be imported and modify the map while we are iterating it.
size_t verifiedCounter = Impl.ImportedDecls.size();
SmallVector<Decl *, 8> Decls;
for (auto &I : Impl.ImportedDecls)
if (I.first.second == Impl.CurrentVersion)
if (Decl *D = I.second)
Decls.push_back(D);
for (auto D : Decls)
verify(D);
Impl.VerifiedDeclsCounter = verifiedCounter;
#endif
}
const clang::Type *
ClangImporter::parseClangFunctionType(StringRef typeStr,
SourceLoc loc) const {
auto &sema = Impl.getClangSema();
StringRef filename = Impl.SwiftContext.SourceMgr.getDisplayNameForLoc(loc);
// TODO: Obtain a clang::SourceLocation from the swift::SourceLoc we have
auto parsedType = sema.ParseTypeFromStringCallback(typeStr, filename, {});
if (!parsedType.isUsable())
return nullptr;
clang::QualType resultType = clang::Sema::GetTypeFromParser(parsedType.get());
auto *typePtr = resultType.getTypePtrOrNull();
if (typePtr && (typePtr->isFunctionPointerType()
|| typePtr->isBlockPointerType()))
return typePtr;
return nullptr;
}
void ClangImporter::printClangType(const clang::Type *type,
llvm::raw_ostream &os) const {
auto policy = clang::PrintingPolicy(getClangASTContext().getLangOpts());
clang::QualType(type, 0).print(os, policy);
}
//===----------------------------------------------------------------------===//
// ClangModule Implementation
//===----------------------------------------------------------------------===//
static_assert(IsTriviallyDestructible<ClangModuleUnit>::value,
"ClangModuleUnits are BumpPtrAllocated; the d'tor is not called");
ClangModuleUnit::ClangModuleUnit(ModuleDecl &M,
ClangImporter::Implementation &owner,
const clang::Module *clangModule)
: LoadedFile(FileUnitKind::ClangModule, M), owner(owner),
clangModule(clangModule) {
// Capture the file metadata before it goes away.
if (clangModule)
ASTSourceDescriptor = {*const_cast<clang::Module *>(clangModule)};
}
StringRef ClangModuleUnit::getModuleDefiningPath() const {
if (!clangModule || clangModule->DefinitionLoc.isInvalid())
return "";
auto &clangSourceMgr = owner.getClangASTContext().getSourceManager();
return clangSourceMgr.getFilename(clangModule->DefinitionLoc);
}
Optional<clang::ASTSourceDescriptor>
ClangModuleUnit::getASTSourceDescriptor() const {
if (clangModule) {
assert(ASTSourceDescriptor.getModuleOrNull() == clangModule);
return ASTSourceDescriptor;
}
return None;
}
bool ClangModuleUnit::hasClangModule(ModuleDecl *M) {
for (auto F : M->getFiles()) {
if (isa<ClangModuleUnit>(F))
return true;
}
return false;
}
bool ClangModuleUnit::isTopLevel() const {
return !clangModule || !clangModule->isSubModule();
}
bool ClangModuleUnit::isSystemModule() const {
return clangModule && clangModule->IsSystem;
}
clang::ASTContext &ClangModuleUnit::getClangASTContext() const {
return owner.getClangASTContext();
}
StringRef ClangModuleUnit::getExportedModuleName() const {
if (clangModule && !clangModule->ExportAsModule.empty())
return clangModule->ExportAsModule;
// Return module real name (see FileUnit::getExportedModuleName)
return getParentModule()->getRealName().str();
}
ModuleDecl *ClangModuleUnit::getOverlayModule() const {
if (!clangModule)
return nullptr;
if (owner.DisableOverlayModules)
return nullptr;
if (!isTopLevel()) {
// FIXME: Is this correct for submodules?
auto topLevel = clangModule->getTopLevelModule();
auto wrapper = owner.getWrapperForModule(topLevel);
return wrapper->getOverlayModule();
}
if (!overlayModule.getInt()) {
// FIXME: Include proper source location.
ModuleDecl *M = getParentModule();
ASTContext &Ctx = M->getASTContext();
auto overlay = Ctx.getOverlayModule(this);
if (overlay) {
Ctx.addLoadedModule(overlay);
} else {
// FIXME: This is the awful legacy of the old implementation of overlay
// loading laid bare. Because the previous implementation used
// ASTContext::getModuleByIdentifier, it consulted the clang importer
// recursively which forced the current module, its dependencies, and
// the overlays of those dependencies to load and
// become visible in the current context. All of the callers of
// ClangModuleUnit::getOverlayModule are relying on this behavior, and
// untangling them is going to take a heroic amount of effort.
// Clang module loading should *never* *ever* be allowed to load unrelated
// Swift modules.
ImportPath::Module::Builder builder(M->getName());
(void) owner.loadModule(SourceLoc(), std::move(builder).get());
}
auto mutableThis = const_cast<ClangModuleUnit *>(this);
mutableThis->overlayModule.setPointerAndInt(overlay, true);
}
return overlayModule.getPointer();
}
void ClangModuleUnit::getImportedModules(
SmallVectorImpl<ImportedModule> &imports,
ModuleDecl::ImportFilter filter) const {
// Bail out if we /only/ want ImplementationOnly imports; Clang modules never
// have any of these.
if (filter.containsOnly(ModuleDecl::ImportFilterKind::ImplementationOnly))
return;
// [NOTE: Pure-Clang-modules-privately-import-stdlib]:
// Needed for implicitly synthesized conformances.
if (filter.contains(ModuleDecl::ImportFilterKind::Default))
if (auto stdlib = owner.getStdlibModule())
imports.push_back({ImportPath::Access(), stdlib});
SmallVector<clang::Module *, 8> imported;
if (!clangModule) {
// This is the special "imported headers" module.
if (filter.contains(ModuleDecl::ImportFilterKind::Exported)) {
imported.append(owner.ImportedHeaderExports.begin(),
owner.ImportedHeaderExports.end());
}
} else {
clangModule->getExportedModules(imported);
if (filter.contains(ModuleDecl::ImportFilterKind::Default)) {
// Copy in any modules that are imported but not exported.
llvm::SmallPtrSet<clang::Module *, 8> knownModules(imported.begin(),
imported.end());
if (!filter.contains(ModuleDecl::ImportFilterKind::Exported)) {
// Remove the exported ones now that we're done with them.
imported.clear();
}
llvm::copy_if(clangModule->Imports, std::back_inserter(imported),
[&](clang::Module *mod) {
return !knownModules.insert(mod).second;
});
// FIXME: The parent module isn't exactly a private import, but it is
// needed for link dependencies.
if (clangModule->Parent)
imported.push_back(clangModule->Parent);
}
}
auto topLevelOverlay = getOverlayModule();
for (auto importMod : imported) {
auto wrapper = owner.getWrapperForModule(importMod);
auto actualMod = wrapper->getOverlayModule();
if (!actualMod) {
// HACK: Deal with imports of submodules by importing the top-level module
// as well.
auto importTopLevel = importMod->getTopLevelModule();
if (importTopLevel != importMod) {
if (!clangModule || importTopLevel != clangModule->getTopLevelModule()){
auto topLevelWrapper = owner.getWrapperForModule(importTopLevel);
imports.push_back({ ImportPath::Access(),
topLevelWrapper->getParentModule() });
}
}
actualMod = wrapper->getParentModule();
} else if (actualMod == topLevelOverlay) {
actualMod = wrapper->getParentModule();
}
assert(actualMod && "Missing imported overlay");
imports.push_back({ImportPath::Access(), actualMod});
}
}
void ClangModuleUnit::getImportedModulesForLookup(
SmallVectorImpl<ImportedModule> &imports) const {
// Reuse our cached list of imports if we have one.
if (importedModulesForLookup.has_value()) {
imports.append(importedModulesForLookup->begin(),
importedModulesForLookup->end());
return;
}
size_t firstImport = imports.size();
SmallVector<clang::Module *, 8> imported;
const clang::Module *topLevel;
ModuleDecl *topLevelOverlay = getOverlayModule();
if (!clangModule) {
// This is the special "imported headers" module.
imported.append(owner.ImportedHeaderExports.begin(),
owner.ImportedHeaderExports.end());
topLevel = nullptr;
} else {
clangModule->getExportedModules(imported);
topLevel = clangModule->getTopLevelModule();
// If this is a C++ module, implicitly import the Cxx module, which contains
// definitions of Swift protocols that C++ types might conform to, such as
// CxxSequence.
if (owner.SwiftContext.LangOpts.EnableCXXInterop &&
requiresCPlusPlus(clangModule) && clangModule->Name != "CxxShim") {
auto *cxxModule =
owner.SwiftContext.getModuleByIdentifier(owner.SwiftContext.Id_Cxx);
if (cxxModule)
imports.push_back({ImportPath::Access(), cxxModule});
}
}
if (imported.empty()) {
importedModulesForLookup = ArrayRef<ImportedModule>();
return;
}
SmallPtrSet<clang::Module *, 32> seen{imported.begin(), imported.end()};
SmallVector<clang::Module *, 8> tmpBuf;
llvm::SmallSetVector<clang::Module *, 8> topLevelImported;
// Get the transitive set of top-level imports. That is, if a particular
// import is a top-level import, add it. Otherwise, keep searching.
while (!imported.empty()) {
clang::Module *next = imported.pop_back_val();
// HACK: Deal with imports of submodules by importing the top-level module
// as well, unless it's the top-level module we're currently in.
clang::Module *nextTopLevel = next->getTopLevelModule();
if (nextTopLevel != topLevel) {
topLevelImported.insert(nextTopLevel);
// Don't continue looking through submodules of modules that have
// overlays. The overlay might shadow things.
auto wrapper = owner.getWrapperForModule(nextTopLevel);
if (wrapper->getOverlayModule())
continue;
}
// Only look through the current module if it's not top-level.
if (nextTopLevel == next)
continue;
next->getExportedModules(tmpBuf);
for (clang::Module *nextImported : tmpBuf) {
if (seen.insert(nextImported).second)
imported.push_back(nextImported);
}
tmpBuf.clear();
}
for (auto importMod : topLevelImported) {
auto wrapper = owner.getWrapperForModule(importMod);
auto actualMod = wrapper->getOverlayModule();
if (!actualMod || actualMod == topLevelOverlay)
actualMod = wrapper->getParentModule();
assert(actualMod && "Missing imported overlay");
imports.push_back({ImportPath::Access(), actualMod});
}
// Cache our results for use next time.
auto importsToCache = llvm::makeArrayRef(imports).slice(firstImport);
importedModulesForLookup = getASTContext().AllocateCopy(importsToCache);
}
void ClangImporter::getMangledName(raw_ostream &os,
const clang::NamedDecl *clangDecl) const {
if (!Impl.Mangler)
Impl.Mangler.reset(Impl.getClangASTContext().createMangleContext());
if (auto ctor = dyn_cast<clang::CXXConstructorDecl>(clangDecl)) {
auto ctorGlobalDecl =
clang::GlobalDecl(ctor, clang::CXXCtorType::Ctor_Complete);
Impl.Mangler->mangleCXXName(ctorGlobalDecl, os);
} else {
Impl.Mangler->mangleName(clangDecl, os);
}
}
// ---------------------------------------------------------------------------
// Swift lookup tables
// ---------------------------------------------------------------------------
SwiftLookupTable *ClangImporter::Implementation::findLookupTable(
const clang::Module *clangModule) {
// If the Clang module is null, use the bridging header lookup table.
if (!clangModule)
return BridgingHeaderLookupTable.get();
// Submodules share lookup tables with their parents.
if (clangModule->isSubModule())
return findLookupTable(clangModule->getTopLevelModule());
// Look for a Clang module with this name.
auto known = LookupTables.find(clangModule->Name);
if (known == LookupTables.end()) return nullptr;
return known->second.get();
}
SwiftLookupTable *
ClangImporter::Implementation::findLookupTable(const clang::Decl *decl) {
// Contents of a C++ namespace are added to the __ObjC module.
bool isWithinNamespace = false;
auto declContext = decl->getDeclContext();
while (!declContext->isTranslationUnit()) {
if (declContext->isNamespace()) {
isWithinNamespace = true;
break;
}
declContext = declContext->getParent();
}
clang::Module *owningModule = nullptr;
if (!isWithinNamespace) {
// Members of class template specializations don't have an owning module.
if (auto spec = dyn_cast<clang::ClassTemplateSpecializationDecl>(decl))
owningModule = spec->getSpecializedTemplate()->getOwningModule();
else
owningModule = decl->getOwningModule();
}
return findLookupTable(owningModule);
}
bool ClangImporter::Implementation::forEachLookupTable(
llvm::function_ref<bool(SwiftLookupTable &table)> fn) {
// Visit the bridging header's lookup table.
if (fn(*BridgingHeaderLookupTable)) return true;
// Collect and sort the set of module names.
SmallVector<StringRef, 4> moduleNames;
for (const auto &entry : LookupTables) {
moduleNames.push_back(entry.first);
}
llvm::array_pod_sort(moduleNames.begin(), moduleNames.end());
// Visit the lookup tables.
for (auto moduleName : moduleNames) {
if (fn(*LookupTables[moduleName])) return true;
}
return false;
}
bool ClangImporter::Implementation::lookupValue(SwiftLookupTable &table,
DeclName name,
VisibleDeclConsumer &consumer) {
auto &clangCtx = getClangASTContext();
auto clangTU = clangCtx.getTranslationUnitDecl();
auto *importer =
static_cast<ClangImporter *>(SwiftContext.getClangModuleLoader());
bool declFound = false;
if (name.isOperator()) {
for (auto entry : table.lookupMemberOperators(name.getBaseName())) {
if (isVisibleClangEntry(entry)) {
if (auto decl = dyn_cast_or_null<ValueDecl>(
importDeclReal(entry->getMostRecentDecl(), CurrentVersion))) {
consumer.foundDecl(decl, DeclVisibilityKind::VisibleAtTopLevel);
declFound = true;
}
}
}
// If CXXInterop is enabled we need to check the modified operator name as
// well
if (SwiftContext.LangOpts.EnableCXXInterop) {
auto funcBaseName =
DeclBaseName(SwiftContext.getIdentifier(getPrivateOperatorName(
name.getBaseName().getIdentifier().str().str())));
for (auto entry : table.lookupMemberOperators(funcBaseName)) {
if (isVisibleClangEntry(entry)) {
if (auto func = dyn_cast_or_null<FuncDecl>(
importDeclReal(entry->getMostRecentDecl(), CurrentVersion))) {
if (auto synthesizedOperator =
importer->getCXXSynthesizedOperatorFunc(func)) {
consumer.foundDecl(synthesizedOperator,
DeclVisibilityKind::VisibleAtTopLevel);
declFound = true;
}
}
}
}
}
}
for (auto entry : table.lookup(name.getBaseName(), clangTU)) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(entry)) continue;
ValueDecl *decl = nullptr;
// If it's a Clang declaration, try to import it.
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
bool isNamespace = isa<clang::NamespaceDecl>(clangDecl);
Decl *realDecl =
importDeclReal(clangDecl->getMostRecentDecl(), CurrentVersion,
/*useCanonicalDecl*/ !isNamespace);
if (!realDecl)
continue;
decl = cast<ValueDecl>(realDecl);
if (!decl) continue;
} else if (!name.isSpecial()) {
// Try to import a macro.
if (auto modMacro = entry.dyn_cast<clang::ModuleMacro *>())
decl = importMacro(name.getBaseIdentifier(), modMacro);
else if (auto clangMacro = entry.dyn_cast<clang::MacroInfo *>())
decl = importMacro(name.getBaseIdentifier(), clangMacro);
else
llvm_unreachable("new kind of lookup table entry");
if (!decl) continue;
} else {
continue;
}
// If we found a declaration from the standard library, make sure
// it does not show up in the lookup results for the imported
// module.
if (decl->getDeclContext()->isModuleScopeContext() &&
decl->getModuleContext() == getStdlibModule())
continue;
// If the name matched, report this result.
bool anyMatching = false;
// Use the base name for operators; they likely won't have parameters.
auto foundDeclName = decl->getName();
if (foundDeclName.isOperator())
foundDeclName = foundDeclName.getBaseName();
if (foundDeclName.matchesRef(name) &&
decl->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(decl, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
// If there is an alternate declaration and the name matches,
// report this result.
for (auto alternate : getAlternateDecls(decl)) {
if (alternate->getName().matchesRef(name) &&
alternate->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(alternate, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
}
// If we have a declaration and nothing matched so far, try the names used
// in other versions of Swift.
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
const clang::NamedDecl *recentClangDecl =
clangDecl->getMostRecentDecl();
CurrentVersion.forEachOtherImportNameVersion(
[&](ImportNameVersion nameVersion) {
if (anyMatching)
return;
// Check to see if the name and context match what we expect.
ImportedName newName = importFullName(recentClangDecl, nameVersion);
if (!newName.getDeclName().matchesRef(name))
return;
// If we asked for an async import and didn't find one, skip this.
// This filters out duplicates.
if (nameVersion.supportsConcurrency() &&
!newName.getAsyncInfo())
return;
const clang::DeclContext *clangDC =
newName.getEffectiveContext().getAsDeclContext();
if (!clangDC || !clangDC->isFileContext())
return;
// Then try to import the decl under the alternate name.
auto alternateNamedDecl =
cast_or_null<ValueDecl>(importDeclReal(recentClangDecl,
nameVersion));
if (!alternateNamedDecl || alternateNamedDecl == decl)
return;
assert(alternateNamedDecl->getName().matchesRef(name) &&
"importFullName behaved differently from importDecl");
if (alternateNamedDecl->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(alternateNamedDecl,
DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
});
}
declFound = declFound || anyMatching;
}
return declFound;
}
void ClangImporter::Implementation::lookupVisibleDecls(
SwiftLookupTable &table,
VisibleDeclConsumer &consumer) {
// Retrieve and sort all of the base names in this particular table.
auto baseNames = table.allBaseNames();
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Look for namespace-scope entities with each base name.
for (auto baseName : baseNames) {
DeclBaseName name = baseName.toDeclBaseName(SwiftContext);
if (!lookupValue(table, name, consumer) &&
SwiftContext.LangOpts.EnableExperimentalEagerClangModuleDiagnostics) {
diagnoseTopLevelValue(name);
}
}
}
void ClangImporter::Implementation::lookupObjCMembers(
SwiftLookupTable &table,
DeclName name,
VisibleDeclConsumer &consumer) {
for (auto clangDecl : table.lookupObjCMembers(name.getBaseName())) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(clangDecl)) continue;
forEachDistinctName(clangDecl,
[&](ImportedName importedName,
ImportNameVersion nameVersion) -> bool {
// Import the declaration.
auto decl =
cast_or_null<ValueDecl>(importDeclReal(clangDecl, nameVersion));
if (!decl)
return false;
// If the name we found matches, report the declaration.
// FIXME: If we didn't need to check alternate decls here, we could avoid
// importing the member at all by checking importedName ahead of time.
if (decl->getName().matchesRef(name)) {
consumer.foundDecl(decl, DeclVisibilityKind::DynamicLookup,
DynamicLookupInfo::AnyObject);
}
// Check for an alternate declaration; if its name matches,
// report it.
for (auto alternate : getAlternateDecls(decl)) {
if (alternate->getName().matchesRef(name)) {
consumer.foundDecl(alternate, DeclVisibilityKind::DynamicLookup,
DynamicLookupInfo::AnyObject);
}
}
return true;
});
}
}
void ClangImporter::Implementation::lookupAllObjCMembers(
SwiftLookupTable &table,
VisibleDeclConsumer &consumer) {
// Retrieve and sort all of the base names in this particular table.
auto baseNames = table.allBaseNames();
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Look for Objective-C members with each base name.
for (auto baseName : baseNames) {
lookupObjCMembers(table, baseName.toDeclBaseName(SwiftContext), consumer);
}
}
void ClangImporter::Implementation::diagnoseTopLevelValue(
const DeclName &name) {
forEachLookupTable([&](SwiftLookupTable &table) -> bool {
for (const auto &entry :
table.lookup(name.getBaseName(),
EffectiveClangContext(
getClangASTContext().getTranslationUnitDecl()))) {
diagnoseTargetDirectly(importDiagnosticTargetFromLookupTableEntry(entry));
}
return false;
});
}
void ClangImporter::Implementation::diagnoseMemberValue(
const DeclName &name, const clang::DeclContext *container) {
forEachLookupTable([&](SwiftLookupTable &table) -> bool {
for (const auto &entry :
table.lookup(name.getBaseName(), EffectiveClangContext(container))) {
if (clang::NamedDecl *nd = entry.get<clang::NamedDecl *>()) {
// We are only interested in members of a particular context,
// skip other contexts.
if (nd->getDeclContext() != container)
continue;
diagnoseTargetDirectly(
importDiagnosticTargetFromLookupTableEntry(entry));
}
// If the entry is not a NamedDecl, it is a form of macro, which cannot be
// a member value.
}
return false;
});
}
void ClangImporter::Implementation::diagnoseTargetDirectly(
ImportDiagnosticTarget target) {
if (const clang::Decl *decl = target.dyn_cast<const clang::Decl *>()) {
Walker.TraverseDecl(const_cast<clang::Decl *>(decl));
} else if (const clang::MacroInfo *macro =
target.dyn_cast<const clang::MacroInfo *>()) {
Walker.VisitMacro(macro);
}
}
ImportDiagnosticTarget
ClangImporter::Implementation::importDiagnosticTargetFromLookupTableEntry(
SwiftLookupTable::SingleEntry entry) {
if (clang::NamedDecl *decl = entry.dyn_cast<clang::NamedDecl *>()) {
return decl;
} else if (const clang::MacroInfo *macro =
entry.dyn_cast<clang::MacroInfo *>()) {
return macro;
} else if (const clang::ModuleMacro *macro =
entry.dyn_cast<clang::ModuleMacro *>()) {
return macro->getMacroInfo();
}
llvm_unreachable("SwiftLookupTable::Single entry must be a NamedDecl, "
"MacroInfo or ModuleMacro pointer");
}
static void diagnoseForeignReferenceTypeFixit(ClangImporter::Implementation &Impl,
HeaderLoc loc, Diagnostic diag) {
auto importedLoc =
Impl.SwiftContext.getClangModuleLoader()->importSourceLocation(loc.clangLoc);
Impl.diagnose(loc, diag).fixItInsert(
importedLoc, "SWIFT_SHARED_REFERENCE(<#retain#>, <#release#>) ");
}
bool ClangImporter::Implementation::emitDiagnosticsForTarget(
ImportDiagnosticTarget target, clang::SourceLocation fallbackLoc) {
for (auto it = ImportDiagnostics[target].rbegin();
it != ImportDiagnostics[target].rend(); ++it) {
HeaderLoc loc = HeaderLoc(it->loc.isValid() ? it->loc : fallbackLoc);
if (it->diag.getID() == diag::record_not_automatically_importable.ID) {
diagnoseForeignReferenceTypeFixit(*this, loc, it->diag);
} else {
diagnose(loc, it->diag);
}
}
return ImportDiagnostics[target].size();
}
static SmallVector<SwiftLookupTable::SingleEntry, 4>
lookupInClassTemplateSpecialization(
ASTContext &ctx, const clang::ClassTemplateSpecializationDecl *clangDecl,
DeclName name) {
// TODO: we could make this faster if we can cache class templates in the
// lookup table as well.
// Import all the names to figure out which ones we're looking for.
SmallVector<SwiftLookupTable::SingleEntry, 4> found;
for (auto member : clangDecl->decls()) {
auto namedDecl = dyn_cast<clang::NamedDecl>(member);
if (!namedDecl)
continue;
auto memberName = ctx.getClangModuleLoader()->importName(namedDecl);
if (!memberName)
continue;
// Use the base names here because *sometimes* our input name won't have
// any arguments.
if (name.getBaseName().compare(memberName.getBaseName()) == 0)
found.push_back(namedDecl);
}
return found;
}
static bool isDirectLookupMemberContext(const clang::Decl *memberContext,
const clang::Decl *parent) {
if (memberContext->getCanonicalDecl() == parent->getCanonicalDecl())
return true;
if (auto namespaceDecl = dyn_cast<clang::NamespaceDecl>(memberContext)) {
if (namespaceDecl->isInline()) {
if (auto memberCtxParent =
dyn_cast<clang::Decl>(namespaceDecl->getParent()))
return isDirectLookupMemberContext(memberCtxParent, parent);
}
}
return false;
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
ClangDirectLookupRequest::evaluate(Evaluator &evaluator,
ClangDirectLookupDescriptor desc) const {
auto &ctx = desc.decl->getASTContext();
auto *clangDecl = desc.clangDecl;
// Class templates aren't in the lookup table.
if (auto spec = dyn_cast<clang::ClassTemplateSpecializationDecl>(clangDecl))
return lookupInClassTemplateSpecialization(ctx, spec, desc.name);
SwiftLookupTable *lookupTable = nullptr;
if (isa<clang::NamespaceDecl>(clangDecl)) {
// DeclContext of a namespace imported into Swift is the __ObjC module.
lookupTable = ctx.getClangModuleLoader()->findLookupTable(nullptr);
} else {
auto *clangModule =
getClangOwningModule(clangDecl, clangDecl->getASTContext());
lookupTable = ctx.getClangModuleLoader()->findLookupTable(clangModule);
}
auto foundDecls = lookupTable->lookup(
SerializedSwiftName(desc.name.getBaseName()), EffectiveClangContext());
// Make sure that `clangDecl` is the parent of all the members we found.
SmallVector<SwiftLookupTable::SingleEntry, 4> filteredDecls;
llvm::copy_if(foundDecls, std::back_inserter(filteredDecls),
[clangDecl](SwiftLookupTable::SingleEntry decl) {
auto foundClangDecl = decl.dyn_cast<clang::NamedDecl *>();
if (!foundClangDecl)
return false;
auto first = foundClangDecl->getDeclContext();
auto second = cast<clang::DeclContext>(clangDecl);
if (auto firstDecl = dyn_cast<clang::Decl>(first)) {
if (auto secondDecl = dyn_cast<clang::Decl>(second))
return isDirectLookupMemberContext(firstDecl, secondDecl);
else
return false;
}
return first == second;
});
return filteredDecls;
}
TinyPtrVector<ValueDecl *> CXXNamespaceMemberLookup::evaluate(
Evaluator &evaluator, CXXNamespaceMemberLookupDescriptor desc) const {
EnumDecl *namespaceDecl = desc.namespaceDecl;
DeclName name = desc.name;
auto *clangNamespaceDecl =
cast<clang::NamespaceDecl>(namespaceDecl->getClangDecl());
auto &ctx = namespaceDecl->getASTContext();
TinyPtrVector<ValueDecl *> result;
for (auto redecl : clangNamespaceDecl->redecls()) {
auto allResults = evaluateOrDefault(
ctx.evaluator, ClangDirectLookupRequest({namespaceDecl, redecl, name}),
{});
for (auto found : allResults) {
auto clangMember = found.get<clang::NamedDecl *>();
if (auto import =
ctx.getClangModuleLoader()->importDeclDirectly(clangMember))
result.push_back(cast<ValueDecl>(import));
}
}
return result;
}
// Just create a specialized function decl for "__swift_interopStaticCast"
// using the types base and derived.
DeclRefExpr *getInteropStaticCastDeclRefExpr(ASTContext &ctx,
const clang::Module *owningModule,
Type base, Type derived) {
if (base->isForeignReferenceType() && derived->isForeignReferenceType()) {
base = base->wrapInPointer(PTK_UnsafePointer);
derived = derived->wrapInPointer(PTK_UnsafePointer);
}
// Lookup our static cast helper function in the C++ shim module.
auto wrapperModule = ctx.getLoadedModule(ctx.getIdentifier("CxxShim"));
assert(wrapperModule &&
"CxxShim module is required when using members of a base class. "
"Make sure you `import CxxShim`.");
SmallVector<ValueDecl *, 1> results;
ctx.lookupInModule(wrapperModule, "__swift_interopStaticCast", results);
assert(
results.size() == 1 &&
"Did you forget to define a __swift_interopStaticCast helper function?");
FuncDecl *staticCastFn = cast<FuncDecl>(results.back());
// Now we have to force instantiate this. We can't let the type checker do
// this yet because it can't infer the "To" type.
auto subst =
SubstitutionMap::get(staticCastFn->getGenericSignature(), {derived, base},
ArrayRef<ProtocolConformanceRef>());
auto functionTemplate = const_cast<clang::FunctionTemplateDecl *>(
cast<clang::FunctionTemplateDecl>(staticCastFn->getClangDecl()));
auto spec = ctx.getClangModuleLoader()->instantiateCXXFunctionTemplate(
ctx, functionTemplate, subst);
auto specializedStaticCastFn =
cast<FuncDecl>(ctx.getClangModuleLoader()->importDeclDirectly(spec));
auto staticCastRefExpr = new (ctx)
DeclRefExpr(ConcreteDeclRef(specializedStaticCastFn), DeclNameLoc(),
/*implicit*/ true);
staticCastRefExpr->setType(specializedStaticCastFn->getInterfaceType());
return staticCastRefExpr;
}
// Create the following expressions:
// %0 = Builtin.addressof(&self)
// %1 = Builtin.reinterpretCast<UnsafeMutablePointer<Derived>>(%0)
// %2 = __swift_interopStaticCast<UnsafeMutablePointer<Base>?>(%1)
// %3 = %2!
// return %3.pointee
MemberRefExpr *getSelfInteropStaticCast(FuncDecl *funcDecl,
NominalTypeDecl *baseStruct,
NominalTypeDecl *derivedStruct) {
auto &ctx = funcDecl->getASTContext();
auto mutableSelf = [&ctx](FuncDecl *funcDecl) {
auto selfDecl = funcDecl->getImplicitSelfDecl();
auto selfRef =
new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/ true);
selfRef->setType(LValueType::get(selfDecl->getInterfaceType()));
return selfRef;
}(funcDecl);
auto createCallToBuiltin = [&](Identifier name, ArrayRef<Type> substTypes,
Argument arg) {
auto builtinFn = cast<FuncDecl>(getBuiltinValueDecl(ctx, name));
auto substMap =
SubstitutionMap::get(builtinFn->getGenericSignature(), substTypes,
ArrayRef<ProtocolConformanceRef>());
ConcreteDeclRef builtinFnRef(builtinFn, substMap);
auto builtinFnRefExpr =
new (ctx) DeclRefExpr(builtinFnRef, DeclNameLoc(), /*implicit*/ true);
auto fnType = builtinFn->getInterfaceType();
if (auto genericFnType = dyn_cast<GenericFunctionType>(fnType.getPointer()))
fnType = genericFnType->substGenericArgs(substMap);
builtinFnRefExpr->setType(fnType);
auto *argList = ArgumentList::createImplicit(ctx, {arg});
auto callExpr = CallExpr::create(ctx, builtinFnRefExpr, argList, /*implicit*/ true);
callExpr->setThrows(false);
return callExpr;
};
auto rawSelfPointer = createCallToBuiltin(
ctx.getIdentifier("addressof"), {derivedStruct->getSelfInterfaceType()},
Argument::implicitInOut(ctx, mutableSelf));
rawSelfPointer->setType(ctx.TheRawPointerType);
auto derivedPtrType = derivedStruct->getSelfInterfaceType()->wrapInPointer(
PTK_UnsafeMutablePointer);
auto selfPointer =
createCallToBuiltin(ctx.getIdentifier("reinterpretCast"),
{ctx.TheRawPointerType, derivedPtrType},
Argument::unlabeled(rawSelfPointer));
selfPointer->setType(derivedPtrType);
auto staticCastRefExpr = getInteropStaticCastDeclRefExpr(
ctx, baseStruct->getClangDecl()->getOwningModule(),
baseStruct->getSelfInterfaceType()->wrapInPointer(
PTK_UnsafeMutablePointer),
derivedStruct->getSelfInterfaceType()->wrapInPointer(
PTK_UnsafeMutablePointer));
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {selfPointer});
auto casted = CallExpr::createImplicit(ctx, staticCastRefExpr, argList);
// This will be "Optional<UnsafeMutablePointer<Base>>"
casted->setType(cast<FunctionType>(staticCastRefExpr->getType().getPointer())
->getResult());
casted->setThrows(false);
SubstitutionMap pointeeSubst = SubstitutionMap::get(
ctx.getUnsafeMutablePointerDecl()->getGenericSignature(),
{baseStruct->getSelfInterfaceType()}, {});
VarDecl *pointeePropertyDecl =
ctx.getPointerPointeePropertyDecl(PTK_UnsafeMutablePointer);
auto pointeePropertyRefExpr = new (ctx) MemberRefExpr(
casted, SourceLoc(),
ConcreteDeclRef(pointeePropertyDecl, pointeeSubst), DeclNameLoc(),
/*implicit=*/true);
pointeePropertyRefExpr->setType(
LValueType::get(baseStruct->getSelfInterfaceType()));
return pointeePropertyRefExpr;
}
// For const methods generate the following:
// %0 = __swift_interopStaticCast<Base>(self)
// return %0.fn(args...)
// For mutating methods we have to pass self as a pointer:
// %0 = Builtin.addressof(&self)
// %1 = Builtin.reinterpretCast<UnsafeMutablePointer<Derived>>(%0)
// %2 = __swift_interopStaticCast<UnsafeMutablePointer<Base>?>(%1)
// %3 = %2!
// %4 = %3.pointee
// return %4.fn(args...)
static std::pair<BraceStmt *, bool>
synthesizeBaseClassMethodBody(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
auto funcDecl = cast<FuncDecl>(afd);
auto derivedStruct =
cast<NominalTypeDecl>(funcDecl->getDeclContext()->getAsDecl());
auto baseMember = static_cast<FuncDecl *>(context);
auto baseStruct = cast<NominalTypeDecl>(baseMember->getDeclContext()->getAsDecl());
auto baseType = baseStruct->getDeclaredType();
SmallVector<Expr *, 8> forwardingParams;
for (auto param : *funcDecl->getParameters()) {
auto paramRefExpr = new (ctx) DeclRefExpr(param, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(param->getType());
forwardingParams.push_back(paramRefExpr);
}
Argument casted = [&]() {
if (funcDecl->isMutating()) {
return Argument::implicitInOut(
ctx, getSelfInteropStaticCast(funcDecl, baseStruct, derivedStruct));
}
auto *selfDecl = funcDecl->getImplicitSelfDecl();
auto selfExpr = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
selfExpr->setType(selfDecl->getType());
auto staticCastRefExpr = getInteropStaticCastDeclRefExpr(
ctx, baseStruct->getClangDecl()->getOwningModule(), baseType,
derivedStruct->getDeclaredType());
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {selfExpr});
auto castedCall = CallExpr::createImplicit(ctx, staticCastRefExpr, argList);
castedCall->setType(baseType);
castedCall->setThrows(false);
return Argument::unlabeled(castedCall);
}();
auto *baseMemberExpr =
new (ctx) DeclRefExpr(ConcreteDeclRef(baseMember), DeclNameLoc(),
/*Implicit=*/true);
baseMemberExpr->setType(baseMember->getInterfaceType());
auto baseMemberDotCallExpr =
DotSyntaxCallExpr::create(ctx, baseMemberExpr, SourceLoc(), casted);
baseMemberDotCallExpr->setType(baseMember->getMethodInterfaceType());
baseMemberDotCallExpr->setThrows(false);
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, forwardingParams);
auto *baseMemberCallExpr = CallExpr::createImplicit(
ctx, baseMemberDotCallExpr, argList);
baseMemberCallExpr->setType(baseMember->getResultInterfaceType());
baseMemberCallExpr->setThrows(false);
auto returnStmt = new (ctx) ReturnStmt(SourceLoc(), baseMemberCallExpr,
/*implicit=*/true);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
// Getters are relatively easy. Just cast and return the member:
// %0 = __swift_interopStaticCast<Base>(self)
// return %0.member
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldGetterBody(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
AccessorDecl *getterDecl = cast<AccessorDecl>(afd);
AbstractStorageDecl *baseClassVar = static_cast<AbstractStorageDecl *>(context);
NominalTypeDecl *baseStruct =
cast<NominalTypeDecl>(baseClassVar->getDeclContext()->getAsDecl());
NominalTypeDecl *derivedStruct =
cast<NominalTypeDecl>(getterDecl->getDeclContext()->getAsDecl());
auto selfDecl = getterDecl->getImplicitSelfDecl();
auto selfExpr = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
selfExpr->setType(selfDecl->getType());
auto staticCastRefExpr = getInteropStaticCastDeclRefExpr(
ctx, baseStruct->getClangDecl()->getOwningModule(),
baseStruct->getSelfInterfaceType(),
derivedStruct->getSelfInterfaceType());
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {selfExpr});
auto casted = CallExpr::createImplicit(ctx, staticCastRefExpr, argList);
casted->setType(baseStruct->getSelfInterfaceType());
casted->setThrows(false);
Expr *baseMember = nullptr;
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar)) {
auto paramDecl = getterDecl->getParameters()->get(0);
auto paramRefExpr = new (ctx) DeclRefExpr(paramDecl,
DeclNameLoc(),
/*Implicit=*/ true);
paramRefExpr->setType(paramDecl->getType());
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {paramRefExpr});
baseMember = SubscriptExpr::create(ctx, casted, argList, subscript);
baseMember->setType(subscript->getElementInterfaceType());
} else {
// If the base class var has a clang decl, that means it's an access into a
// stored field. Otherwise, we're looking into another base class, so it's a
// another synthesized accessor.
AccessSemantics accessKind = baseClassVar->getClangDecl()
? AccessSemantics::DirectToStorage
: AccessSemantics::DirectToImplementation;
baseMember =
new (ctx) MemberRefExpr(casted, SourceLoc(), baseClassVar, DeclNameLoc(),
/*Implicit=*/true, accessKind);
baseMember->setType(cast<VarDecl>(baseClassVar)->getType());
}
auto ret = new (ctx) ReturnStmt(SourceLoc(), baseMember);
auto body = BraceStmt::create(ctx, SourceLoc(), {ret}, SourceLoc(),
/*implicit*/ true);
return {body, /*isTypeChecked=*/true};
}
// For setters we have to pass self as a pointer and then emit an assign:
// %0 = Builtin.addressof(&self)
// %1 = Builtin.reinterpretCast<UnsafeMutablePointer<Derived>>(%0)
// %2 = __swift_interopStaticCast<UnsafeMutablePointer<Base>?>(%1)
// %3 = %2!
// %4 = %3.pointee
// assign newValue to %4
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldSetterBody(AbstractFunctionDecl *afd, void *context) {
auto setterDecl = cast<AccessorDecl>(afd);
AbstractStorageDecl *baseClassVar = static_cast<AbstractStorageDecl *>(context);
ASTContext &ctx = setterDecl->getASTContext();
NominalTypeDecl *baseStruct =
cast<NominalTypeDecl>(baseClassVar->getDeclContext()->getAsDecl());
NominalTypeDecl *derivedStruct =
cast<NominalTypeDecl>(setterDecl->getDeclContext()->getAsDecl());
auto *pointeePropertyRefExpr =
getSelfInteropStaticCast(setterDecl, baseStruct, derivedStruct);
Expr *storedRef = nullptr;
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar)) {
auto paramDecl = setterDecl->getParameters()->get(1);
auto paramRefExpr = new (ctx) DeclRefExpr(paramDecl,
DeclNameLoc(),
/*Implicit=*/ true);
paramRefExpr->setType(paramDecl->getType());
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {paramRefExpr});
storedRef = SubscriptExpr::create(ctx, pointeePropertyRefExpr, argList, subscript);
storedRef->setType(LValueType::get(subscript->getElementInterfaceType()));
} else {
// If the base class var has a clang decl, that means it's an access into a
// stored field. Otherwise, we're looking into another base class, so it's a
// another synthesized accessor.
AccessSemantics accessKind = baseClassVar->getClangDecl()
? AccessSemantics::DirectToStorage
: AccessSemantics::DirectToImplementation;
storedRef =
new (ctx) MemberRefExpr(pointeePropertyRefExpr, SourceLoc(), baseClassVar,
DeclNameLoc(), /*Implicit=*/true, accessKind);
storedRef->setType(LValueType::get(cast<VarDecl>(baseClassVar)->getType()));
}
auto newValueParamRefExpr =
new (ctx) DeclRefExpr(setterDecl->getParameters()->get(0), DeclNameLoc(),
/*Implicit=*/true);
newValueParamRefExpr->setType(setterDecl->getParameters()->get(0)->getType());
auto assignExpr =
new (ctx) AssignExpr(storedRef, SourceLoc(), newValueParamRefExpr,
/*implicit*/ true);
assignExpr->setType(TupleType::getEmpty(ctx));
auto body = BraceStmt::create(ctx, SourceLoc(), {assignExpr}, SourceLoc(),
/*implicit*/ true);
return {body, /*isTypeChecked=*/true};
}
static SmallVector<AccessorDecl *, 2>
makeBaseClassMemberAccessors(DeclContext *declContext,
AbstractStorageDecl *computedVar,
AbstractStorageDecl *baseClassVar) {
auto &ctx = declContext->getASTContext();
auto computedType = computedVar->getInterfaceType();
ParameterList *bodyParams = nullptr;
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar)) {
computedType = computedType->getAs<FunctionType>()->getResult();
auto idxParam = subscript->getIndices()->get(0);
bodyParams = ParameterList::create(ctx, { idxParam });
} else {
bodyParams = ParameterList::createEmpty(ctx);
}
auto getterDecl = AccessorDecl::create(
ctx,
/*FuncLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(), AccessorKind::Get, computedVar,
/*StaticLoc=*/SourceLoc(),
StaticSpellingKind::None, // TODO: we should handle static vars.
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false,
/*ThrowsLoc=*/SourceLoc(), bodyParams, computedType, declContext);
getterDecl->setIsTransparent(true);
getterDecl->setAccess(AccessLevel::Public);
getterDecl->setBodySynthesizer(synthesizeBaseClassFieldGetterBody,
baseClassVar);
if (baseClassVar->getWriteImpl() == WriteImplKind::Immutable)
return {getterDecl};
auto newValueParam =
new (ctx) ParamDecl(SourceLoc(), SourceLoc(), Identifier(), SourceLoc(),
ctx.getIdentifier("newValue"), declContext);
newValueParam->setSpecifier(ParamSpecifier::Default);
newValueParam->setInterfaceType(computedType);
ParameterList *setterBodyParams = nullptr;
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar)) {
auto idxParam = subscript->getIndices()->get(0);
bodyParams = ParameterList::create(ctx, { idxParam });
setterBodyParams = ParameterList::create(ctx, { newValueParam, idxParam });
} else {
setterBodyParams = ParameterList::create(ctx, { newValueParam });
}
auto setterDecl = AccessorDecl::create(
ctx,
/*FuncLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(), AccessorKind::Set, computedVar,
/*StaticLoc=*/SourceLoc(),
StaticSpellingKind::None, // TODO: we should handle static vars.
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false,
/*ThrowsLoc=*/SourceLoc(), setterBodyParams, TupleType::getEmpty(ctx),
declContext);
setterDecl->setIsTransparent(true);
setterDecl->setAccess(AccessLevel::Public);
setterDecl->setBodySynthesizer(synthesizeBaseClassFieldSetterBody,
baseClassVar);
setterDecl->setSelfAccessKind(SelfAccessKind::Mutating);
return {getterDecl, setterDecl};
}
// Clone attributes that have been imported from Clang.
DeclAttributes cloneImportedAttributes(ValueDecl *decl, ASTContext &context) {
auto attrs = DeclAttributes();
for (auto attr : decl->getAttrs()) {
switch (attr->getKind()) {
case DAK_Available: {
attrs.add(cast<AvailableAttr>(attr)->clone(context, true));
break;
}
case DAK_Custom: {
if (CustomAttr *cAttr = cast<CustomAttr>(attr)) {
attrs.add(CustomAttr::create(context, SourceLoc(), cAttr->getTypeExpr(),
cAttr->getInitContext(), cAttr->getArgs(),
true));
}
break;
}
case DAK_DiscardableResult: {
attrs.add(new (context) DiscardableResultAttr(true));
break;
}
case DAK_Effects: {
attrs.add(cast<EffectsAttr>(attr)->clone(context));
break;
}
case DAK_Final: {
attrs.add(new (context) FinalAttr(true));
break;
}
case DAK_Transparent: {
attrs.add(new (context) TransparentAttr(true));
break;
}
case DAK_WarnUnqualifiedAccess: {
attrs.add(new (context) WarnUnqualifiedAccessAttr(true));
break;
}
default:
break;
}
}
return attrs;
}
static ValueDecl *
cloneBaseMemberDecl(ValueDecl *decl, DeclContext *newContext) {
if (auto fn = dyn_cast<FuncDecl>(decl)) {
// TODO: function templates are specialized during type checking so to
// support these we need to tell Swift to type check the synthesized bodies.
// TODO: we also currently don't support static functions. That shouldn't be
// too hard.
if (fn->isStatic() ||
(fn->getClangDecl() &&
isa<clang::FunctionTemplateDecl>(fn->getClangDecl())))
return nullptr;
ASTContext &context = decl->getASTContext();
auto out = FuncDecl::createImplicit(
context, fn->getStaticSpelling(), fn->getName(),
fn->getNameLoc(), fn->hasAsync(), fn->hasThrows(),
fn->getGenericParams(), fn->getParameters(),
fn->getResultInterfaceType(), newContext);
auto inheritedAttributes = cloneImportedAttributes(decl, context);
out->getAttrs().add(inheritedAttributes);
out->copyFormalAccessFrom(fn);
out->setBodySynthesizer(synthesizeBaseClassMethodBody, fn);
out->setSelfAccessKind(fn->getSelfAccessKind());
return out;
}
if (auto subscript = dyn_cast<SubscriptDecl>(decl)) {
auto out = SubscriptDecl::create(
subscript->getASTContext(), subscript->getName(), subscript->getStaticLoc(),
subscript->getStaticSpelling(), subscript->getSubscriptLoc(),
subscript->getIndices(), subscript->getNameLoc(), subscript->getElementInterfaceType(),
newContext, subscript->getGenericParams());
out->copyFormalAccessFrom(subscript);
out->setAccessors(SourceLoc(),
makeBaseClassMemberAccessors(newContext, out, subscript),
SourceLoc());
out->setImplInfo(subscript->getImplInfo());
return out;
}
if (auto var = dyn_cast<VarDecl>(decl)) {
auto rawMemory = allocateMemoryForDecl<VarDecl>(var->getASTContext(),
sizeof(VarDecl), false);
auto out =
new (rawMemory) VarDecl(var->isStatic(), var->getIntroducer(),
var->getLoc(), var->getName(), newContext);
out->setInterfaceType(var->getInterfaceType());
out->setIsObjC(var->isObjC());
out->setIsDynamic(var->isDynamic());
out->copyFormalAccessFrom(var);
out->setAccessors(SourceLoc(),
makeBaseClassMemberAccessors(newContext, out, var),
SourceLoc());
auto isMutable = var->getWriteImpl() == WriteImplKind::Immutable
? StorageIsNotMutable : StorageIsMutable;
out->setImplInfo(StorageImplInfo::getComputed(isMutable));
out->setIsSetterMutating(true);
return out;
}
if (auto typeAlias = dyn_cast<TypeAliasDecl>(decl)) {
auto rawMemory = allocateMemoryForDecl<TypeAliasDecl>(
typeAlias->getASTContext(), sizeof(TypeAliasDecl), false);
auto out = new (rawMemory) TypeAliasDecl(
typeAlias->getLoc(), typeAlias->getEqualLoc(), typeAlias->getName(),
typeAlias->getNameLoc(), typeAlias->getGenericParams(), newContext);
out->setUnderlyingType(typeAlias->getUnderlyingType());
out->copyFormalAccessFrom(typeAlias);
return out;
}
if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
auto rawMemory = allocateMemoryForDecl<TypeAliasDecl>(
typeDecl->getASTContext(), sizeof(TypeAliasDecl), false);
auto out = new (rawMemory) TypeAliasDecl(
typeDecl->getLoc(), typeDecl->getLoc(), typeDecl->getName(),
typeDecl->getLoc(), nullptr, newContext);
out->setUnderlyingType(typeDecl->getInterfaceType());
out->copyFormalAccessFrom(typeDecl);
return out;
}
return nullptr;
}
TinyPtrVector<ValueDecl *> ClangRecordMemberLookup::evaluate(
Evaluator &evaluator, ClangRecordMemberLookupDescriptor desc) const {
NominalTypeDecl *recordDecl = desc.recordDecl;
DeclName name = desc.name;
auto &ctx = recordDecl->getASTContext();
auto allResults = evaluateOrDefault(
ctx.evaluator,
ClangDirectLookupRequest({recordDecl, recordDecl->getClangDecl(), name}),
{});
// Find the results that are actually a member of "recordDecl".
TinyPtrVector<ValueDecl *> result;
ClangModuleLoader *clangModuleLoader = ctx.getClangModuleLoader();
for (auto found : allResults) {
auto named = found.get<clang::NamedDecl *>();
if (dyn_cast<clang::Decl>(named->getDeclContext()) ==
recordDecl->getClangDecl()) {
// Don't import constructors on foreign reference types.
if (isa<clang::CXXConstructorDecl>(named) && isa<ClassDecl>(recordDecl))
continue;
if (auto import = clangModuleLoader->importDeclDirectly(named))
result.push_back(cast<ValueDecl>(import));
}
}
// If this is a C++ record, look through any base classes.
if (auto cxxRecord =
dyn_cast<clang::CXXRecordDecl>(recordDecl->getClangDecl())) {
for (auto base : cxxRecord->bases()) {
if (base.getAccessSpecifier() != clang::AccessSpecifier::AS_public)
continue;
clang::QualType baseType = base.getType();
if (auto spectType = dyn_cast<clang::TemplateSpecializationType>(baseType))
baseType = spectType->desugar();
if (!isa<clang::RecordType>(baseType.getCanonicalType()))
continue;
auto *baseRecord = baseType->getAs<clang::RecordType>()->getDecl();
if (auto import = clangModuleLoader->importDeclDirectly(baseRecord)) {
// If we are looking up the base class, go no further. We will have
// already found it during the other lookup.
if (cast<ValueDecl>(import)->getName() == name)
continue;
// Add Clang members that are imported lazily.
auto baseResults = evaluateOrDefault(
ctx.evaluator,
ClangRecordMemberLookup({cast<NominalTypeDecl>(import), name}), {});
// Add members that are synthesized eagerly, such as subscripts.
for (auto member :
cast<NominalTypeDecl>(import)->getCurrentMembersWithoutLoading()) {
if (auto namedMember = dyn_cast<ValueDecl>(member)) {
if (namedMember->hasName() &&
namedMember->getName().getBaseName() == name &&
// Make sure we don't add duplicate entries, as that would
// wrongly imply that lookup is ambiguous.
!llvm::is_contained(baseResults, namedMember)) {
baseResults.push_back(namedMember);
}
}
}
for (auto foundInBase : baseResults) {
if (auto newDecl = clangModuleLoader->importBaseMemberDecl(
foundInBase, recordDecl)) {
result.push_back(newDecl);
}
}
}
}
}
return result;
}
IterableDeclContext *IterableDeclContext::getImplementationContext() {
if (auto implDecl = getDecl()->getObjCImplementationDecl())
if (auto implExt = dyn_cast<ExtensionDecl>(implDecl))
return implExt;
return this;
}
namespace {
struct OrderDecls {
bool operator () (Decl *lhs, Decl *rhs) const {
if (lhs->getDeclContext()->getModuleScopeContext()
== rhs->getDeclContext()->getModuleScopeContext()) {
auto &SM = lhs->getASTContext().SourceMgr;
return SM.isBeforeInBuffer(lhs->getLoc(), rhs->getLoc());
}
auto lhsFile =
dyn_cast<SourceFile>(lhs->getDeclContext()->getModuleScopeContext());
auto rhsFile =
dyn_cast<SourceFile>(rhs->getDeclContext()->getModuleScopeContext());
if (!lhsFile)
return false;
if (!rhsFile)
return true;
return lhsFile->getFilename() < rhsFile->getFilename();
}
};
}
static llvm::TinyPtrVector<Decl *>
findImplsGivenInterface(ClassDecl *classDecl, Identifier categoryName) {
llvm::TinyPtrVector<Decl *> impls;
for (ExtensionDecl *ext : classDecl->getExtensions()) {
if (ext->isObjCImplementation()
&& ext->getCategoryNameForObjCImplementation() == categoryName)
impls.push_back(ext);
}
if (impls.size() > 1) {
llvm::sort(impls, OrderDecls());
auto &diags = classDecl->getASTContext().Diags;
for (auto extraImpl : llvm::ArrayRef<Decl *>(impls).drop_front()) {
auto attr = extraImpl->getAttrs().getAttribute<ObjCImplementationAttr>();
attr->setCategoryNameInvalid();
diags.diagnose(attr->getLocation(), diag::objc_implementation_two_impls,
categoryName, classDecl)
.fixItRemove(attr->getRangeWithAt());
diags.diagnose(impls.front(), diag::previous_objc_implementation);
}
}
return impls;
}
Identifier ExtensionDecl::getObjCCategoryName() const {
// Could it be an imported category?
if (!hasClangNode())
// Nope, not imported.
return Identifier();
auto category = dyn_cast<clang::ObjCCategoryDecl>(getClangDecl());
if (!category)
// Nope, not a category.
return Identifier();
// We'll look for an implementation with this category name.
auto clangCategoryName = category->getName();
return getASTContext().getIdentifier(clangCategoryName);
}
static IterableDeclContext *
findInterfaceGivenImpl(ClassDecl *classDecl, ExtensionDecl *ext) {
assert(ext->isObjCImplementation());
if (auto name = ext->getCategoryNameForObjCImplementation())
return classDecl->getImportedObjCCategory(*name);
return nullptr;
}
static ObjCInterfaceAndImplementation
constructResult(Decl *interface, llvm::TinyPtrVector<Decl *> impls) {
if (impls.empty())
return ObjCInterfaceAndImplementation();
return ObjCInterfaceAndImplementation(interface, impls.front());
}
static ObjCInterfaceAndImplementation
findContextInterfaceAndImplementation(DeclContext *dc) {
if (!dc)
return {};
ClassDecl *classDecl = dc->getSelfClassDecl();
if (!classDecl || !classDecl->hasClangNode())
// Only extensions of ObjC classes can have @_objcImplementations.
return {};
// The name of the category to find implementations for, if `dc` turns out
// to be an interface.
Identifier categoryName;
// The interface, if we find one.
Decl *interfaceDecl;
if (auto ext = dyn_cast<ExtensionDecl>(dc)) {
// Is this an `@_objcImplementation extension`? If so, find the interface
// and process that instead.
if (ext->isObjCImplementation()) {
if (auto interfaceDC = findInterfaceGivenImpl(classDecl, ext))
return findContextInterfaceAndImplementation(
interfaceDC->getAsGenericContext());
return {};
}
// Is this an imported category? If so, extract its name so we can look for
// implementations of that category.
categoryName = ext->getObjCCategoryName();
if (categoryName.empty())
return {};
interfaceDecl = ext;
} else {
// Must be an imported class. Look for its main implementation.
assert(isa_and_nonnull<ClassDecl>(dc));
categoryName = Identifier(); // technically a no-op
interfaceDecl = classDecl;
}
// If we reach here, we found an ObjC @interface of some kind and want to
// look for extensions implementing it.
auto implDecls = findImplsGivenInterface(classDecl, categoryName);
return constructResult(interfaceDecl, implDecls);
}
ObjCInterfaceAndImplementation ObjCInterfaceAndImplementationRequest::
evaluate(Evaluator &evaluator, Decl *decl) const {
// These have direct links to their counterparts through the
// `@_objcImplementation` attribute. Let's resolve that.
// (Also directing nulls here, where they'll early-return.)
if (auto ty = dyn_cast_or_null<NominalTypeDecl>(decl))
return findContextInterfaceAndImplementation(ty);
else if (auto ext = dyn_cast<ExtensionDecl>(decl))
return findContextInterfaceAndImplementation(ext);
// Anything else is resolved by first locating the context's interface and
// impl, then matching it to its counterpart. (Instead of calling
// `findContextInterfaceAndImplementation()` directly, we'll use the request
// recursively to take advantage of caching.)
auto contextDecl = decl->getDeclContext()->getAsDecl();
if (!contextDecl)
return {};
ObjCInterfaceAndImplementationRequest req(contextDecl);
/*auto contextPair =*/ evaluateOrDefault(evaluator, req, {});
// TODO: Implement member matching.
return {};
}
void swift::simple_display(llvm::raw_ostream &out,
const ObjCInterfaceAndImplementation &pair) {
if (!pair) {
out << "no clang interface or @_objcImplementation";
return;
}
out << "clang interface ";
simple_display(out, pair.interfaceDecl);
out << " with @_objcImplementation ";
simple_display(out, pair.implementationDecl);
}
SourceLoc
swift::extractNearestSourceLoc(const ObjCInterfaceAndImplementation &pair) {
if (pair.implementationDecl)
return SourceLoc();
return extractNearestSourceLoc(pair.implementationDecl);
}
Decl *Decl::getImplementedObjCDecl() const {
if (hasClangNode())
// This *is* the interface, if there is one.
return nullptr;
ObjCInterfaceAndImplementationRequest req{const_cast<Decl *>(this)};
return evaluateOrDefault(getASTContext().evaluator, req, {})
.interfaceDecl;
}
DeclContext *DeclContext::getImplementedObjCContext() const {
if (auto ED = dyn_cast<ExtensionDecl>(this))
if (auto impl = dyn_cast_or_null<DeclContext>(ED->getImplementedObjCDecl()))
return impl;
return const_cast<DeclContext *>(this);
}
Decl *Decl::getObjCImplementationDecl() const {
if (!hasClangNode())
// This *is* the implementation, if it has one.
return nullptr;
ObjCInterfaceAndImplementationRequest req{const_cast<Decl *>(this)};
return evaluateOrDefault(getASTContext().evaluator, req, {})
.implementationDecl;
}
IterableDeclContext *ClangCategoryLookupRequest::
evaluate(Evaluator &evaluator, ClangCategoryLookupDescriptor desc) const {
const ClassDecl *CD = desc.classDecl;
Identifier categoryName = desc.categoryName;
auto clangClass =
dyn_cast_or_null<clang::ObjCInterfaceDecl>(CD->getClangDecl());
if (!clangClass)
return nullptr;
if (categoryName.empty())
// No category name, so we want the decl for the `@interface` in
// `clangClass`.
return const_cast<ClassDecl *>(CD);
auto ident = &clangClass->getASTContext().Idents.get(categoryName.str());
auto clangCategory = clangClass->FindCategoryDeclaration(ident);
if (!clangCategory)
return nullptr;
ASTContext &ctx = CD->getASTContext();
auto imported = ctx.getClangModuleLoader()->importDeclDirectly(clangCategory);
return cast_or_null<ExtensionDecl>(imported);
}
IterableDeclContext *ClassDecl::getImportedObjCCategory(Identifier name) const {
ClangCategoryLookupDescriptor desc{this, name};
return evaluateOrDefault(getASTContext().evaluator,
ClangCategoryLookupRequest(desc),
nullptr);
}
void swift::simple_display(llvm::raw_ostream &out,
const ClangCategoryLookupDescriptor &desc) {
out << "Looking up @interface for ";
if (!desc.categoryName.empty()) {
out << "category ";
simple_display(out, desc.categoryName);
}
else {
out << "main body";
}
out << " of ";
simple_display(out, desc.classDecl);
}
SourceLoc
swift::extractNearestSourceLoc(const ClangCategoryLookupDescriptor &desc) {
return extractNearestSourceLoc(desc.classDecl);
}
TinyPtrVector<ValueDecl *>
ClangImporter::Implementation::loadNamedMembers(
const IterableDeclContext *IDC, DeclBaseName N, uint64_t contextData) {
auto *D = IDC->getDecl();
auto *DC = D->getInnermostDeclContext();
auto *CD = D->getClangDecl();
auto *CDC = cast<clang::DeclContext>(CD);
assert(CD && "loadNamedMembers on a Decl without a clangDecl");
auto *nominal = DC->getSelfNominalTypeDecl();
auto effectiveClangContext = getEffectiveClangContext(nominal);
// There are 3 cases:
//
// - The decl is from a bridging header, CMO is Some(nullptr)
// which denotes the __ObjC Swift module and its associated
// BridgingHeaderLookupTable.
//
// - The decl is from a clang module, CMO is Some(M) for non-null
// M and we can use the table for that module.
//
// - The decl is a forward declaration, CMO is None, which should
// never be the case if we got here (someone is asking for members).
//
// findLookupTable, below, handles the first two cases; we assert on the
// third.
auto CMO = getClangSubmoduleForDecl(CD);
assert(CMO && "loadNamedMembers on a forward-declared Decl");
auto table = findLookupTable(*CMO);
assert(table && "clang module without lookup table");
assert(!isa<clang::NamespaceDecl>(CD) && "Namespace members should be loaded"
"via a request.");
assert(isa<clang::ObjCContainerDecl>(CD));
// Force the members of the entire inheritance hierarchy to be loaded and
// deserialized before loading the named member of a class. This warms up
// ClangImporter::Implementation::MembersForNominal, used for computing
// property overrides.
//
// FIXME: If getOverriddenDecl() kicked off a request for imported decls,
// we could postpone this until overrides are actually requested.
if (auto *classDecl = dyn_cast<ClassDecl>(D))
if (auto *superclassDecl = classDecl->getSuperclassDecl())
(void) const_cast<ClassDecl *>(superclassDecl)->lookupDirect(N);
// TODO: update this to use the requestified lookup.
TinyPtrVector<ValueDecl *> Members;
for (auto entry : table->lookup(SerializedSwiftName(N),
effectiveClangContext)) {
if (!entry.is<clang::NamedDecl *>()) continue;
auto member = entry.get<clang::NamedDecl *>();
if (!isVisibleClangEntry(member)) continue;
// Skip Decls from different clang::DeclContexts
if (member->getDeclContext() != CDC) continue;
SmallVector<Decl*, 4> tmp;
insertMembersAndAlternates(member, tmp);
for (auto *TD : tmp) {
if (auto *V = dyn_cast<ValueDecl>(TD)) {
// Skip ValueDecls if they import under different names.
if (V->getBaseName() == N) {
Members.push_back(V);
}
}
// If the property's accessors have alternate decls, we might have
// to import those too.
if (auto *ASD = dyn_cast<AbstractStorageDecl>(TD)) {
for (auto *AD : ASD->getAllAccessors()) {
for (auto *D : getAlternateDecls(AD)) {
if (D->getBaseName() == N)
Members.push_back(D);
}
}
}
}
}
for (auto entry : table->lookupGlobalsAsMembers(SerializedSwiftName(N),
effectiveClangContext)) {
if (!entry.is<clang::NamedDecl *>()) continue;
auto member = entry.get<clang::NamedDecl *>();
if (!isVisibleClangEntry(member)) continue;
// Skip Decls from different clang::DeclContexts
if (member->getDeclContext() != CDC) continue;
SmallVector<Decl*, 4> tmp;
insertMembersAndAlternates(member, tmp);
for (auto *TD : tmp) {
if (auto *V = dyn_cast<ValueDecl>(TD)) {
// Skip ValueDecls if they import under different names.
if (V->getBaseName() == N) {
Members.push_back(V);
}
}
}
}
if (N == DeclBaseName::createConstructor()) {
if (auto *classDecl = dyn_cast<ClassDecl>(D)) {
SmallVector<Decl *, 4> ctors;
importInheritedConstructors(cast<clang::ObjCInterfaceDecl>(CD),
classDecl, ctors);
for (auto ctor : ctors)
Members.push_back(cast<ValueDecl>(ctor));
}
}
if (!isa<ProtocolDecl>(D)) {
if (auto *OCD = dyn_cast<clang::ObjCContainerDecl>(CD)) {
SmallVector<Decl *, 1> newMembers;
importMirroredProtocolMembers(OCD, DC, N, newMembers);
for (auto member : newMembers)
Members.push_back(cast<ValueDecl>(member));
}
}
return Members;
}
EffectiveClangContext ClangImporter::Implementation::getEffectiveClangContext(
const NominalTypeDecl *nominal) {
// If we have a Clang declaration, look at it to determine the
// effective Clang context.
if (auto constClangDecl = nominal->getClangDecl()) {
auto clangDecl = const_cast<clang::Decl *>(constClangDecl);
if (auto dc = dyn_cast<clang::DeclContext>(clangDecl))
return EffectiveClangContext(dc);
if (auto typedefName = dyn_cast<clang::TypedefNameDecl>(clangDecl))
return EffectiveClangContext(typedefName);
return EffectiveClangContext();
}
// If it's an @objc entity, go look for it.
// Note that we're stepping lightly here to avoid computing isObjC()
// too early.
if (isa<ClassDecl>(nominal) &&
(nominal->getAttrs().hasAttribute<ObjCAttr>() ||
(!nominal->getParentSourceFile() && nominal->isObjC()))) {
// Map the name. If we can't represent the Swift name in Clang.
Identifier name = nominal->getName();
if (auto objcAttr = nominal->getAttrs().getAttribute<ObjCAttr>()) {
if (auto objcName = objcAttr->getName()) {
if (objcName->getNumArgs() == 0) {
// This is an error if not 0, but it should be caught later.
name = objcName->getSimpleName();
}
}
}
auto clangName = exportName(name);
if (!clangName)
return EffectiveClangContext();
// Perform name lookup into the global scope.
auto &sema = Instance->getSema();
clang::LookupResult lookupResult(sema, clangName,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (sema.LookupName(lookupResult, /*Scope=*/nullptr)) {
// FIXME: Filter based on access path? C++ access control?
for (auto clangDecl : lookupResult) {
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(clangDecl))
return EffectiveClangContext(objcClass);
/// FIXME: Other type declarations should also be okay?
}
}
// For source compatibility reasons, fall back to the Swift name.
//
// This is how people worked around not being able to import-as-member onto
// Swift types by their ObjC name before the above code to handle ObjCAttr
// was added.
if (name != nominal->getName())
clangName = exportName(nominal->getName());
lookupResult.clear();
lookupResult.setLookupName(clangName);
// FIXME: This loop is duplicated from above, but doesn't obviously factor
// out in a nice way.
if (sema.LookupName(lookupResult, /*Scope=*/nullptr)) {
// FIXME: Filter based on access path? C++ access control?
for (auto clangDecl : lookupResult) {
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(clangDecl))
return EffectiveClangContext(objcClass);
/// FIXME: Other type declarations should also be okay?
}
}
}
return EffectiveClangContext();
}
void ClangImporter::dumpSwiftLookupTables() {
Impl.dumpSwiftLookupTables();
}
void ClangImporter::Implementation::dumpSwiftLookupTables() {
// Sort the module names so we can print in a deterministic order.
SmallVector<StringRef, 4> moduleNames;
for (const auto &lookupTable : LookupTables) {
moduleNames.push_back(lookupTable.first);
}
array_pod_sort(moduleNames.begin(), moduleNames.end());
// Print out the lookup tables for the various modules.
for (auto moduleName : moduleNames) {
llvm::errs() << "<<" << moduleName << " lookup table>>\n";
LookupTables[moduleName]->deserializeAll();
LookupTables[moduleName]->dump(llvm::errs());
}
llvm::errs() << "<<Bridging header lookup table>>\n";
BridgingHeaderLookupTable->dump(llvm::errs());
}
DeclName ClangImporter::
importName(const clang::NamedDecl *D,
clang::DeclarationName preferredName) {
return Impl.importFullName(D, Impl.CurrentVersion, preferredName).
getDeclName();
}
Type ClangImporter::importFunctionReturnType(
const clang::FunctionDecl *clangDecl, DeclContext *dc) {
if (auto imported = Impl.importFunctionReturnType(clangDecl, dc).getType())
return imported;
return dc->getASTContext().getNeverType();
}
Type ClangImporter::importVarDeclType(
const clang::VarDecl *decl, VarDecl *swiftDecl, DeclContext *dc) {
if (decl->getTemplateInstantiationPattern())
Impl.getClangSema().InstantiateVariableDefinition(
decl->getLocation(),
const_cast<clang::VarDecl *>(decl));
// If the declaration is const, consider it audited.
// We can assume that loading a const global variable doesn't
// involve an ownership transfer.
bool isAudited = decl->getType().isConstQualified();
auto declType = decl->getType();
// Special case: NS Notifications
if (isNSNotificationGlobal(decl))
if (auto newtypeDecl = findSwiftNewtype(decl, Impl.getClangSema(),
Impl.CurrentVersion))
declType = Impl.getClangASTContext().getTypedefType(newtypeDecl);
bool isInSystemModule =
cast<ClangModuleUnit>(dc->getModuleScopeContext())->isSystemModule();
// Note that we deliberately don't bridge most globals because we want to
// preserve pointer identity.
auto importedType =
Impl.importType(declType,
(isAudited ? ImportTypeKind::AuditedVariable
: ImportTypeKind::Variable),
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
isInSystemModule, Bridgeability::None,
getImportTypeAttrs(decl));
if (!importedType)
return nullptr;
if (importedType.isImplicitlyUnwrapped())
swiftDecl->setImplicitlyUnwrappedOptional(true);
return importedType.getType();
}
bool ClangImporter::isInOverlayModuleForImportedModule(
const DeclContext *overlayDC,
const DeclContext *importedDC) {
overlayDC = overlayDC->getModuleScopeContext();
importedDC = importedDC->getModuleScopeContext();
auto importedClangModuleUnit = dyn_cast<ClangModuleUnit>(importedDC);
if (!importedClangModuleUnit || !importedClangModuleUnit->getClangModule())
return false;
auto overlayModule = overlayDC->getParentModule();
if (overlayModule == importedClangModuleUnit->getOverlayModule())
return true;
// Is this a private module that's re-exported to the public (overlay) name?
auto clangModule =
importedClangModuleUnit->getClangModule()->getTopLevelModule();
return !clangModule->ExportAsModule.empty() &&
clangModule->ExportAsModule == overlayModule->getName().str();
}
/// Extract the specified-or-defaulted -module-cache-path that winds up in
/// the clang importer, for reuse as the .swiftmodule cache path when
/// building a ModuleInterfaceLoader.
std::string
swift::getModuleCachePathFromClang(const clang::CompilerInstance &Clang) {
if (!Clang.hasPreprocessor())
return "";
std::string SpecificModuleCachePath =
Clang.getPreprocessor().getHeaderSearchInfo().getModuleCachePath().str();
// The returned-from-clang module cache path includes a suffix directory
// that is specific to the clang version and invocation; we want the
// directory above that.
return llvm::sys::path::parent_path(SpecificModuleCachePath).str();
}
clang::FunctionDecl *ClangImporter::instantiateCXXFunctionTemplate(
ASTContext &ctx, clang::FunctionTemplateDecl *func, SubstitutionMap subst) {
SmallVector<clang::TemplateArgument, 4> templateSubst;
std::unique_ptr<TemplateInstantiationError> error =
ctx.getClangTemplateArguments(func->getTemplateParameters(),
subst.getReplacementTypes(), templateSubst);
if (error) {
std::string failedTypesStr;
llvm::raw_string_ostream failedTypesStrStream(failedTypesStr);
llvm::interleaveComma(error->failedTypes, failedTypesStrStream);
std::string funcName;
llvm::raw_string_ostream funcNameStream(funcName);
func->printQualifiedName(funcNameStream);
// TODO: Use the location of the apply here.
// TODO: This error message should not reference implementation details.
// See: https://github.com/apple/swift/pull/33053#discussion_r477003350
ctx.Diags.diagnose(SourceLoc(), diag::unable_to_convert_generic_swift_types,
funcName, failedTypesStr);
return nullptr;
}
// Instantiate a specialization of this template using the substitution map.
auto *templateArgList = clang::TemplateArgumentList::CreateCopy(
func->getASTContext(), templateSubst);
auto &sema = getClangInstance().getSema();
auto *spec = sema.InstantiateFunctionDeclaration(func, templateArgList,
clang::SourceLocation());
sema.InstantiateFunctionDefinition(clang::SourceLocation(), spec);
return spec;
}
StructDecl *
ClangImporter::instantiateCXXClassTemplate(
clang::ClassTemplateDecl *decl,
ArrayRef<clang::TemplateArgument> arguments) {
void *InsertPos = nullptr;
auto *ctsd = decl->findSpecialization(arguments, InsertPos);
if (!ctsd) {
ctsd = clang::ClassTemplateSpecializationDecl::Create(
decl->getASTContext(), decl->getTemplatedDecl()->getTagKind(),
decl->getDeclContext(), decl->getTemplatedDecl()->getBeginLoc(),
decl->getLocation(), decl, arguments, nullptr);
decl->AddSpecialization(ctsd, InsertPos);
}
auto CanonType = decl->getASTContext().getTypeDeclType(ctsd);
assert(isa<clang::RecordType>(CanonType) &&
"type of non-dependent specialization is not a RecordType");
return dyn_cast_or_null<StructDecl>(
Impl.importDecl(ctsd, Impl.CurrentVersion));
}
// On Windows and 32-bit platforms we need to force "Int" to actually be
// re-imported as "Int." This is needed because otherwise, we cannot round-trip
// "Int" and "UInt". For example, on Windows, "Int" will be imported into C++ as
// "long long" and then back into Swift as "Int64" not "Int."
static ValueDecl *rewriteIntegerTypes(SubstitutionMap subst, ValueDecl *oldDecl,
AbstractFunctionDecl *newDecl) {
auto originalFnSubst = cast<AbstractFunctionDecl>(oldDecl)
->getInterfaceType()
->getAs<GenericFunctionType>()
->substGenericArgs(subst);
// The constructor type is a function type as follows:
// (CType.Type) -> (Generic) -> CType
// And a method's function type is as follows:
// (inout CType) -> (Generic) -> Void
// In either case, we only want the result of that function type because that
// is the function type with the generic params that need to be substituted:
// (Generic) -> CType
if (isa<ConstructorDecl>(oldDecl) || oldDecl->isInstanceMember() ||
oldDecl->isStatic())
originalFnSubst = cast<FunctionType>(originalFnSubst->getResult().getPointer());
SmallVector<ParamDecl *, 4> fixedParameters;
unsigned parameterIndex = 0;
for (auto *newFnParam : *newDecl->getParameters()) {
// If the user substituted this param with an (U)Int, use (U)Int.
auto substParamType =
originalFnSubst->getParams()[parameterIndex].getParameterType();
if (substParamType->isEqual(newDecl->getASTContext().getIntType()) ||
substParamType->isEqual(newDecl->getASTContext().getUIntType())) {
auto intParam =
ParamDecl::cloneWithoutType(newDecl->getASTContext(), newFnParam);
intParam->setInterfaceType(substParamType);
fixedParameters.push_back(intParam);
} else {
fixedParameters.push_back(newFnParam);
}
parameterIndex++;
}
auto fixedParams =
ParameterList::create(newDecl->getASTContext(), fixedParameters);
newDecl->setParameters(fixedParams);
// Now fix the result type:
if (originalFnSubst->getResult()->isEqual(
newDecl->getASTContext().getIntType()) ||
originalFnSubst->getResult()->isEqual(
newDecl->getASTContext().getUIntType())) {
// Constructors don't have a result.
if (auto func = dyn_cast<FuncDecl>(newDecl)) {
// We have to rebuild the whole function.
auto newFnDecl = FuncDecl::createImported(
func->getASTContext(), func->getNameLoc(),
func->getName(), func->getNameLoc(),
func->hasAsync(), func->hasThrows(),
fixedParams, originalFnSubst->getResult(),
/*genericParams=*/nullptr, func->getDeclContext(), newDecl->getClangDecl());
if (func->isStatic()) newFnDecl->setStatic();
if (func->isImportAsStaticMember()) newFnDecl->setImportAsStaticMember();
if (func->getImportAsMemberStatus().isInstance()) {
newFnDecl->setSelfAccessKind(func->getSelfAccessKind());
newFnDecl->setSelfIndex(func->getSelfIndex());
}
return newFnDecl;
}
}
return newDecl;
}
static Argument createSelfArg(FuncDecl *fnDecl) {
ASTContext &ctx = fnDecl->getASTContext();
auto selfDecl = fnDecl->getImplicitSelfDecl();
auto selfRefExpr = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
if (!fnDecl->isMutating()) {
selfRefExpr->setType(selfDecl->getInterfaceType());
return Argument::unlabeled(selfRefExpr);
}
selfRefExpr->setType(LValueType::get(selfDecl->getInterfaceType()));
return Argument::implicitInOut(ctx, selfRefExpr);
}
// Synthesize a thunk body for the function created in
// "addThunkForDependentTypes". This will just cast all params and forward them
// along to the specialized function. It will also cast the result before
// returning it.
static std::pair<BraceStmt *, bool>
synthesizeDependentTypeThunkParamForwarding(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
auto thunkDecl = cast<FuncDecl>(afd);
auto specializedFuncDecl = static_cast<FuncDecl *>(context);
SmallVector<Argument, 8> forwardingParams;
unsigned paramIndex = 0;
for (auto param : *thunkDecl->getParameters()) {
if (isa<MetatypeType>(param->getType().getPointer())) {
paramIndex++;
continue;
}
auto paramTy = param->getType();
auto isInOut = param->isInOut();
auto specParamTy =
specializedFuncDecl->getParameters()->get(paramIndex)->getType();
Expr *paramRefExpr = new (ctx) DeclRefExpr(param, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(isInOut ? LValueType::get(paramTy) : paramTy);
Argument arg = [&]() {
if (isInOut) {
assert(specParamTy->isEqual(paramTy));
return Argument::implicitInOut(ctx, paramRefExpr);
}
Expr *argExpr = nullptr;
if (specParamTy->isEqual(paramTy)) {
argExpr = paramRefExpr;
} else {
argExpr = ForcedCheckedCastExpr::createImplicit(ctx, paramRefExpr,
specParamTy);
}
return Argument::unlabeled(argExpr);
}();
forwardingParams.push_back(arg);
paramIndex++;
}
Expr *specializedFuncDeclRef = new (ctx) DeclRefExpr(ConcreteDeclRef(specializedFuncDecl),
DeclNameLoc(), true);
specializedFuncDeclRef->setType(specializedFuncDecl->getInterfaceType());
if (specializedFuncDecl->isInstanceMember()) {
auto selfArg = createSelfArg(thunkDecl);
auto *memberCall = DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef,
SourceLoc(), selfArg);
memberCall->setThrows(false);
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
} else if (specializedFuncDecl->isStatic()) {
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
auto selfType = cast<NominalTypeDecl>(thunkDecl->getDeclContext()->getAsDecl())->getDeclaredInterfaceType();
auto selfTypeExpr = TypeExpr::createImplicit(selfType, ctx);
auto *memberCall =
DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef, SourceLoc(),
Argument::unlabeled(selfTypeExpr));
memberCall->setThrows(false);
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
}
auto argList = ArgumentList::createImplicit(ctx, forwardingParams);
auto *specializedFuncCallExpr = CallExpr::createImplicit(ctx, specializedFuncDeclRef, argList);
specializedFuncCallExpr->setType(specializedFuncDecl->getResultInterfaceType());
specializedFuncCallExpr->setThrows(false);
Expr *resultExpr = nullptr;
if (specializedFuncCallExpr->getType()->isEqual(thunkDecl->getResultInterfaceType())) {
resultExpr = specializedFuncCallExpr;
} else {
resultExpr = ForcedCheckedCastExpr::createImplicit(
ctx, specializedFuncCallExpr, thunkDecl->getResultInterfaceType());
}
auto returnStmt = new (ctx)
ReturnStmt(SourceLoc(), resultExpr, /*implicit=*/true);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
// Create a thunk to map functions with dependent types to their specialized
// version. For example, create a thunk with type (Any) -> Any to wrap a
// specialized function template with type (Dependent<T>) -> Dependent<T>.
static ValueDecl *addThunkForDependentTypes(FuncDecl *oldDecl,
FuncDecl *newDecl) {
bool updatedAnyParams = false;
SmallVector<ParamDecl *, 4> fixedParameters;
unsigned parameterIndex = 0;
for (auto *newFnParam : *newDecl->getParameters()) {
// If the un-specialized function had a parameter with type "Any" preserve
// that parameter. Otherwise, use the new function parameter.
auto oldParamType = oldDecl->getParameters()->get(parameterIndex)->getType();
if (oldParamType->isEqual(newDecl->getASTContext().getAnyExistentialType())) {
updatedAnyParams = true;
auto newParam =
ParamDecl::cloneWithoutType(newDecl->getASTContext(), newFnParam);
newParam->setInterfaceType(oldParamType);
fixedParameters.push_back(newParam);
} else {
fixedParameters.push_back(newFnParam);
}
parameterIndex++;
}
// If we don't need this thunk, bail out.
if (!updatedAnyParams &&
!oldDecl->getResultInterfaceType()->isEqual(
oldDecl->getASTContext().getAnyExistentialType()))
return newDecl;
auto fixedParams =
ParameterList::create(newDecl->getASTContext(), fixedParameters);
Type fixedResultType;
if (oldDecl->getResultInterfaceType()->isEqual(
oldDecl->getASTContext().getAnyExistentialType()))
fixedResultType = oldDecl->getASTContext().getAnyExistentialType();
else
fixedResultType = newDecl->getResultInterfaceType();
// We have to rebuild the whole function.
auto newFnDecl = FuncDecl::createImplicit(
newDecl->getASTContext(), newDecl->getStaticSpelling(),
newDecl->getName(), newDecl->getNameLoc(), newDecl->hasAsync(),
newDecl->hasThrows(), /*genericParams=*/nullptr, fixedParams,
fixedResultType, newDecl->getDeclContext());
newFnDecl->copyFormalAccessFrom(newDecl);
newFnDecl->setBodySynthesizer(synthesizeDependentTypeThunkParamForwarding, newDecl);
newFnDecl->setSelfAccessKind(newDecl->getSelfAccessKind());
if (newDecl->isStatic()) newFnDecl->setStatic();
newFnDecl->getAttrs().add(
new (newDecl->getASTContext()) TransparentAttr(/*IsImplicit=*/true));
return newFnDecl;
}
// Synthesizes the body of a thunk that takes extra metatype arguments and
// skips over them to forward them along to the FuncDecl contained by context.
// This is used when importing a C++ templated function where the template params
// are not used in the function signature. We supply the type params as explicit
// metatype arguments to aid in typechecking, but they shouldn't be forwarded to
// the corresponding C++ function.
static std::pair<BraceStmt *, bool>
synthesizeForwardingThunkBody(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
auto thunkDecl = cast<FuncDecl>(afd);
auto specializedFuncDecl = static_cast<FuncDecl *>(context);
SmallVector<Argument, 8> forwardingParams;
for (auto param : *thunkDecl->getParameters()) {
if (isa<MetatypeType>(param->getType().getPointer())) {
continue;
}
auto paramTy = param->getType();
auto isInOut = param->isInOut();
Expr *paramRefExpr = new (ctx) DeclRefExpr(param, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(isInOut ? LValueType::get(paramTy) : paramTy);
auto arg = isInOut ? Argument::implicitInOut(ctx, paramRefExpr)
: Argument::unlabeled(paramRefExpr);
forwardingParams.push_back(arg);
}
Expr *specializedFuncDeclRef = new (ctx) DeclRefExpr(ConcreteDeclRef(specializedFuncDecl),
DeclNameLoc(), true);
specializedFuncDeclRef->setType(specializedFuncDecl->getInterfaceType());
if (specializedFuncDecl->isInstanceMember()) {
auto selfArg = createSelfArg(thunkDecl);
auto *memberCall = DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef,
SourceLoc(), selfArg);
memberCall->setThrows(false);
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
} else if (specializedFuncDecl->isStatic()) {
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
auto selfType = cast<NominalTypeDecl>(thunkDecl->getDeclContext()->getAsDecl())->getDeclaredInterfaceType();
auto selfTypeExpr = TypeExpr::createImplicit(selfType, ctx);
auto *memberCall =
DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef, SourceLoc(),
Argument::unlabeled(selfTypeExpr));
memberCall->setThrows(false);
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
}
auto argList = ArgumentList::createImplicit(ctx, forwardingParams);
auto *specializedFuncCallExpr = CallExpr::createImplicit(ctx, specializedFuncDeclRef, argList);
specializedFuncCallExpr->setType(thunkDecl->getResultInterfaceType());
specializedFuncCallExpr->setThrows(false);
auto returnStmt = new (ctx) ReturnStmt(SourceLoc(), specializedFuncCallExpr,
/*implicit=*/true);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
static ValueDecl *generateThunkForExtraMetatypes(SubstitutionMap subst,
FuncDecl *oldDecl,
FuncDecl *newDecl) {
// We added additional metatype parameters to aid template
// specialization, which are no longer now that we've specialized
// this function. Create a thunk that only forwards the original
// parameters along to the clang function.
SmallVector<ParamDecl *, 4> newParams;
for (auto param : *newDecl->getParameters()) {
auto *newParamDecl = ParamDecl::clone(newDecl->getASTContext(), param);
newParams.push_back(newParamDecl);
}
auto originalFnSubst = cast<AbstractFunctionDecl>(oldDecl)
->getInterfaceType()
->getAs<GenericFunctionType>()
->substGenericArgs(subst);
// The constructor type is a function type as follows:
// (CType.Type) -> (Generic) -> CType
// And a method's function type is as follows:
// (inout CType) -> (Generic) -> Void
// In either case, we only want the result of that function type because that
// is the function type with the generic params that need to be substituted:
// (Generic) -> CType
if (isa<ConstructorDecl>(oldDecl) || oldDecl->isInstanceMember() ||
oldDecl->isStatic())
originalFnSubst = cast<FunctionType>(originalFnSubst->getResult().getPointer());
for (auto paramTy : originalFnSubst->getParams()) {
if (!paramTy.getPlainType()->is<MetatypeType>())
continue;
auto dc = newDecl->getDeclContext();
auto paramVarDecl =
new (newDecl->getASTContext()) ParamDecl(
SourceLoc(), SourceLoc(), Identifier(), SourceLoc(),
newDecl->getASTContext().getIdentifier("_"), dc);
paramVarDecl->setInterfaceType(paramTy.getPlainType());
paramVarDecl->setSpecifier(ParamSpecifier::Default);
newParams.push_back(paramVarDecl);
}
auto *newParamList =
ParameterList::create(newDecl->getASTContext(), SourceLoc(), newParams, SourceLoc());
auto thunk = FuncDecl::createImplicit(
newDecl->getASTContext(), newDecl->getStaticSpelling(), oldDecl->getName(),
newDecl->getNameLoc(), newDecl->hasAsync(), newDecl->hasThrows(),
/*genericParams=*/nullptr, newParamList,
newDecl->getResultInterfaceType(), newDecl->getDeclContext());
thunk->copyFormalAccessFrom(newDecl);
thunk->setBodySynthesizer(synthesizeForwardingThunkBody, newDecl);
thunk->setSelfAccessKind(newDecl->getSelfAccessKind());
if (newDecl->isStatic()) thunk->setStatic();
thunk->getAttrs().add(
new (newDecl->getASTContext()) TransparentAttr(/*IsImplicit=*/true));
return thunk;
}
ConcreteDeclRef
ClangImporter::getCXXFunctionTemplateSpecialization(SubstitutionMap subst,
ValueDecl *decl) {
PrettyStackTraceDeclAndSubst trace("specializing", subst, decl);
assert(isa<clang::FunctionTemplateDecl>(decl->getClangDecl()) &&
"This API should only be used with function templates.");
auto *newFn =
decl->getASTContext()
.getClangModuleLoader()
->instantiateCXXFunctionTemplate(
decl->getASTContext(),
const_cast<clang::FunctionTemplateDecl *>(
cast<clang::FunctionTemplateDecl>(decl->getClangDecl())),
subst);
// We failed to specialize this function template. The compiler is going to
// exit soon. Return something valid in the meantime.
if (!newFn)
return ConcreteDeclRef(decl);
if (Impl.specializedFunctionTemplates.count(newFn))
return ConcreteDeclRef(Impl.specializedFunctionTemplates[newFn]);
auto newDecl = cast_or_null<ValueDecl>(
decl->getASTContext().getClangModuleLoader()->importDeclDirectly(
newFn));
if (auto fn = dyn_cast<AbstractFunctionDecl>(newDecl)) {
if (!subst.empty()) {
newDecl = rewriteIntegerTypes(subst, decl, fn);
}
}
if (auto fn = dyn_cast<FuncDecl>(decl)) {
newDecl = addThunkForDependentTypes(fn, cast<FuncDecl>(newDecl));
}
if (auto fn = dyn_cast<FuncDecl>(decl)) {
if (newFn->getNumParams() != fn->getParameters()->size()) {
newDecl = generateThunkForExtraMetatypes(subst, fn,
cast<FuncDecl>(newDecl));
}
}
Impl.specializedFunctionTemplates[newFn] = newDecl;
return ConcreteDeclRef(newDecl);
}
FuncDecl *ClangImporter::getCXXSynthesizedOperatorFunc(FuncDecl *decl) {
// `decl` is not an operator, it is a regular function which has a
// name that starts with `__operator`. We were asked for a
// corresponding synthesized Swift operator, so let's retrieve it.
// The synthesized Swift operator was added as an alternative decl
// for `func`.
auto alternateDecls = Impl.getAlternateDecls(decl);
// Did we actually synthesize an operator for `func`?
if (alternateDecls.empty())
return nullptr;
// If we did, then we should have only synthesized one.
assert(alternateDecls.size() == 1 &&
"expected only the synthesized operator as an alternative");
auto synthesizedOperator = alternateDecls.front();
assert(synthesizedOperator->isOperator() &&
"expected the alternative to be a synthesized operator");
return cast<FuncDecl>(synthesizedOperator);
}
bool ClangImporter::isCXXMethodMutating(const clang::CXXMethodDecl *method) {
if (isa<clang::CXXConstructorDecl>(method) || !method->isConst())
return true;
if (isAnnotatedWith(method, "mutating"))
return true;
if (method->getParent()->hasMutableFields()) {
if (isAnnotatedWith(method, "nonmutating"))
return false;
// FIXME(rdar://91961524): figure out a way to handle mutable fields
// without breaking classes from the C++ standard library (e.g.
// `std::string` which has a mutable member in old libstdc++ version used on
// CentOS 7)
return false;
}
return false;
}
bool ClangImporter::isUnsafeCXXMethod(const FuncDecl *func) {
if (!func->hasClangNode())
return false;
auto clangDecl = func->getClangNode().getAsDecl();
if (!clangDecl)
return false;
auto cxxMethod = dyn_cast<clang::CXXMethodDecl>(clangDecl);
if (!cxxMethod)
return false;
if (!func->hasName())
return false;
auto id = func->getBaseIdentifier().str();
return id.startswith("__") && id.endswith("Unsafe");
}
bool ClangImporter::isAnnotatedWith(const clang::CXXMethodDecl *method,
StringRef attr) {
return method->hasAttrs() &&
llvm::any_of(method->getAttrs(), [attr](clang::Attr *a) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(a)) {
return swiftAttr->getAttribute() == attr;
}
return false;
});
}
SwiftLookupTable *
ClangImporter::findLookupTable(const clang::Module *clangModule) {
return Impl.findLookupTable(clangModule);
}
/// Determine the effective Clang context for the given Swift nominal type.
EffectiveClangContext
ClangImporter::getEffectiveClangContext(const NominalTypeDecl *nominal) {
return Impl.getEffectiveClangContext(nominal);
}
Decl *ClangImporter::importDeclDirectly(const clang::NamedDecl *decl) {
return Impl.importDecl(decl, Impl.CurrentVersion);
}
ValueDecl *ClangImporter::Implementation::importBaseMemberDecl(
ValueDecl *decl, DeclContext *newContext) {
// Make sure we don't clone the decl again for this class, as that would
// result in multiple definitions of the same symbol.
std::pair<ValueDecl *, DeclContext *> key = {decl, newContext};
auto known = clonedBaseMembers.find(key);
if (known == clonedBaseMembers.end()) {
ValueDecl *cloned = cloneBaseMemberDecl(decl, newContext);
known = clonedBaseMembers.insert({key, cloned}).first;
}
return known->second;
}
ValueDecl *ClangImporter::importBaseMemberDecl(ValueDecl *decl,
DeclContext *newContext) {
return Impl.importBaseMemberDecl(decl, newContext);
}
void ClangImporter::diagnoseTopLevelValue(const DeclName &name) {
Impl.diagnoseTopLevelValue(name);
}
void ClangImporter::diagnoseMemberValue(const DeclName &name,
const Type &baseType) {
// Return early for any type that namelookup::extractDirectlyReferencedNominalTypes
// does not know how to handle.
if (!(baseType->getAnyNominal() ||
baseType->is<ExistentialType>() ||
baseType->is<UnboundGenericType>() ||
baseType->is<ArchetypeType>() ||
baseType->is<ProtocolCompositionType>() ||
baseType->is<TupleType>()))
return;
SmallVector<NominalTypeDecl *, 4> nominalTypesToLookInto;
namelookup::extractDirectlyReferencedNominalTypes(baseType,
nominalTypesToLookInto);
for (auto containerDecl : nominalTypesToLookInto) {
const clang::Decl *clangContainerDecl = containerDecl->getClangDecl();
if (clangContainerDecl && isa<clang::DeclContext>(clangContainerDecl)) {
Impl.diagnoseMemberValue(name,
cast<clang::DeclContext>(clangContainerDecl));
}
if (Impl.ImportForwardDeclarations) {
const clang::Decl *clangContainerDecl = containerDecl->getClangDecl();
if (const clang::ObjCInterfaceDecl *objCInterfaceDecl =
llvm::dyn_cast_or_null<clang::ObjCInterfaceDecl>(
clangContainerDecl); objCInterfaceDecl && !objCInterfaceDecl->hasDefinition()) {
// Emit a diagnostic about how the base type represents a forward
// declared ObjC interface and is in all likelihood missing members.
// We only attach this diagnostic in diagnoseMemberValue rather than
// in SwiftDeclConverter because it is only relevant when the user
// tries to access an unavailable member.
Impl.addImportDiagnostic(
objCInterfaceDecl,
Diagnostic(
diag::
placeholder_for_forward_declared_interface_member_access_failure,
objCInterfaceDecl->getName()),
objCInterfaceDecl->getSourceRange().getBegin());
// Emit any diagnostics attached to the source Clang node (ie. forward
// declaration here note)
Impl.diagnoseTargetDirectly(clangContainerDecl);
} else if (const clang::ObjCProtocolDecl *objCProtocolDecl =
llvm::dyn_cast_or_null<clang::ObjCProtocolDecl>(
clangContainerDecl); objCProtocolDecl && !objCProtocolDecl->hasDefinition()) {
// Same as above but for protocols
Impl.addImportDiagnostic(
objCProtocolDecl,
Diagnostic(
diag::
placeholder_for_forward_declared_protocol_member_access_failure,
objCProtocolDecl->getName()),
objCProtocolDecl->getSourceRange().getBegin());
Impl.diagnoseTargetDirectly(clangContainerDecl);
}
}
}
}
SourceLoc ClangImporter::importSourceLocation(clang::SourceLocation loc) {
auto &bufferImporter = Impl.getBufferImporterForDiagnostics();
return bufferImporter.resolveSourceLocation(
getClangASTContext().getSourceManager(), loc);
}
static bool hasImportAsRefAttr(const clang::RecordDecl *decl) {
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute() == "import_reference" ||
// TODO: Remove this once libSwift hosttools no longer
// requires it.
swiftAttr->getAttribute() == "import_as_ref";
return false;
});
}
// Is this a pointer to a foreign reference type.
static bool isForeignReferenceType(const clang::QualType type) {
if (!type->isPointerType())
return false;
auto pointeeType =
dyn_cast<clang::RecordType>(type->getPointeeType().getCanonicalType());
if (pointeeType == nullptr)
return false;
return hasImportAsRefAttr(pointeeType->getDecl());
}
static bool hasOwnedValueAttr(const clang::RecordDecl *decl) {
// Hard-coded special cases from the standard library (this will go away once
// API notes support namespaces).
if (decl->getNameAsString() == "basic_string" ||
decl->getNameAsString() == "vector")
return true;
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute() == "import_owned";
return false;
});
}
static bool hasUnsafeAPIAttr(const clang::Decl *decl) {
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute() == "import_unsafe";
return false;
});
}
static bool hasIteratorAPIAttr(const clang::Decl *decl) {
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute() == "import_iterator";
return false;
});
}
/// Recursively checks that there are no pointers in any fields or base classes.
/// Does not check C++ records with specific API annotations.
static bool hasPointerInSubobjects(const clang::CXXRecordDecl *decl) {
// Probably a class template that has not yet been specialized:
if (!decl->getDefinition())
return false;
auto checkType = [](clang::QualType t) {
if (t->isPointerType())
return true;
if (auto recordType = dyn_cast<clang::RecordType>(t.getCanonicalType())) {
if (auto cxxRecord =
dyn_cast<clang::CXXRecordDecl>(recordType->getDecl())) {
if (hasImportAsRefAttr(cxxRecord) || hasOwnedValueAttr(cxxRecord) ||
hasUnsafeAPIAttr(cxxRecord))
return false;
if (hasIteratorAPIAttr(cxxRecord) || isIterator(cxxRecord))
return true;
if (hasPointerInSubobjects(cxxRecord))
return true;
}
}
return false;
};
for (auto field : decl->fields()) {
if (checkType(field->getType()))
return true;
}
for (auto base : decl->bases()) {
if (checkType(base.getType()))
return true;
}
return false;
}
static bool copyConstructorIsDefaulted(const clang::CXXRecordDecl *decl) {
auto ctor = llvm::find_if(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isCopyConstructor();
});
assert(ctor != decl->ctor_end());
return ctor->isDefaulted();
}
static bool copyAssignOperatorIsDefaulted(const clang::CXXRecordDecl *decl) {
auto copyAssignOp = llvm::find_if(decl->decls(), [](clang::Decl *member) {
if (auto method = dyn_cast<clang::CXXMethodDecl>(member))
return method->isCopyAssignmentOperator();
return false;
});
assert(copyAssignOp != decl->decls_end());
return cast<clang::CXXMethodDecl>(*copyAssignOp)->isDefaulted();
}
/// Recursively checks that there are no user-provided copy constructors or
/// destructors in any fields or base classes.
/// Does not check C++ records with specific API annotations.
static bool isSufficientlyTrivial(const clang::CXXRecordDecl *decl) {
// Probably a class template that has not yet been specialized:
if (!decl->getDefinition())
return true;
if ((decl->hasUserDeclaredCopyConstructor() &&
!copyConstructorIsDefaulted(decl)) ||
(decl->hasUserDeclaredCopyAssignment() &&
!copyAssignOperatorIsDefaulted(decl)) ||
(decl->hasUserDeclaredDestructor() && decl->getDestructor() &&
!decl->getDestructor()->isDefaulted()))
return false;
auto checkType = [](clang::QualType t) {
if (auto recordType = dyn_cast<clang::RecordType>(t.getCanonicalType())) {
if (auto cxxRecord =
dyn_cast<clang::CXXRecordDecl>(recordType->getDecl())) {
if (hasImportAsRefAttr(cxxRecord) || hasOwnedValueAttr(cxxRecord) ||
hasUnsafeAPIAttr(cxxRecord))
return true;
if (!isSufficientlyTrivial(cxxRecord))
return false;
}
}
return true;
};
for (auto field : decl->fields()) {
if (!checkType(field->getType()))
return false;
}
for (auto base : decl->bases()) {
if (!checkType(base.getType()))
return false;
}
return true;
}
/// Checks if a record provides the required value type lifetime operations
/// (copy and destroy).
static bool hasCopyTypeOperations(const clang::CXXRecordDecl *decl) {
// If we have no way of copying the type we can't import the class
// at all because we cannot express the correct semantics as a swift
// struct.
if (llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isCopyConstructor() &&
(ctor->isDeleted() || ctor->getAccess() != clang::AS_public);
}))
return false;
// TODO: this should probably check to make sure we actually have a copy ctor.
return true;
}
static bool hasMoveTypeOperations(const clang::CXXRecordDecl *decl) {
// If we have no way of copying the type we can't import the class
// at all because we cannot express the correct semantics as a swift
// struct.
if (llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isMoveConstructor() &&
(ctor->isDeleted() || ctor->getAccess() != clang::AS_public);
}))
return false;
return llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isMoveConstructor();
});
}
static bool hasDestroyTypeOperations(const clang::CXXRecordDecl *decl) {
if (auto dtor = decl->getDestructor()) {
if (dtor->isDeleted() || dtor->getAccess() != clang::AS_public) {
return false;
}
return true;
}
return false;
}
static bool hasCustomCopyOrMoveConstructor(const clang::CXXRecordDecl *decl) {
// std::pair and std::tuple might have copy and move constructors, but that
// doesn't mean they are safe to use from Swift, e.g. std::pair<UnsafeType, T>
if (decl->isInStdNamespace() &&
(decl->getName() == "pair" || decl->getName() == "tuple")) {
return false;
}
return decl->hasUserDeclaredCopyConstructor() ||
decl->hasUserDeclaredMoveConstructor();
}
static bool isSwiftClassType(const clang::CXXRecordDecl *decl) {
// Swift type must be annotated with external_source_symbol attribute.
auto essAttr = decl->getAttr<clang::ExternalSourceSymbolAttr>();
if (!essAttr || essAttr->getLanguage() != "Swift" ||
essAttr->getDefinedIn().empty() || essAttr->getUSR().empty())
return false;
// Ensure that the baseclass is swift::RefCountedClass.
auto baseDecl = decl;
do {
if (baseDecl->getNumBases() != 1)
return false;
auto baseClassSpecifier = *baseDecl->bases_begin();
auto Ty = baseClassSpecifier.getType();
auto nextBaseDecl = Ty->getAsCXXRecordDecl();
if (!nextBaseDecl)
return false;
baseDecl = nextBaseDecl;
} while (baseDecl->getName() != "RefCountedClass");
return true;
}
CxxRecordSemanticsKind
CxxRecordSemantics::evaluate(Evaluator &evaluator,
CxxRecordSemanticsDescriptor desc) const {
const auto *decl = desc.decl;
if (hasImportAsRefAttr(decl)) {
return CxxRecordSemanticsKind::Reference;
}
auto cxxDecl = dyn_cast<clang::CXXRecordDecl>(decl);
if (!cxxDecl) {
return CxxRecordSemanticsKind::Trivial;
}
if (isSwiftClassType(cxxDecl))
return CxxRecordSemanticsKind::SwiftClassType;
if (!hasDestroyTypeOperations(cxxDecl) ||
(!hasCopyTypeOperations(cxxDecl) && !hasMoveTypeOperations(cxxDecl))) {
if (hasUnsafeAPIAttr(cxxDecl))
desc.ctx.Diags.diagnose({}, diag::api_pattern_attr_ignored,
"import_unsafe", decl->getNameAsString());
if (hasOwnedValueAttr(cxxDecl))
desc.ctx.Diags.diagnose({}, diag::api_pattern_attr_ignored,
"import_owned", decl->getNameAsString());
if (hasIteratorAPIAttr(cxxDecl))
desc.ctx.Diags.diagnose({}, diag::api_pattern_attr_ignored,
"import_iterator", decl->getNameAsString());
return CxxRecordSemanticsKind::MissingLifetimeOperation;
}
if (hasUnsafeAPIAttr(cxxDecl)) {
return CxxRecordSemanticsKind::ExplicitlyUnsafe;
}
if (hasOwnedValueAttr(cxxDecl)) {
return CxxRecordSemanticsKind::Owned;
}
if (hasIteratorAPIAttr(cxxDecl) || isIterator(cxxDecl)) {
return CxxRecordSemanticsKind::Iterator;
}
if (!hasCustomCopyOrMoveConstructor(cxxDecl) &&
hasPointerInSubobjects(cxxDecl)) {
return CxxRecordSemanticsKind::UnsafePointerMember;
}
if (hasCopyTypeOperations(cxxDecl)) {
return CxxRecordSemanticsKind::Owned;
}
if (hasMoveTypeOperations(cxxDecl)) {
return CxxRecordSemanticsKind::MoveOnly;
}
if (isSufficientlyTrivial(cxxDecl)) {
return CxxRecordSemanticsKind::Trivial;
}
llvm_unreachable("Could not classify C++ type.");
}
ValueDecl *
CxxRecordAsSwiftType::evaluate(Evaluator &evaluator,
CxxRecordSemanticsDescriptor desc) const {
auto cxxDecl = dyn_cast<clang::CXXRecordDecl>(desc.decl);
if (!cxxDecl)
return nullptr;
if (!isSwiftClassType(cxxDecl))
return nullptr;
SmallVector<ValueDecl *, 1> results;
auto *essaAttr = cxxDecl->getAttr<clang::ExternalSourceSymbolAttr>();
auto *mod = desc.ctx.getModuleByName(essaAttr->getDefinedIn());
if (!mod) {
// TODO: warn about missing 'import'.
return nullptr;
}
// FIXME: Support renamed declarations.
auto swiftName = cxxDecl->getName();
// FIXME: handle nested Swift types once they're supported.
mod->lookupValue(desc.ctx.getIdentifier(swiftName), NLKind::UnqualifiedLookup,
results);
if (results.size() == 1) {
if (dyn_cast<ClassDecl>(results[0]))
return results[0];
}
return nullptr;
}
bool IsSafeUseOfCxxDecl::evaluate(Evaluator &evaluator,
SafeUseOfCxxDeclDescriptor desc) const {
const clang::Decl *decl = desc.decl;
if (auto method = dyn_cast<clang::CXXMethodDecl>(decl)) {
// The user explicitly asked us to import this method.
if (hasUnsafeAPIAttr(method))
return true;
// If it's a static method, it cannot project anything. It's fine.
if (method->isOverloadedOperator() || method->isStatic() ||
isa<clang::CXXConstructorDecl>(decl))
return true;
if (isForeignReferenceType(method->getReturnType()))
return true;
// If it returns a pointer or reference, that's a projection.
if (method->getReturnType()->isPointerType() ||
method->getReturnType()->isReferenceType())
return false;
// Try to figure out the semantics of the return type. If it's a
// pointer/iterator, it's unsafe.
if (auto returnType = dyn_cast<clang::RecordType>(
method->getReturnType().getCanonicalType())) {
if (auto cxxRecordReturnType =
dyn_cast<clang::CXXRecordDecl>(returnType->getDecl())) {
if (isSwiftClassType(cxxRecordReturnType))
return true;
if (hasIteratorAPIAttr(cxxRecordReturnType) ||
isIterator(cxxRecordReturnType)) {
return false;
}
// Mark this as safe to help our diganostics down the road.
if (!cxxRecordReturnType->getDefinition()) {
return true;
}
if (!hasCustomCopyOrMoveConstructor(cxxRecordReturnType) &&
!hasOwnedValueAttr(cxxRecordReturnType) &&
hasPointerInSubobjects(cxxRecordReturnType)) {
return false;
}
}
}
}
// Otherwise, it's safe.
return true;
}
void swift::simple_display(llvm::raw_ostream &out,
CxxRecordSemanticsDescriptor desc) {
out << "Matching API semantics of C++ record '"
<< desc.decl->getNameAsString() << "'.\n";
}
SourceLoc swift::extractNearestSourceLoc(CxxRecordSemanticsDescriptor desc) {
return SourceLoc();
}
void swift::simple_display(llvm::raw_ostream &out,
SafeUseOfCxxDeclDescriptor desc) {
out << "Checking if '";
if (auto namedDecl = dyn_cast<clang::NamedDecl>(desc.decl))
out << namedDecl->getNameAsString();
else
out << "<invalid decl>";
out << "' is safe to use in context.\n";
}
SourceLoc swift::extractNearestSourceLoc(SafeUseOfCxxDeclDescriptor desc) {
return SourceLoc();
}
CustomRefCountingOperationResult CustomRefCountingOperation::evaluate(
Evaluator &evaluator, CustomRefCountingOperationDescriptor desc) const {
auto swiftDecl = desc.decl;
auto operation = desc.kind;
auto &ctx = swiftDecl->getASTContext();
std::string operationStr = operation == CustomRefCountingOperationKind::retain
? "retain:"
: "release:";
auto decl = cast<clang::RecordDecl>(swiftDecl->getClangDecl());
if (!decl->hasAttrs())
return {CustomRefCountingOperationResult::noAttribute, nullptr, ""};
auto retainFnAttr =
llvm::find_if(decl->getAttrs(), [&operationStr](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute().startswith(operationStr);
return false;
});
if (retainFnAttr == decl->getAttrs().end()) {
return {CustomRefCountingOperationResult::noAttribute, nullptr, ""};
}
auto name = cast<clang::SwiftAttrAttr>(*retainFnAttr)
->getAttribute()
.drop_front(StringRef(operationStr).size())
.str();
if (name == "immortal")
return {CustomRefCountingOperationResult::immortal, nullptr, name};
llvm::SmallVector<ValueDecl *, 1> results;
auto *clangMod = swiftDecl->getClangDecl()->getOwningModule();
if (clangMod && clangMod->isSubModule())
clangMod = clangMod->getTopLevelModule();
auto parentModule = ctx.getClangModuleLoader()->getWrapperForModule(clangMod);
ctx.lookupInModule(parentModule, name, results);
if (results.size() == 1)
return {CustomRefCountingOperationResult::foundOperation, results.front(),
name};
if (results.empty())
return {CustomRefCountingOperationResult::notFound, nullptr, name};
return {CustomRefCountingOperationResult::tooManyFound, nullptr, name};
}
void ClangImporter::withSymbolicFeatureEnabled(
llvm::function_ref<void(void)> callback) {
llvm::SaveAndRestore<bool> oldImportSymbolicCXXDecls(
Impl.importSymbolicCXXDecls, true);
Impl.nameImporter->enableSymbolicImportFeature(true);
auto importedDeclsCopy = Impl.ImportedDecls;
Impl.ImportedDecls.clear();
callback();
Impl.ImportedDecls = std::move(importedDeclsCopy);
Impl.nameImporter->enableSymbolicImportFeature(
oldImportSymbolicCXXDecls.get());
}
const clang::TypedefType *ClangImporter::getTypeDefForCXXCFOptionsDefinition(
const clang::Decl *candidateDecl) {
if (!Impl.SwiftContext.LangOpts.EnableCXXInterop)
return nullptr;
auto enumDecl = dyn_cast<clang::EnumDecl>(candidateDecl);
if (!enumDecl)
return nullptr;
if (!enumDecl->getDeclName().isEmpty())
return nullptr;
if (auto typedefType = dyn_cast<clang::TypedefType>(
enumDecl->getIntegerType().getTypePtr())) {
if (auto enumExtensibilityAttr =
typedefType->getDecl()->getAttr<clang::EnumExtensibilityAttr>();
enumExtensibilityAttr &&
enumExtensibilityAttr->getExtensibility() ==
clang::EnumExtensibilityAttr::Open &&
typedefType->getDecl()->hasAttr<clang::FlagEnumAttr>()) {
return Impl.isUnavailableInSwift(typedefType->getDecl()) ? typedefType
: nullptr;
}
}
return nullptr;
}
bool importer::requiresCPlusPlus(const clang::Module *module) {
// The libc++ modulemap doesn't currently declare the requirement.
if (module->getTopLevelModuleName() == "std")
return true;
// Modulemaps often declare the requirement for the top-level module only.
if (auto parent = module->Parent) {
if (requiresCPlusPlus(parent))
return true;
}
return llvm::any_of(module->Requirements, [](clang::Module::Requirement req) {
return req.first == "cplusplus";
});
}
llvm::Optional<clang::QualType>
importer::getCxxReferencePointeeTypeOrNone(const clang::Type *type) {
if (type->isReferenceType())
return type->getPointeeType();
return {};
}
bool importer::isCxxConstReferenceType(const clang::Type *type) {
auto pointeeType = getCxxReferencePointeeTypeOrNone(type);
return pointeeType && pointeeType->isConstQualified();
}