Files
swift-mirror/lib/SIL/IR/SIL.cpp
John McCall d25a8aec8b Add explicit lowering for value packs and pack expansions.
- SILPackType carries whether the elements are stored directly
  in the pack, which we're not currently using in the lowering,
  but it's probably something we'll want in the final ABI.
  Having this also makes it clear that we're doing the right
  thing with substitution and element lowering.  I also toyed
  with making this a scalar type, which made it necessary in
  various places, although eventually I pulled back to the
  design where we always use packs as addresses.

- Pack boundaries are a core ABI concept, so the lowering has
  to wrap parameter pack expansions up as packs.  There are huge
  unimplemented holes here where the abstraction pattern will
  need to tell us how many elements to gather into the pack,
  but a naive approach is good enough to get things off the
  ground.

- Pack conventions are related to the existing parameter and
  result conventions, but they're different on enough grounds
  that they deserve to be separated.
2023-01-29 03:29:06 -05:00

380 lines
13 KiB
C++

//===--- SIL.cpp - Implements random SIL functionality --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILUndef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/ClangImporter/ClangModule.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
using namespace swift;
FormalLinkage swift::getDeclLinkage(const ValueDecl *D) {
const DeclContext *fileContext = D->getDeclContext()->getModuleScopeContext();
// Clang declarations are public and can't be assured of having a
// unique defining location.
if (isa<ClangModuleUnit>(fileContext) &&
!D->getObjCImplementationDecl())
return FormalLinkage::PublicNonUnique;
switch (D->getEffectiveAccess()) {
case AccessLevel::Package:
case AccessLevel::Public:
case AccessLevel::Open:
return FormalLinkage::PublicUnique;
case AccessLevel::Internal:
return FormalLinkage::HiddenUnique;
case AccessLevel::FilePrivate:
case AccessLevel::Private:
return FormalLinkage::Private;
}
llvm_unreachable("Unhandled access level in switch.");
}
SILLinkage swift::getSILLinkage(FormalLinkage linkage,
ForDefinition_t forDefinition) {
switch (linkage) {
case FormalLinkage::PublicUnique:
return (forDefinition ? SILLinkage::Public : SILLinkage::PublicExternal);
case FormalLinkage::PublicNonUnique:
// FIXME: any place we have to do this that actually requires
// uniqueness is buggy.
return (forDefinition ? SILLinkage::Shared : SILLinkage::PublicExternal);
case FormalLinkage::HiddenUnique:
return (forDefinition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
case FormalLinkage::Private:
return SILLinkage::Private;
}
llvm_unreachable("bad formal linkage");
}
SILLinkage
swift::getLinkageForProtocolConformance(const RootProtocolConformance *C,
ForDefinition_t definition) {
// If the conformance was synthesized by the ClangImporter, give it
// shared linkage.
if (isa<ClangModuleUnit>(C->getDeclContext()->getModuleScopeContext()))
return SILLinkage::Shared;
auto typeDecl = C->getType()->getNominalOrBoundGenericNominal();
AccessLevel access = std::min(C->getProtocol()->getEffectiveAccess(),
typeDecl->getEffectiveAccess());
switch (access) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return SILLinkage::Private;
case AccessLevel::Internal:
return (definition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
default:
return (definition ? SILLinkage::Public : SILLinkage::PublicExternal);
}
}
bool SILModule::isTypeMetadataAccessible(CanType type) {
// SILModules built for the debugger have special powers to access metadata
// for types in other files/modules.
if (getASTContext().LangOpts.DebuggerSupport)
return true;
assert(type->isLegalFormalType());
return !type.findIf([&](CanType type) {
// Note that this function returns true if the type is *illegal* to use.
// Ignore non-nominal types -- except for opaque result types which can be
// private and in a different translation unit in which case they can't be
// accessed.
ValueDecl *decl = type.getNominalOrBoundGenericNominal();
if (!decl)
decl = isa<OpaqueTypeArchetypeType>(type)
? cast<OpaqueTypeArchetypeType>(type)->getDecl()
: nullptr;
if (!decl)
return false;
// Check whether the declaration is inaccessible from the current context.
switch (getDeclLinkage(decl)) {
// Public declarations are accessible from everywhere.
case FormalLinkage::PublicUnique:
case FormalLinkage::PublicNonUnique:
return false;
// Hidden declarations are inaccessible from different modules.
case FormalLinkage::HiddenUnique:
return (decl->getModuleContext() != getSwiftModule());
// Private declarations are inaccessible from different files unless
// this is WMO and we're in the same module.
case FormalLinkage::Private: {
// The associated DC should be either a SourceFile or, in WMO mode,
// a ModuleDecl. In the WMO modes, IRGen will ensure that private
// declarations are usable throughout the module. Therefore, in
// either case we just need to make sure that the declaration comes
// from within the associated DC.
auto declDC = decl->getDeclContext();
return !(declDC == AssociatedDeclContext ||
declDC->isChildContextOf(AssociatedDeclContext));
}
}
llvm_unreachable("bad linkage");
});
}
/// Return the formal linkage of the component restrictions of this
/// generic signature. This is the appropriate linkage for a lazily-
/// emitted entity derived from the generic signature.
///
/// This function never returns PublicUnique.
FormalLinkage swift::getGenericSignatureLinkage(CanGenericSignature sig) {
// This can only be PublicNonUnique or HiddenUnique. Signatures can
// never be PublicUnique in the first place, and we short-circuit on
// Private. So we only ever update it when we see HiddenUnique linkage.
FormalLinkage linkage = FormalLinkage::PublicNonUnique;
for (auto &req : sig.getRequirements()) {
// The first type can be ignored because it should always be
// a dependent type.
switch (req.getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Layout:
continue;
case RequirementKind::Conformance:
case RequirementKind::SameType:
case RequirementKind::Superclass:
switch (getTypeLinkage_correct(CanType(req.getSecondType()))) {
case FormalLinkage::PublicUnique:
case FormalLinkage::PublicNonUnique:
continue;
case FormalLinkage::HiddenUnique:
linkage = FormalLinkage::HiddenUnique;
continue;
case FormalLinkage::Private:
// We can short-circuit with this.
return linkage;
}
}
}
return linkage;
}
/// Return the formal linkage of the given formal type.
///
/// Note that this function is buggy and generally should not be
/// used in new code; we should migrate all callers to
/// getTypeLinkage_correct and then consolidate them.
FormalLinkage swift::getTypeLinkage(CanType t) {
assert(t->isLegalFormalType());
// Due to a bug, this always returns PublicUnique.
// It's a bit late in the 5.7 timeline to be changing that, but
// we can optimize it!
return FormalLinkage::PublicUnique;
}
/// Return the formal linkage of the given formal type.
/// This in the appropriate linkage for a lazily-emitted entity
/// derived from the type.
///
/// This function never returns PublicUnique, which means that,
/// even if a type is simply a reference to a non-generic
/// uniquely-emitted nominal type, the formal linkage of that
/// type may differ from the formal linkage of the underlying
/// type declaration.
FormalLinkage swift::getTypeLinkage_correct(CanType t) {
assert(t->isLegalFormalType());
class Walker : public TypeWalker {
public:
FormalLinkage Linkage;
Walker() : Linkage(FormalLinkage::PublicNonUnique) {}
Action walkToTypePre(Type ty) override {
// Non-nominal types are always available.
auto decl = ty->getNominalOrBoundGenericNominal();
if (!decl)
return Action::Continue;
Linkage = std::max(Linkage, getDeclLinkage(decl));
return Action::Continue;
}
};
Walker w;
t.walk(w);
return w.Linkage;
}
/// Answer whether IRGen's emitTypeMetadataForLayout can fetch metadata for
/// a type, which is the necessary condition for being able to do value
/// operations on the type using dynamic metadata.
static bool isTypeMetadataForLayoutAccessible(SILModule &M, SILType type) {
// Look through types that aren't necessarily legal formal types:
// - tuples
if (auto tupleType = type.getAs<TupleType>()) {
for (auto index : indices(tupleType.getElementTypes())) {
if (!isTypeMetadataForLayoutAccessible(M, type.getTupleElementType(index)))
return false;
}
return true;
}
// - optionals
if (auto objType = type.getOptionalObjectType()) {
return isTypeMetadataForLayoutAccessible(M, objType);
}
// - function types
if (type.is<SILFunctionType>())
return true;
// - metatypes
if (type.is<AnyMetatypeType>())
return true;
// Otherwise, check that we can fetch the type metadata.
return M.isTypeMetadataAccessible(type.getASTType());
}
/// Can we perform value operations on the given type? We have no way
/// of doing value operations on resilient-layout types from other modules
/// that are ABI-private to their defining module. But if the type is not
/// ABI-private, we can always at least fetch its metadata and use the
/// value witness table stored there.
bool SILModule::isTypeABIAccessible(SILType type,
TypeExpansionContext forExpansion) {
// Fixed-ABI types can have value operations done without metadata.
if (Types.getTypeLowering(type, forExpansion).isFixedABI())
return true;
assert(!type.is<ReferenceStorageType>() &&
!type.is<SILFunctionType>() &&
!type.is<AnyMetatypeType>() &&
"unexpected SIL lowered-only type with non-fixed layout");
// Otherwise, we need to be able to fetch layout-metadata for the type.
return isTypeMetadataForLayoutAccessible(type);
}
bool SILModule::isTypeMetadataForLayoutAccessible(SILType type) {
if (type.is<ReferenceStorageType>() || type.is<SILFunctionType>() ||
type.is<AnyMetatypeType>() || type.is<SILPackType>())
return false;
return ::isTypeMetadataForLayoutAccessible(*this, type);
}
bool AbstractStorageDecl::exportsPropertyDescriptor() const {
// The storage needs a descriptor if it sits at a module's ABI boundary,
// meaning it has public linkage.
// TODO: Global and static properties ought to eventually be referenceable
// as key paths from () or T.Type too.
if (!getDeclContext()->isTypeContext() || isStatic())
return false;
// Protocol requirements do not need property descriptors.
if (isa<ProtocolDecl>(getDeclContext()))
return false;
// FIXME: We should support properties and subscripts with '_read' accessors;
// 'get' is not part of the opaque accessor set there.
auto *getter = getOpaqueAccessor(AccessorKind::Get);
if (!getter)
return false;
// If the getter is mutating, we cannot form a keypath to it at all.
if (isGetterMutating())
return false;
// If the storage is an ABI-compatible override of another declaration, we're
// not going to be emitting a property descriptor either.
if (!isValidKeyPathComponent())
return false;
// TODO: If previous versions of an ABI-stable binary needed the descriptor,
// then we still do.
// Check the linkage of the declaration.
auto getterLinkage = SILDeclRef(getter).getLinkage(ForDefinition);
switch (getterLinkage) {
case SILLinkage::Public:
case SILLinkage::PublicNonABI:
// We may need a descriptor.
break;
case SILLinkage::Shared:
case SILLinkage::Private:
case SILLinkage::Hidden:
// Don't need a public descriptor.
return false;
case SILLinkage::HiddenExternal:
case SILLinkage::PublicExternal:
llvm_unreachable("should be definition linkage?");
}
// Subscripts with inout arguments (FIXME)and reabstracted arguments(/FIXME)
// don't have descriptors either.
if (auto sub = dyn_cast<SubscriptDecl>(this)) {
for (auto *index : *sub->getIndices()) {
// Keypaths can't capture inout indices.
if (index->isInOut())
return false;
auto indexTy = index->getInterfaceType()
->getReducedType(sub->getGenericSignatureOfContext());
// TODO: Handle reabstraction and tuple explosion in thunk generation.
// This wasn't previously a concern because anything that was Hashable
// had only one abstraction level and no explosion.
if (isa<TupleType>(indexTy))
return false;
auto indexObjTy = indexTy;
if (auto objTy = indexObjTy.getOptionalObjectType())
indexObjTy = objTy;
if (isa<AnyFunctionType>(indexObjTy)
|| isa<AnyMetatypeType>(indexObjTy))
return false;
}
}
return true;
}