mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
In addition to supporting the creation of full specializations, the EagerSpecializer changes contain some code for generating the layout-constrained partial specializations as well.
1223 lines
47 KiB
C++
1223 lines
47 KiB
C++
//===--- Generics.cpp ---- Utilities for transforming generics ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "generic-specializer"
|
|
|
|
#include "swift/Strings.h"
|
|
#include "swift/SILOptimizer/Utils/Generics.h"
|
|
#include "swift/SILOptimizer/Utils/GenericCloner.h"
|
|
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/AST/ArchetypeBuilder.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
|
|
using namespace swift;
|
|
|
|
// Max depth of a bound generic which can be processed by the generic
|
|
// specializer.
|
|
// E.g. the depth of Array<Array<Array<T>>> is 3.
|
|
// No specializations will be produced, if any of generic parameters contains
|
|
// a bound generic type with the depth higher than this threshold
|
|
static const unsigned BoundGenericDepthThreshold = 50;
|
|
|
|
static unsigned getBoundGenericDepth(Type t) {
|
|
unsigned Depth = 0;
|
|
if (auto BGT = t->getAs<BoundGenericType>()) {
|
|
Depth++;
|
|
auto GenericArgs = BGT->getGenericArgs();
|
|
unsigned MaxGenericArgDepth = 0;
|
|
for (auto GenericArg : GenericArgs) {
|
|
auto ArgDepth = getBoundGenericDepth(GenericArg);
|
|
if (ArgDepth > MaxGenericArgDepth)
|
|
MaxGenericArgDepth = ArgDepth;
|
|
}
|
|
Depth += MaxGenericArgDepth;
|
|
}
|
|
return Depth;
|
|
}
|
|
|
|
// =============================================================================
|
|
// ReabstractionInfo
|
|
// =============================================================================
|
|
|
|
// Initialize SpecializedType iff the specialization is allowed.
|
|
ReabstractionInfo::ReabstractionInfo(ApplySite Apply, SILFunction *OrigF,
|
|
SubstitutionList ParamSubs) {
|
|
if (!OrigF->shouldOptimize()) {
|
|
DEBUG(llvm::dbgs() << " Cannot specialize function " << OrigF->getName()
|
|
<< " marked to be excluded from optimizations.\n");
|
|
return;
|
|
}
|
|
|
|
OriginalF = OrigF;
|
|
OriginalParamSubs = ParamSubs;
|
|
ClonerParamSubs = ParamSubs;
|
|
CallerParamSubs = ParamSubs;
|
|
SpecializedGenericSig = nullptr;
|
|
SpecializedGenericEnv = nullptr;
|
|
|
|
SubstitutionMap InterfaceSubs;
|
|
if (OrigF->getLoweredFunctionType()->getGenericSignature())
|
|
InterfaceSubs = OrigF->getLoweredFunctionType()->getGenericSignature()
|
|
->getSubstitutionMap(ParamSubs);
|
|
|
|
// We do not support partial specialization.
|
|
if (InterfaceSubs.hasArchetypes()) {
|
|
DEBUG(llvm::dbgs() <<
|
|
" Cannot specialize with unbound interface substitutions.\n");
|
|
DEBUG(for (auto Sub : ParamSubs) {
|
|
Sub.dump();
|
|
});
|
|
return;
|
|
}
|
|
if (InterfaceSubs.hasDynamicSelf()) {
|
|
DEBUG(llvm::dbgs() << " Cannot specialize with dynamic self.\n");
|
|
return;
|
|
}
|
|
|
|
// Check if the substitution contains any generic types that are too deep.
|
|
// If this is the case, bail to avoid the explosion in the number of
|
|
// generated specializations.
|
|
for (auto Sub : ParamSubs) {
|
|
auto Replacement = Sub.getReplacement();
|
|
if (Replacement.findIf([](Type ty) -> bool {
|
|
return getBoundGenericDepth(ty) >= BoundGenericDepthThreshold;
|
|
})) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
SILModule &M = OrigF->getModule();
|
|
SubstitutedType = SILType::substFuncType(M, InterfaceSubs,
|
|
OrigF->getLoweredFunctionType(),
|
|
/*dropGenerics = */ true);
|
|
|
|
NumFormalIndirectResults = SubstitutedType->getNumIndirectFormalResults();
|
|
Conversions.resize(NumFormalIndirectResults
|
|
+ SubstitutedType->getParameters().size());
|
|
if (SubstitutedType->getNumDirectFormalResults() == 0) {
|
|
// The original function has no direct result yet. Try to convert the first
|
|
// indirect result to a direct result.
|
|
// TODO: We could also convert multiple indirect results by returning a
|
|
// tuple type and created tuple_extract instructions at the call site.
|
|
SILFunctionConventions substConv(SubstitutedType, M);
|
|
unsigned IdxForResult = 0;
|
|
for (SILResultInfo RI : SubstitutedType->getIndirectFormalResults()) {
|
|
assert(RI.isFormalIndirect());
|
|
if (substConv.getSILType(RI).isLoadable(M) && !RI.getType()->isVoid()) {
|
|
Conversions.set(IdxForResult);
|
|
break;
|
|
}
|
|
++IdxForResult;
|
|
}
|
|
}
|
|
// Try to convert indirect incoming parameters to direct parameters.
|
|
// The Conversions index domain is
|
|
// [0..<NumFormalIndirectResults + NumParameters]. This is *not* the same as
|
|
// a SubstitutedType's SIL argument index.
|
|
unsigned IdxForParam = NumFormalIndirectResults;
|
|
for (SILParameterInfo PI : SubstitutedType->getParameters()) {
|
|
if (PI.getSILStorageType().isLoadable(M)
|
|
&& PI.getConvention() == ParameterConvention::Indirect_In) {
|
|
Conversions.set(IdxForParam);
|
|
}
|
|
++IdxForParam;
|
|
}
|
|
SpecializedType = createSpecializedType(SubstitutedType, M);
|
|
}
|
|
|
|
bool ReabstractionInfo::canBeSpecialized() const {
|
|
return getSpecializedType();
|
|
}
|
|
|
|
bool ReabstractionInfo::isFullSpecialization() const {
|
|
return !hasArchetypes(getOriginalParamSubstitutions());
|
|
}
|
|
|
|
bool ReabstractionInfo::isPartialSpecialization() const {
|
|
return hasArchetypes(getOriginalParamSubstitutions());
|
|
}
|
|
|
|
void ReabstractionInfo::createSubstitutedAndSpecializedTypes() {
|
|
auto &M = OriginalF->getModule();
|
|
|
|
// Find out how the function type looks like after applying the provided
|
|
// substitutions.
|
|
if (!SubstitutedType) {
|
|
SubstitutedType = createSubstitutedType(
|
|
OriginalF, CallerInterfaceSubs, HasUnboundGenericParams);
|
|
}
|
|
assert(!SubstitutedType->hasArchetype() &&
|
|
"Substituted function type should not contain archetypes");
|
|
|
|
// Check which parameters and results can be converted from
|
|
// indirect to direct ones.
|
|
NumFormalIndirectResults = SubstitutedType->getNumIndirectFormalResults();
|
|
Conversions.resize(NumFormalIndirectResults +
|
|
SubstitutedType->getParameters().size());
|
|
|
|
CanGenericSignature CanSig;
|
|
if (SpecializedGenericSig)
|
|
CanSig = SpecializedGenericSig->getCanonicalSignature();
|
|
Lowering::GenericContextScope GenericScope(M.Types, CanSig);
|
|
|
|
SILFunctionConventions substConv(SubstitutedType, M);
|
|
|
|
if (SubstitutedType->getNumDirectFormalResults() == 0) {
|
|
// The original function has no direct result yet. Try to convert the first
|
|
// indirect result to a direct result.
|
|
// TODO: We could also convert multiple indirect results by returning a
|
|
// tuple type and created tuple_extract instructions at the call site.
|
|
unsigned IdxForResult = 0;
|
|
for (SILResultInfo RI : SubstitutedType->getIndirectFormalResults()) {
|
|
assert(RI.isFormalIndirect());
|
|
if (substConv.getSILType(RI).isLoadable(M) && !RI.getType()->isVoid()) {
|
|
Conversions.set(IdxForResult);
|
|
break;
|
|
}
|
|
++IdxForResult;
|
|
}
|
|
}
|
|
|
|
// Try to convert indirect incoming parameters to direct parameters.
|
|
unsigned IdxForParam = NumFormalIndirectResults;
|
|
for (SILParameterInfo PI : SubstitutedType->getParameters()) {
|
|
if (substConv.getSILType(PI).isLoadable(M) &&
|
|
PI.getConvention() == ParameterConvention::Indirect_In) {
|
|
Conversions.set(IdxForParam);
|
|
}
|
|
++IdxForParam;
|
|
}
|
|
|
|
// Produce a specialized type, which is the substituted type with
|
|
// the parameters/results passing conventions adjusted according
|
|
// to the converions selected above.
|
|
SpecializedType = createSpecializedType(SubstitutedType, M);
|
|
}
|
|
|
|
/// Create a new substituted type with the updated signature.
|
|
CanSILFunctionType
|
|
ReabstractionInfo::createSubstitutedType(SILFunction *OrigF,
|
|
const SubstitutionMap &SubstMap,
|
|
bool HasUnboundGenericParams) {
|
|
auto &M = OrigF->getModule();
|
|
auto OrigFnTy = OrigF->getLoweredFunctionType();
|
|
|
|
// First substitute concrete types into the existing function type.
|
|
auto FnTy = OrigFnTy->substGenericArgs(
|
|
M, QuerySubstitutionMap{SubstMap},
|
|
LookUpConformanceInSubstitutionMap(SubstMap));
|
|
|
|
if ((SpecializedGenericSig &&
|
|
SpecializedGenericSig->areAllParamsConcrete()) ||
|
|
!HasUnboundGenericParams) {
|
|
SpecializedGenericSig = nullptr;
|
|
SpecializedGenericEnv = nullptr;
|
|
}
|
|
|
|
// Use the new specialized generic signature.
|
|
auto NewFnTy = SILFunctionType::get(
|
|
SpecializedGenericSig, FnTy->getExtInfo(), FnTy->getCalleeConvention(),
|
|
FnTy->getParameters(), FnTy->getResults(),
|
|
FnTy->getOptionalErrorResult(), M.getASTContext());
|
|
|
|
// This is an interface type. It should not have any archetypes.
|
|
if (NewFnTy->hasArchetype()) {
|
|
NewFnTy->dump();
|
|
}
|
|
assert(!NewFnTy->hasArchetype());
|
|
return NewFnTy;
|
|
}
|
|
|
|
// Convert the substituted function type into a specialized function type based
|
|
// on the ReabstractionInfo.
|
|
CanSILFunctionType ReabstractionInfo::
|
|
createSpecializedType(CanSILFunctionType SubstFTy, SILModule &M) const {
|
|
llvm::SmallVector<SILResultInfo, 8> SpecializedResults;
|
|
llvm::SmallVector<SILParameterInfo, 8> SpecializedParams;
|
|
|
|
unsigned IndirectResultIdx = 0;
|
|
for (SILResultInfo RI : SubstFTy->getResults()) {
|
|
if (RI.isFormalIndirect()) {
|
|
if (isFormalResultConverted(IndirectResultIdx++)) {
|
|
// Convert the indirect result to a direct result.
|
|
SILType SILResTy = SILType::getPrimitiveObjectType(RI.getType());
|
|
// Indirect results are passed as owned, so we also need to pass the
|
|
// direct result as owned (except it's a trivial type).
|
|
auto C = (SILResTy.isTrivial(M) ? ResultConvention::Unowned :
|
|
ResultConvention::Owned);
|
|
SpecializedResults.push_back(SILResultInfo(RI.getType(), C));
|
|
continue;
|
|
}
|
|
}
|
|
// No conversion: re-use the original, substituted result info.
|
|
SpecializedResults.push_back(RI);
|
|
}
|
|
unsigned ParamIdx = 0;
|
|
for (SILParameterInfo PI : SubstFTy->getParameters()) {
|
|
if (isParamConverted(ParamIdx++)) {
|
|
// Convert the indirect parameter to a direct parameter.
|
|
SILType SILParamTy = SILType::getPrimitiveObjectType(PI.getType());
|
|
// Indirect parameters are passed as owned, so we also need to pass the
|
|
// direct parameter as owned (except it's a trivial type).
|
|
auto C = (SILParamTy.isTrivial(M) ? ParameterConvention::Direct_Unowned :
|
|
ParameterConvention::Direct_Owned);
|
|
SpecializedParams.push_back(SILParameterInfo(PI.getType(), C));
|
|
} else {
|
|
// No conversion: re-use the original, substituted parameter info.
|
|
SpecializedParams.push_back(PI);
|
|
}
|
|
}
|
|
return
|
|
SILFunctionType::get(SubstFTy->getGenericSignature(),
|
|
SubstFTy->getExtInfo(),
|
|
SubstFTy->getCalleeConvention(), SpecializedParams,
|
|
SpecializedResults, SubstFTy->getOptionalErrorResult(),
|
|
M.getASTContext());
|
|
}
|
|
|
|
std::pair<GenericEnvironment *, GenericSignature *>
|
|
getSignatureWithRequirements(GenericSignature *OrigGenSig,
|
|
GenericEnvironment *OrigGenericEnv,
|
|
ArrayRef<Requirement> Requirements,
|
|
SILModule &M) {
|
|
// Form a new generic signature based on the old one.
|
|
ArchetypeBuilder Builder(M.getASTContext(),
|
|
LookUpConformanceInModule(M.getSwiftModule()));
|
|
|
|
// First, add the old generic signature.
|
|
Builder.addGenericSignature(OrigGenSig);
|
|
|
|
RequirementSource Source(RequirementSource::Explicit, SourceLoc());
|
|
// For each substitution with a concrete type as a replacement,
|
|
// add a new concrete type equality requirement.
|
|
for (auto &Req : Requirements) {
|
|
Builder.addRequirement(Req, Source);
|
|
}
|
|
|
|
Builder.finalize(SourceLoc(), OrigGenSig->getGenericParams());
|
|
auto *GenericSig = Builder.getGenericSignature();
|
|
// Remember the new generic environment.
|
|
auto *GenericEnv = GenericSig->createGenericEnvironment(*M.getSwiftModule());
|
|
|
|
return std::make_pair(GenericEnv, GenericSig);
|
|
}
|
|
|
|
/// Perform some sanity checks for the requirements
|
|
static void
|
|
checkSpecializationRequirements(ArrayRef<Requirement> Requirements) {
|
|
for (auto &Req : Requirements) {
|
|
if (Req.getKind() == RequirementKind::SameType) {
|
|
auto FirstType = Req.getFirstType();
|
|
auto SecondType = Req.getSecondType();
|
|
assert(FirstType && SecondType);
|
|
|
|
bool isFirstTypeNonConcrete =
|
|
FirstType->hasArchetype() || FirstType->hasTypeParameter();
|
|
bool isSecondTypeNonConcrete =
|
|
SecondType->hasArchetype() || SecondType->hasTypeParameter();
|
|
// Only one of the types should be concrete.
|
|
assert((isFirstTypeNonConcrete ^ isSecondTypeNonConcrete) &&
|
|
"Only concrete type same-type requirements are supported by "
|
|
"generic specialization");
|
|
continue;
|
|
}
|
|
|
|
if (Req.getKind() == RequirementKind::Layout) {
|
|
continue;
|
|
}
|
|
|
|
llvm_unreachable("Unknown type of requirement in generic specialization");
|
|
}
|
|
}
|
|
|
|
ReabstractionInfo::ReabstractionInfo(SILFunction *OrigF,
|
|
ArrayRef<Requirement> Requirements) {
|
|
if (!OrigF->shouldOptimize()) {
|
|
DEBUG(llvm::dbgs() << " Cannot specialize function " << OrigF->getName()
|
|
<< " marked to be excluded from optimizations.\n");
|
|
return;
|
|
}
|
|
|
|
// Perform some sanity checks for the requirements
|
|
checkSpecializationRequirements(Requirements);
|
|
|
|
SpecializedGenericEnv = nullptr;
|
|
|
|
OriginalF = OrigF;
|
|
SILModule &M = OrigF->getModule();
|
|
ModuleDecl *SM = M.getSwiftModule();
|
|
auto &Ctx = M.getASTContext();
|
|
|
|
auto OrigGenericSig = OrigF->getLoweredFunctionType()->getGenericSignature();
|
|
auto OrigGenericEnv = OrigF->getGenericEnvironment();
|
|
SpecializedGenericSig = OrigGenericSig;
|
|
auto ForwardingSubs = OrigGenericEnv->getForwardingSubstitutions();
|
|
auto ForwardingInterfaceSubsMap =
|
|
OrigGenericSig->getSubstitutionMap(ForwardingSubs);
|
|
// Map archetypes of the original function to the contextual types
|
|
// of the specialized function.
|
|
SubstitutionMap ClonerArchetypeToConcreteMap;
|
|
SubstitutionMap CallerArchetypeToConcreteMap;
|
|
SubstitutionMap CallerArchetypeToInterfaceMap;
|
|
|
|
for (auto &Req : Requirements) {
|
|
if (Req.getKind() == RequirementKind::SameType) {
|
|
auto CallerArchetype = dyn_cast<SubstitutableType>(
|
|
OrigGenericEnv->mapTypeIntoContext(Req.getFirstType())
|
|
->getCanonicalType());
|
|
// Remember that a given generic parameter is mapped
|
|
// to a concrete type.
|
|
CallerArchetypeToInterfaceMap.addSubstitution(
|
|
CallerArchetype, Req.getSecondType()->getCanonicalType());
|
|
|
|
// Remember how the original interace type is mapped to a concrete type.
|
|
ClonerArchetypeToConcreteMap.addSubstitution(
|
|
CallerArchetype, Req.getSecondType()->getCanonicalType());
|
|
|
|
// Remember how the original interace type is mapped to a concrete type.
|
|
CallerArchetypeToConcreteMap.addSubstitution(
|
|
CallerArchetype, Req.getSecondType()->getCanonicalType());
|
|
}
|
|
}
|
|
|
|
std::tie(SpecializedGenericEnv, SpecializedGenericSig) =
|
|
getSignatureWithRequirements(OrigGenericSig, OrigGenericEnv,
|
|
Requirements, M);
|
|
|
|
for (auto Req : SpecializedGenericSig->getRequirements()) {
|
|
// Remember how the original contextual type is represented in
|
|
// the specialized function.
|
|
if (Req.getKind() == RequirementKind::Layout) {
|
|
auto CallerArchetype = dyn_cast<SubstitutableType>(
|
|
OrigGenericEnv->mapTypeIntoContext(Req.getFirstType())
|
|
->getCanonicalType());
|
|
|
|
ClonerArchetypeToConcreteMap.addSubstitution(
|
|
CallerArchetype,
|
|
SpecializedGenericEnv->mapTypeIntoContext(Req.getFirstType()));
|
|
|
|
CallerArchetypeToInterfaceMap.addSubstitution(
|
|
CallerArchetype,
|
|
SpecializedGenericEnv->mapTypeOutOfContext(Req.getFirstType()));
|
|
}
|
|
}
|
|
|
|
// If this is a partial specialization, some of the generic type parameters
|
|
// are not substituted, so add the missing substitutions which basically map
|
|
// the caller archetypes to their interface types or the corresponding
|
|
// archetypes in the specialized function.
|
|
for (auto GP : SpecializedGenericSig->getGenericParams()) {
|
|
auto CallerArchetype = dyn_cast<SubstitutableType>(
|
|
OrigGenericEnv->mapTypeIntoContext(GP)->getCanonicalType());
|
|
if (CallerArchetypeToInterfaceMap.lookupSubstitution(CallerArchetype))
|
|
continue;
|
|
CallerArchetypeToInterfaceMap.addSubstitution(CallerArchetype,
|
|
GP->getCanonicalType());
|
|
if (ClonerArchetypeToConcreteMap.lookupSubstitution(CallerArchetype))
|
|
continue;
|
|
auto SpecializedArchetype =
|
|
SpecializedGenericEnv->mapTypeIntoContext(GP);
|
|
ClonerArchetypeToConcreteMap.addSubstitution(CallerArchetype,
|
|
SpecializedArchetype);
|
|
}
|
|
|
|
// Substitute into forwarding substitutions to get the cloner substitutions
|
|
// and substitutions to be used by the caller for calling the specialized
|
|
// function.
|
|
SmallVector<Substitution, 4> ClonerSubsList;
|
|
SmallVector<Substitution, 4> CallerSubsList;
|
|
SmallVector<Substitution, 4> InterfaceCallerSubsList;
|
|
for (auto Sub : ForwardingSubs) {
|
|
auto ClonerSub = Sub.subst(
|
|
SM, QuerySubstitutionMap{ClonerArchetypeToConcreteMap},
|
|
LookUpConformanceInModule(SM));
|
|
ClonerSubsList.push_back(ClonerSub);
|
|
|
|
auto CallerSub = Sub.subst(
|
|
SM, QuerySubstitutionMap{CallerArchetypeToConcreteMap},
|
|
LookUpConformanceInModule(SM));
|
|
CallerSubsList.push_back(CallerSub);
|
|
|
|
auto InterfaceCallerSub = Sub.subst(
|
|
SM, QuerySubstitutionMap{CallerArchetypeToInterfaceMap},
|
|
LookUpConformanceInModule(SM));
|
|
InterfaceCallerSubsList.push_back(InterfaceCallerSub);
|
|
}
|
|
|
|
ClonerParamSubs = Ctx.AllocateCopy(ClonerSubsList);
|
|
|
|
CallerInterfaceSubs = OrigGenericSig->getSubstitutionMap(InterfaceCallerSubsList);
|
|
|
|
auto CallerParamSubsMap = OrigGenericSig->getSubstitutionMap(CallerSubsList);
|
|
CallerSubsList.clear();
|
|
SpecializedGenericSig->getSubstitutions(CallerParamSubsMap, CallerSubsList);
|
|
CallerParamSubs = Ctx.AllocateCopy(CallerSubsList);
|
|
|
|
OriginalParamSubs = CallerParamSubs;
|
|
|
|
HasUnboundGenericParams = !SpecializedGenericSig->areAllParamsConcrete();
|
|
createSubstitutedAndSpecializedTypes();
|
|
}
|
|
|
|
// =============================================================================
|
|
// GenericFuncSpecializer
|
|
// =============================================================================
|
|
|
|
GenericFuncSpecializer::GenericFuncSpecializer(SILFunction *GenericFunc,
|
|
SubstitutionList ParamSubs,
|
|
IsFragile_t Fragile,
|
|
const ReabstractionInfo &ReInfo)
|
|
: M(GenericFunc->getModule()),
|
|
GenericFunc(GenericFunc),
|
|
ParamSubs(ParamSubs),
|
|
Fragile(Fragile),
|
|
ReInfo(ReInfo) {
|
|
|
|
assert(GenericFunc->isDefinition() && "Expected definition to specialize!");
|
|
auto FnTy = ReInfo.getSpecializedType();
|
|
|
|
std::string Old;
|
|
|
|
if (ReInfo.isPartialSpecialization()) {
|
|
Mangle::Mangler Mangler;
|
|
PartialSpecializationMangler OldGenericMangler(Mangler, GenericFunc, FnTy,
|
|
Fragile);
|
|
OldGenericMangler.mangle();
|
|
Old = Mangler.finalize();
|
|
} else {
|
|
Mangle::Mangler Mangler;
|
|
GenericSpecializationMangler OldGenericMangler(Mangler, GenericFunc,
|
|
ParamSubs, Fragile);
|
|
OldGenericMangler.mangle();
|
|
Old = Mangler.finalize();
|
|
}
|
|
|
|
std::string New;
|
|
if (ReInfo.isPartialSpecialization()) {
|
|
NewMangling::PartialSpecializationMangler NewGenericMangler(
|
|
GenericFunc, FnTy, Fragile, /*isReAbstracted*/ true);
|
|
New = NewGenericMangler.mangle();
|
|
} else {
|
|
NewMangling::GenericSpecializationMangler NewGenericMangler(
|
|
GenericFunc, ParamSubs, Fragile, /*isReAbstracted*/ true);
|
|
New = NewGenericMangler.mangle();
|
|
}
|
|
|
|
ClonedName = NewMangling::selectMangling(Old, New);
|
|
|
|
DEBUG(llvm::dbgs() << " Specialized function " << ClonedName << '\n');
|
|
}
|
|
|
|
// Return an existing specialization if one exists.
|
|
SILFunction *GenericFuncSpecializer::lookupSpecialization() {
|
|
if (SILFunction *SpecializedF = M.lookUpFunction(ClonedName)) {
|
|
assert(ReInfo.getSpecializedType()
|
|
== SpecializedF->getLoweredFunctionType() &&
|
|
"Previously specialized function does not match expected type.");
|
|
DEBUG(llvm::dbgs() << "Found an existing specialization for: " << ClonedName
|
|
<< "\n");
|
|
return SpecializedF;
|
|
}
|
|
DEBUG(llvm::dbgs() << "Could not find an existing specialization for: "
|
|
<< ClonedName << "\n");
|
|
return nullptr;
|
|
}
|
|
|
|
// Forward decl for prespecialization support.
|
|
static bool linkSpecialization(SILModule &M, SILFunction *F);
|
|
|
|
// Create a new specialized function if possible, and cache it.
|
|
SILFunction *GenericFuncSpecializer::tryCreateSpecialization() {
|
|
// Do not create any new specializations at Onone.
|
|
if (M.getOptions().Optimization <= SILOptions::SILOptMode::None)
|
|
return nullptr;
|
|
|
|
DEBUG(
|
|
if (M.getOptions().Optimization <= SILOptions::SILOptMode::Debug) {
|
|
llvm::dbgs() << "Creating a specialization: " << ClonedName << "\n"; });
|
|
|
|
// Create a new function.
|
|
SILFunction *SpecializedF = GenericCloner::cloneFunction(
|
|
GenericFunc, Fragile, ReInfo,
|
|
// Use these substitutions inside the new specialized function being
|
|
// created.
|
|
ReInfo.getClonerParamSubstitutions(),
|
|
ClonedName);
|
|
assert(SpecializedF->hasUnqualifiedOwnership());
|
|
// Check if this specialization should be linked for prespecialization.
|
|
linkSpecialization(M, SpecializedF);
|
|
return SpecializedF;
|
|
}
|
|
|
|
// =============================================================================
|
|
// Apply substitution
|
|
// =============================================================================
|
|
|
|
/// Fix the case where a void function returns the result of an apply, which is
|
|
/// also a call of a void-returning function.
|
|
/// We always want a void function returning a tuple _instruction_.
|
|
static void fixUsedVoidType(SILValue VoidVal, SILLocation Loc,
|
|
SILBuilder &Builder) {
|
|
assert(VoidVal->getType().isVoid());
|
|
if (VoidVal->use_empty())
|
|
return;
|
|
auto *NewVoidVal = Builder.createTuple(Loc, VoidVal->getType(), { });
|
|
VoidVal->replaceAllUsesWith(NewVoidVal);
|
|
}
|
|
|
|
// Create a new apply based on an old one, but with a different
|
|
// function being applied.
|
|
static ApplySite replaceWithSpecializedCallee(ApplySite AI,
|
|
SILValue Callee,
|
|
SILBuilder &Builder,
|
|
const ReabstractionInfo &ReInfo) {
|
|
SILLocation Loc = AI.getLoc();
|
|
SmallVector<SILValue, 4> Arguments;
|
|
SILValue StoreResultTo;
|
|
/// SIL function conventions for the original apply site with substitutions.
|
|
auto substConv = AI.getSubstCalleeConv();
|
|
unsigned ArgIdx = AI.getCalleeArgIndexOfFirstAppliedArg();
|
|
for (auto &Op : AI.getArgumentOperands()) {
|
|
auto handleConversion = [&]() {
|
|
// Rewriting SIL arguments is only for lowered addresses.
|
|
if (!substConv.useLoweredAddresses())
|
|
return false;
|
|
|
|
if (ArgIdx < substConv.getSILArgIndexOfFirstParam()) {
|
|
// Handle result arguments.
|
|
unsigned formalIdx =
|
|
substConv.getIndirectFormalResultIndexForSILArg(ArgIdx);
|
|
if (ReInfo.isFormalResultConverted(formalIdx)) {
|
|
// The result is converted from indirect to direct. We need to insert
|
|
// a store later.
|
|
assert(!StoreResultTo);
|
|
StoreResultTo = Op.get();
|
|
return true;
|
|
}
|
|
} else {
|
|
// Handle arguments for formal parameters.
|
|
unsigned paramIdx = ArgIdx - substConv.getSILArgIndexOfFirstParam();
|
|
if (ReInfo.isParamConverted(paramIdx)) {
|
|
// An argument is converted from indirect to direct. Instead of the
|
|
// address we pass the loaded value.
|
|
SILValue Val = Builder.createLoad(
|
|
Loc, Op.get(), LoadOwnershipQualifier::Unqualified);
|
|
Arguments.push_back(Val);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
if (!handleConversion())
|
|
Arguments.push_back(Op.get());
|
|
|
|
++ArgIdx;
|
|
}
|
|
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(AI)) {
|
|
SILBasicBlock *ResultBB = TAI->getNormalBB();
|
|
assert(ResultBB->getSinglePredecessorBlock() == TAI->getParent());
|
|
auto *NewTAI =
|
|
Builder.createTryApply(Loc, Callee, Callee->getType(), {},
|
|
Arguments, ResultBB, TAI->getErrorBB());
|
|
if (StoreResultTo) {
|
|
assert(substConv.useLoweredAddresses());
|
|
// The original normal result of the try_apply is an empty tuple.
|
|
assert(ResultBB->getNumArguments() == 1);
|
|
Builder.setInsertionPoint(ResultBB->begin());
|
|
fixUsedVoidType(ResultBB->getArgument(0), Loc, Builder);
|
|
|
|
SILArgument *Arg = ResultBB->replacePHIArgument(
|
|
0, StoreResultTo->getType().getObjectType(),
|
|
ValueOwnershipKind::Owned);
|
|
// Store the direct result to the original result address.
|
|
Builder.createStore(Loc, Arg, StoreResultTo,
|
|
StoreOwnershipQualifier::Unqualified);
|
|
}
|
|
return NewTAI;
|
|
}
|
|
if (auto *A = dyn_cast<ApplyInst>(AI)) {
|
|
auto *NewAI = Builder.createApply(Loc, Callee, Arguments, A->isNonThrowing());
|
|
if (StoreResultTo) {
|
|
assert(substConv.useLoweredAddresses());
|
|
// Store the direct result to the original result address.
|
|
fixUsedVoidType(A, Loc, Builder);
|
|
Builder.createStore(Loc, NewAI, StoreResultTo,
|
|
StoreOwnershipQualifier::Unqualified);
|
|
}
|
|
A->replaceAllUsesWith(NewAI);
|
|
return NewAI;
|
|
}
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(AI)) {
|
|
CanSILFunctionType NewPAType =
|
|
ReInfo.createSpecializedType(PAI->getFunctionType(), Builder.getModule());
|
|
SILType PTy = SILType::getPrimitiveObjectType(ReInfo.getSpecializedType());
|
|
auto *NewPAI =
|
|
Builder.createPartialApply(Loc, Callee, PTy, {}, Arguments,
|
|
SILType::getPrimitiveObjectType(NewPAType));
|
|
PAI->replaceAllUsesWith(NewPAI);
|
|
return NewPAI;
|
|
}
|
|
llvm_unreachable("unhandled kind of apply");
|
|
}
|
|
|
|
// Create a new apply based on an old one, but with a different
|
|
// function being applied.
|
|
ApplySite swift::
|
|
replaceWithSpecializedFunction(ApplySite AI, SILFunction *NewF,
|
|
const ReabstractionInfo &ReInfo) {
|
|
SILBuilderWithScope Builder(AI.getInstruction());
|
|
FunctionRefInst *FRI = Builder.createFunctionRef(AI.getLoc(), NewF);
|
|
return replaceWithSpecializedCallee(AI, FRI, Builder, ReInfo);
|
|
}
|
|
|
|
namespace {
|
|
class ReabstractionThunkGenerator {
|
|
SILFunction *OrigF;
|
|
SILModule &M;
|
|
SILFunction *SpecializedFunc;
|
|
const ReabstractionInfo &ReInfo;
|
|
PartialApplyInst *OrigPAI;
|
|
|
|
IsFragile_t Fragile = IsNotFragile;
|
|
std::string ThunkName;
|
|
RegularLocation Loc;
|
|
SmallVector<SILValue, 4> Arguments;
|
|
|
|
public:
|
|
ReabstractionThunkGenerator(const ReabstractionInfo &ReInfo,
|
|
PartialApplyInst *OrigPAI,
|
|
SILFunction *SpecializedFunc)
|
|
: OrigF(OrigPAI->getCalleeFunction()), M(OrigF->getModule()),
|
|
SpecializedFunc(SpecializedFunc), ReInfo(ReInfo), OrigPAI(OrigPAI),
|
|
Loc(RegularLocation::getAutoGeneratedLocation()) {
|
|
if (OrigF->isFragile() && OrigPAI->getFunction()->isFragile())
|
|
Fragile = IsFragile;
|
|
|
|
{
|
|
Mangle::Mangler M;
|
|
GenericSpecializationMangler OldMangler(
|
|
M, OrigF, ReInfo.getOriginalParamSubstitutions(), Fragile,
|
|
GenericSpecializationMangler::NotReabstracted);
|
|
OldMangler.mangle();
|
|
std::string Old = M.finalize();
|
|
|
|
NewMangling::GenericSpecializationMangler NewMangler(
|
|
OrigF, ReInfo.getOriginalParamSubstitutions(), Fragile,
|
|
/*isReAbstracted*/ false);
|
|
|
|
std::string New = NewMangler.mangle();
|
|
ThunkName = NewMangling::selectMangling(Old, New);
|
|
}
|
|
}
|
|
|
|
SILFunction *createThunk();
|
|
|
|
protected:
|
|
SILValue createReabstractionThunkApply(SILBuilder &Builder);
|
|
SILArgument *convertReabstractionThunkArguments(SILBuilder &Builder);
|
|
};
|
|
} // anonymous namespace
|
|
|
|
SILFunction *ReabstractionThunkGenerator::createThunk() {
|
|
SILFunction *Thunk =
|
|
M.getOrCreateSharedFunction(Loc, ThunkName, ReInfo.getSubstitutedType(),
|
|
IsBare, IsTransparent, Fragile, IsThunk);
|
|
// Re-use an existing thunk.
|
|
if (!Thunk->empty())
|
|
return Thunk;
|
|
|
|
SILBasicBlock *EntryBB = Thunk->createBasicBlock();
|
|
SILBuilder Builder(EntryBB);
|
|
|
|
// If the original specialized function had unqualified ownership, set the
|
|
// thunk to have unqualified ownership as well.
|
|
//
|
|
// This is a stop gap measure to allow for easy inlining. We could always make
|
|
// the Thunk qualified, but then we would need to either fix the inliner to
|
|
// inline qualified into unqualified functions /or/ have the
|
|
// OwnershipModelEliminator run as part of the normal compilation pipeline
|
|
// (which we are not doing yet).
|
|
if (SpecializedFunc->hasUnqualifiedOwnership()) {
|
|
Thunk->setUnqualifiedOwnership();
|
|
}
|
|
|
|
if (!SILModuleConventions(M).useLoweredAddresses()) {
|
|
for (auto SpecArg : SpecializedFunc->getArguments()) {
|
|
SILArgument *NewArg = EntryBB->createFunctionArgument(SpecArg->getType(),
|
|
SpecArg->getDecl());
|
|
Arguments.push_back(NewArg);
|
|
}
|
|
SILValue ReturnValue = createReabstractionThunkApply(Builder);
|
|
Builder.createReturn(Loc, ReturnValue);
|
|
return Thunk;
|
|
}
|
|
// Handle lowered addresses.
|
|
SILArgument *ReturnValueAddr = convertReabstractionThunkArguments(Builder);
|
|
|
|
SILValue ReturnValue = createReabstractionThunkApply(Builder);
|
|
|
|
if (ReturnValueAddr) {
|
|
// Need to store the direct results to the original indirect address.
|
|
Builder.createStore(Loc, ReturnValue, ReturnValueAddr,
|
|
StoreOwnershipQualifier::Unqualified);
|
|
SILType VoidTy =
|
|
OrigPAI->getSubstCalleeType()->getDirectFormalResultsType();
|
|
assert(VoidTy.isVoid());
|
|
ReturnValue = Builder.createTuple(Loc, VoidTy, {});
|
|
}
|
|
Builder.createReturn(Loc, ReturnValue);
|
|
return Thunk;
|
|
}
|
|
|
|
// Create a call to a reabstraction thunk. Return the call's direct result.
|
|
SILValue ReabstractionThunkGenerator::createReabstractionThunkApply(
|
|
SILBuilder &Builder) {
|
|
SILFunction *Thunk = &Builder.getFunction();
|
|
auto *FRI = Builder.createFunctionRef(Loc, SpecializedFunc);
|
|
auto specConv = SpecializedFunc->getConventions();
|
|
if (!SpecializedFunc->getLoweredFunctionType()->hasErrorResult()) {
|
|
return Builder.createApply(Loc, FRI, SpecializedFunc->getLoweredType(),
|
|
specConv.getSILResultType(), {}, Arguments,
|
|
false);
|
|
}
|
|
// Create the logic for calling a throwing function.
|
|
SILBasicBlock *NormalBB = Thunk->createBasicBlock();
|
|
SILBasicBlock *ErrorBB = Thunk->createBasicBlock();
|
|
Builder.createTryApply(Loc, FRI, SpecializedFunc->getLoweredType(), {},
|
|
Arguments, NormalBB, ErrorBB);
|
|
auto *ErrorVal = ErrorBB->createPHIArgument(specConv.getSILErrorType(),
|
|
ValueOwnershipKind::Owned);
|
|
Builder.setInsertionPoint(ErrorBB);
|
|
Builder.createThrow(Loc, ErrorVal);
|
|
SILValue ReturnValue = NormalBB->createPHIArgument(
|
|
specConv.getSILResultType(), ValueOwnershipKind::Owned);
|
|
Builder.setInsertionPoint(NormalBB);
|
|
return ReturnValue;
|
|
}
|
|
|
|
// Create SIL arguments for a reabstraction thunk with lowered addresses. This
|
|
// may involve replacing indirect arguments with loads and stores. Return the
|
|
// SILArgument for the address of an indirect result, or nullptr.
|
|
//
|
|
// FIXME: Remove this if we don't need to create reabstraction thunks after
|
|
// address lowering.
|
|
SILArgument *ReabstractionThunkGenerator::convertReabstractionThunkArguments(
|
|
SILBuilder &Builder) {
|
|
SILFunction *Thunk = &Builder.getFunction();
|
|
CanSILFunctionType SpecType = SpecializedFunc->getLoweredFunctionType();
|
|
CanSILFunctionType SubstType = ReInfo.getSubstitutedType();
|
|
auto specConv = SpecializedFunc->getConventions();
|
|
SILFunctionConventions substConv(SubstType, M);
|
|
|
|
assert(specConv.useLoweredAddresses());
|
|
|
|
// ReInfo.NumIndirectResults correponds to SubstTy's formal indirect
|
|
// results. SpecTy may have fewer formal indirect results.
|
|
assert(SubstType->getNumIndirectFormalResults()
|
|
>= SpecType->getNumIndirectFormalResults());
|
|
|
|
SILBasicBlock *EntryBB = Thunk->getEntryBlock();
|
|
SILArgument *ReturnValueAddr = nullptr;
|
|
auto SpecArgIter = SpecializedFunc->getArguments().begin();
|
|
auto cloneSpecializedArgument = [&]() {
|
|
// No change to the argument.
|
|
SILArgument *SpecArg = *SpecArgIter++;
|
|
SILArgument *NewArg =
|
|
EntryBB->createFunctionArgument(SpecArg->getType(), SpecArg->getDecl());
|
|
Arguments.push_back(NewArg);
|
|
};
|
|
// ReInfo.NumIndirectResults correponds to SubstTy's formal indirect
|
|
// results. SpecTy may have fewer formal indirect results.
|
|
assert(SubstType->getNumIndirectFormalResults()
|
|
>= SpecType->getNumIndirectFormalResults());
|
|
unsigned resultIdx = 0;
|
|
for (auto substRI : SubstType->getIndirectFormalResults()) {
|
|
if (ReInfo.isFormalResultConverted(resultIdx++)) {
|
|
// Convert an originally indirect to direct specialized result.
|
|
// Store the result later.
|
|
// FIXME: This only handles a single result! Partial specialization could
|
|
// induce some combination of direct and indirect results.
|
|
SILType ResultTy = substConv.getSILType(substRI);
|
|
assert(ResultTy.isAddress());
|
|
assert(!ReturnValueAddr);
|
|
ReturnValueAddr = EntryBB->createFunctionArgument(ResultTy);
|
|
continue;
|
|
}
|
|
// If the specialized result is already indirect, simply clone the indirect
|
|
// result argument.
|
|
assert((*SpecArgIter)->getType().isAddress());
|
|
cloneSpecializedArgument();
|
|
}
|
|
assert(SpecArgIter
|
|
== SpecializedFunc->getArgumentsWithoutIndirectResults().begin());
|
|
unsigned numParams = SpecType->getNumParameters();
|
|
assert(numParams == SubstType->getNumParameters());
|
|
for (unsigned paramIdx = 0; paramIdx < numParams; ++paramIdx) {
|
|
if (ReInfo.isParamConverted(paramIdx)) {
|
|
// Convert an originally indirect to direct specialized parameter.
|
|
assert(!specConv.isSILIndirect(SpecType->getParameters()[paramIdx]));
|
|
// Instead of passing the address, pass the loaded value.
|
|
SILType ParamTy =
|
|
substConv.getSILType(SubstType->getParameters()[paramIdx]);
|
|
assert(ParamTy.isAddress());
|
|
SILArgument *SpecArg = *SpecArgIter++;
|
|
SILArgument *NewArg =
|
|
EntryBB->createFunctionArgument(ParamTy, SpecArg->getDecl());
|
|
auto *ArgVal =
|
|
Builder.createLoad(Loc, NewArg, LoadOwnershipQualifier::Unqualified);
|
|
Arguments.push_back(ArgVal);
|
|
continue;
|
|
}
|
|
// Simply clone unconverted direct or indirect parameters.
|
|
cloneSpecializedArgument();
|
|
}
|
|
assert(SpecArgIter == SpecializedFunc->getArguments().end());
|
|
return ReturnValueAddr;
|
|
}
|
|
|
|
void swift::trySpecializeApplyOfGeneric(
|
|
ApplySite Apply, DeadInstructionSet &DeadApplies,
|
|
llvm::SmallVectorImpl<SILFunction *> &NewFunctions) {
|
|
assert(Apply.hasSubstitutions() && "Expected an apply with substitutions!");
|
|
|
|
auto *F = Apply.getInstruction()->getFunction();
|
|
auto *RefF = cast<FunctionRefInst>(Apply.getCallee())->getReferencedFunction();
|
|
|
|
DEBUG(llvm::dbgs() << " ApplyInst:\n";
|
|
Apply.getInstruction()->dumpInContext());
|
|
|
|
// If the caller is fragile but the callee is not, bail out.
|
|
// Specializations have shared linkage, which means they do
|
|
// not have an external entry point, Since the callee is not
|
|
// fragile we cannot serialize the body of the specialized
|
|
// callee either.
|
|
if (F->isFragile() && !RefF->hasValidLinkageForFragileInline())
|
|
return;
|
|
|
|
// If the caller and callee are both fragile, preserve the fragility when
|
|
// cloning the callee. Otherwise, strip it off so that we can optimize
|
|
// the body more.
|
|
IsFragile_t Fragile = IsNotFragile;
|
|
if (F->isFragile() && RefF->isFragile())
|
|
Fragile = IsFragile;
|
|
|
|
ReabstractionInfo ReInfo(Apply, RefF, Apply.getSubstitutions());
|
|
if (!ReInfo.canBeSpecialized())
|
|
return;
|
|
|
|
SILModule &M = F->getModule();
|
|
|
|
bool needAdaptUsers = false;
|
|
bool replacePartialApplyWithoutReabstraction = false;
|
|
auto *PAI = dyn_cast<PartialApplyInst>(Apply);
|
|
if (PAI && ReInfo.hasConversions()) {
|
|
// If we have a partial_apply and we converted some results/parameters from
|
|
// indirect to direct there are 3 cases:
|
|
// 1) All uses of the partial_apply are apply sites again. In this case
|
|
// we can just adapt all the apply sites which use the partial_apply.
|
|
// 2) The result of the partial_apply is re-abstracted anyway (and the
|
|
// re-abstracted function type matches with our specialized type). In
|
|
// this case we can just skip the existing re-abstraction.
|
|
// 3) For all other cases we need to create a new re-abstraction thunk.
|
|
needAdaptUsers = true;
|
|
for (Operand *Use : PAI->getUses()) {
|
|
SILInstruction *User = Use->getUser();
|
|
if (isa<RefCountingInst>(User))
|
|
continue;
|
|
if (isDebugInst(User))
|
|
continue;
|
|
|
|
auto FAS = FullApplySite::isa(User);
|
|
if (FAS && FAS.getCallee() == Apply.getInstruction())
|
|
continue;
|
|
|
|
auto *PAIUser = dyn_cast<PartialApplyInst>(User);
|
|
if (PAIUser && isPartialApplyOfReabstractionThunk(PAIUser)) {
|
|
CanSILFunctionType NewPAType =
|
|
ReInfo.createSpecializedType(PAI->getFunctionType(), M);
|
|
if (PAIUser->getFunctionType() == NewPAType)
|
|
continue;
|
|
}
|
|
replacePartialApplyWithoutReabstraction = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
GenericFuncSpecializer FuncSpecializer(RefF, Apply.getSubstitutions(),
|
|
Fragile, ReInfo);
|
|
SILFunction *SpecializedF = FuncSpecializer.lookupSpecialization();
|
|
if (SpecializedF) {
|
|
// Even if the pre-specialization exists already, try to preserve it
|
|
// if it is whitelisted.
|
|
linkSpecialization(M, SpecializedF);
|
|
} else {
|
|
SpecializedF = FuncSpecializer.tryCreateSpecialization();
|
|
if (!SpecializedF)
|
|
return;
|
|
|
|
assert(SpecializedF->hasUnqualifiedOwnership());
|
|
NewFunctions.push_back(SpecializedF);
|
|
}
|
|
|
|
assert(ReInfo.getSpecializedType()
|
|
== SpecializedF->getLoweredFunctionType() &&
|
|
"Previously specialized function does not match expected type.");
|
|
|
|
// FIXME: Replace pre-specialization's "keep as public" hack with something
|
|
// more principled
|
|
assert((Fragile == SpecializedF->isFragile() ||
|
|
SpecializedF->isKeepAsPublic()) &&
|
|
"Previously specialized function does not match expected "
|
|
"resilience level.");
|
|
|
|
DeadApplies.insert(Apply.getInstruction());
|
|
|
|
if (replacePartialApplyWithoutReabstraction) {
|
|
// There are some unknown users of the partial_apply. Therefore we need a
|
|
// thunk which converts from the re-abstracted function back to the
|
|
// original function with indirect parameters/results.
|
|
auto *PAI = cast<PartialApplyInst>(Apply.getInstruction());
|
|
SILBuilderWithScope Builder(PAI);
|
|
SILFunction *Thunk =
|
|
ReabstractionThunkGenerator(ReInfo, PAI, SpecializedF).createThunk();
|
|
NewFunctions.push_back(Thunk);
|
|
auto *FRI = Builder.createFunctionRef(PAI->getLoc(), Thunk);
|
|
SmallVector<SILValue, 4> Arguments;
|
|
for (auto &Op : PAI->getArgumentOperands()) {
|
|
Arguments.push_back(Op.get());
|
|
}
|
|
auto *NewPAI = Builder.createPartialApply(PAI->getLoc(), FRI,
|
|
PAI->getSubstCalleeSILType(),
|
|
{},
|
|
Arguments,
|
|
PAI->getType());
|
|
PAI->replaceAllUsesWith(NewPAI);
|
|
DeadApplies.insert(PAI);
|
|
return;
|
|
}
|
|
// Make the required changes to the call site.
|
|
ApplySite newApply = replaceWithSpecializedFunction(Apply, SpecializedF,
|
|
ReInfo);
|
|
if (needAdaptUsers) {
|
|
// Adapt all known users of the partial_apply. This is needed in case we
|
|
// converted some indirect parameters/results to direct ones.
|
|
auto *NewPAI = cast<PartialApplyInst>(newApply);
|
|
ReInfo.prunePartialApplyArgs(NewPAI->getNumArguments());
|
|
for (Operand *Use : NewPAI->getUses()) {
|
|
SILInstruction *User = Use->getUser();
|
|
if (auto FAS = FullApplySite::isa(User)) {
|
|
SILBuilder Builder(User);
|
|
replaceWithSpecializedCallee(FAS, NewPAI, Builder, ReInfo);
|
|
DeadApplies.insert(FAS.getInstruction());
|
|
continue;
|
|
}
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(User)) {
|
|
// This is a partial_apply of a re-abstraction thunk. Just skip this.
|
|
assert(PAI->getType() == NewPAI->getType());
|
|
PAI->replaceAllUsesWith(NewPAI);
|
|
DeadApplies.insert(PAI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// =============================================================================
|
|
// Prespecialized symbol lookup.
|
|
//
|
|
// This uses the SIL linker to checks for the does not load the body of the pres
|
|
// =============================================================================
|
|
|
|
static void keepSpecializationAsPublic(SILFunction *F) {
|
|
DEBUG(auto DemangledNameString =
|
|
swift::Demangle::demangleSymbolAsString(F->getName());
|
|
StringRef DemangledName = DemangledNameString;
|
|
llvm::dbgs() << "Keep specialization public: " << DemangledName << " : "
|
|
<< F->getName() << "\n");
|
|
// Make it public, so that others can refer to it.
|
|
//
|
|
// NOTE: This function may refer to non-public symbols, which may lead to
|
|
// problems, if you ever try to inline this function. Therefore, these
|
|
// specializations should only be used to refer to them, but should never
|
|
// be inlined! The general rule could be: Never inline specializations
|
|
// from stdlib!
|
|
//
|
|
// NOTE: Making these specializations public at this point breaks
|
|
// some optimizations. Therefore, just mark the function.
|
|
// DeadFunctionElimination pass will check if the function is marked
|
|
// and preserve it if required.
|
|
F->setKeepAsPublic(true);
|
|
}
|
|
|
|
/// Link a specialization for generating prespecialized code.
|
|
///
|
|
/// For now, it is performed only for specializations in the
|
|
/// standard library. But in the future, one could think of
|
|
/// maintaining a cache of optimized specializations.
|
|
///
|
|
/// Mark specializations as public, so that they can be used by user
|
|
/// applications. These specializations are generated during -O compilation of
|
|
/// the library, but only used only by client code compiled at -Onone. They
|
|
/// should be never inlined.
|
|
static bool linkSpecialization(SILModule &M, SILFunction *F) {
|
|
if (F->isKeepAsPublic())
|
|
return true;
|
|
// Do not remove functions from the white-list. Keep them around.
|
|
// Change their linkage to public, so that other applications can refer to it.
|
|
if (M.getOptions().Optimization >= SILOptions::SILOptMode::Optimize &&
|
|
F->getModule().getSwiftModule()->getName().str() == SWIFT_ONONE_SUPPORT) {
|
|
if (isWhitelistedSpecialization(F->getName())) {
|
|
keepSpecializationAsPublic(F);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// The whitelist of classes and functions from the stdlib,
|
|
// whose specializations we want to preserve.
|
|
static const char *const WhitelistedSpecializations[] = {
|
|
"Array",
|
|
"_ArrayBuffer",
|
|
"_ContiguousArrayBuffer",
|
|
"Range",
|
|
"RangeIterator",
|
|
"CountableRange",
|
|
"CountableRangeIterator",
|
|
"ClosedRange",
|
|
"ClosedRangeIterator",
|
|
"CountableClosedRange",
|
|
"CountableClosedRangeIterator",
|
|
"IndexingIterator",
|
|
"Collection",
|
|
"ReversedCollection",
|
|
"MutableCollection",
|
|
"BidirectionalCollection",
|
|
"RandomAccessCollection",
|
|
"ReversedRandomAccessCollection",
|
|
"RangeReplaceableCollection",
|
|
"_allocateUninitializedArray",
|
|
"UTF8",
|
|
"UTF16",
|
|
"String",
|
|
"_StringBuffer",
|
|
"_toStringReadOnlyPrintable",
|
|
};
|
|
|
|
/// Check of a given name could be a name of a white-listed
|
|
/// specialization.
|
|
bool swift::isWhitelistedSpecialization(StringRef SpecName) {
|
|
// TODO: Once there is an efficient API to check if
|
|
// a given symbol is a specialization of a specific type,
|
|
// use it instead. Doing demangling just for this check
|
|
// is just wasteful.
|
|
auto DemangledNameString =
|
|
swift::Demangle::demangleSymbolAsString(SpecName);
|
|
|
|
StringRef DemangledName = DemangledNameString;
|
|
|
|
DEBUG(llvm::dbgs() << "Check if whitelisted: " << DemangledName << "\n");
|
|
|
|
auto pos = DemangledName.find("generic ", 0);
|
|
auto oldpos = pos;
|
|
if (pos == StringRef::npos)
|
|
return false;
|
|
|
|
// Create "of Swift"
|
|
llvm::SmallString<64> OfString;
|
|
llvm::raw_svector_ostream buffer(OfString);
|
|
buffer << "of ";
|
|
buffer << STDLIB_NAME <<'.';
|
|
|
|
StringRef OfStr = buffer.str();
|
|
DEBUG(llvm::dbgs() << "Check substring: " << OfStr << "\n");
|
|
|
|
pos = DemangledName.find(OfStr, oldpos);
|
|
|
|
if (pos == StringRef::npos) {
|
|
// Create "of (extension in Swift).Swift"
|
|
llvm::SmallString<64> OfString;
|
|
llvm::raw_svector_ostream buffer(OfString);
|
|
buffer << "of (extension in " << STDLIB_NAME << "):";
|
|
buffer << STDLIB_NAME << '.';
|
|
OfStr = buffer.str();
|
|
pos = DemangledName.find(OfStr, oldpos);
|
|
DEBUG(llvm::dbgs() << "Check substring: " << OfStr << "\n");
|
|
if (pos == StringRef::npos)
|
|
return false;
|
|
}
|
|
|
|
pos += OfStr.size();
|
|
|
|
for (auto NameStr: WhitelistedSpecializations) {
|
|
StringRef Name = NameStr;
|
|
auto pos1 = DemangledName.find(Name, pos);
|
|
if (pos1 == pos && !isalpha(DemangledName[pos1+Name.size()])) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Try to look up an existing specialization in the specialization cache.
|
|
/// If it is found, it tries to link this specialization.
|
|
///
|
|
/// For now, it performs a lookup only in the standard library.
|
|
/// But in the future, one could think of maintaining a cache
|
|
/// of optimized specializations.
|
|
static SILFunction *lookupExistingSpecialization(SILModule &M,
|
|
StringRef FunctionName) {
|
|
// Try to link existing specialization only in -Onone mode.
|
|
// All other compilation modes perform specialization themselves.
|
|
// TODO: Cache optimized specializations and perform lookup here?
|
|
// Only check that this function exists, but don't read
|
|
// its body. It can save some compile-time.
|
|
if (isWhitelistedSpecialization(FunctionName))
|
|
return M.hasFunction(FunctionName, SILLinkage::PublicExternal);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
SILFunction *swift::lookupPrespecializedSymbol(SILModule &M,
|
|
StringRef FunctionName) {
|
|
// First check if the module contains a required specialization already.
|
|
auto *Specialization = M.lookUpFunction(FunctionName);
|
|
if (Specialization) {
|
|
if (Specialization->getLinkage() == SILLinkage::PublicExternal)
|
|
return Specialization;
|
|
}
|
|
|
|
// Then check if the required specialization can be found elsewhere.
|
|
Specialization = lookupExistingSpecialization(M, FunctionName);
|
|
if (!Specialization)
|
|
return nullptr;
|
|
|
|
assert(hasPublicVisibility(Specialization->getLinkage()) &&
|
|
"Pre-specializations should have public visibility");
|
|
|
|
Specialization->setLinkage(SILLinkage::PublicExternal);
|
|
|
|
assert(Specialization->isExternalDeclaration() &&
|
|
"Specialization should be a public external declaration");
|
|
|
|
DEBUG(llvm::dbgs() << "Found existing specialization for: " << FunctionName
|
|
<< '\n';
|
|
llvm::dbgs() << swift::Demangle::demangleSymbolAsString(
|
|
Specialization->getName())
|
|
<< "\n\n");
|
|
|
|
return Specialization;
|
|
}
|
|
|