mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Previously, default bindings (from Defaultable and FallbackType constraints) where added to the set right after the first attempt, but that is incorrect because binding producer should exhaust the chain of superclasses and other "inferred" bindings first or risk producing subpar solutions.
438 lines
16 KiB
C++
438 lines
16 KiB
C++
//===--- BindingInferenceTests.cpp ----------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SemaFixture.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/Sema/ConstraintSystem.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
|
|
using namespace swift;
|
|
using namespace swift::unittest;
|
|
using namespace swift::constraints;
|
|
using namespace swift::constraints::inference;
|
|
|
|
TEST_F(SemaTest, TestIntLiteralBindingInference) {
|
|
ConstraintSystemOptions options;
|
|
options |= ConstraintSystemFlags::AllowUnresolvedTypeVariables;
|
|
|
|
ConstraintSystem cs(DC, options);
|
|
|
|
auto *intLiteral = IntegerLiteralExpr::createFromUnsigned(Context, 42, SourceLoc());
|
|
|
|
auto *literalTy = cs.createTypeVariable(cs.getConstraintLocator(intLiteral),
|
|
/*options=*/0);
|
|
|
|
cs.addConstraint(
|
|
ConstraintKind::LiteralConformsTo, literalTy,
|
|
Context.getProtocol(KnownProtocolKind::ExpressibleByIntegerLiteral)
|
|
->getDeclaredInterfaceType(),
|
|
cs.getConstraintLocator(intLiteral));
|
|
|
|
auto intTy = getStdlibType("Int");
|
|
|
|
{
|
|
auto bindings = cs.getBindingsFor(literalTy);
|
|
|
|
ASSERT_EQ(bindings.Literals.size(), (unsigned)1);
|
|
|
|
const auto &literal = bindings.Literals.front().second;
|
|
|
|
ASSERT_TRUE(literal.hasDefaultType());
|
|
ASSERT_TRUE(literal.getDefaultType()->isEqual(intTy));
|
|
ASSERT_FALSE(literal.isCovered());
|
|
}
|
|
|
|
// Make sure that coverage by direct bindings works as expected.
|
|
|
|
// First, let's attempt a binding which would match default type
|
|
// of the literal.
|
|
|
|
cs.addConstraint(ConstraintKind::Conversion, literalTy, intTy,
|
|
cs.getConstraintLocator(intLiteral));
|
|
|
|
{
|
|
auto bindings = cs.getBindingsFor(literalTy);
|
|
|
|
ASSERT_EQ(bindings.Bindings.size(), (unsigned)1);
|
|
ASSERT_EQ(bindings.Literals.size(), (unsigned)1);
|
|
|
|
ASSERT_TRUE(bindings.Bindings[0].BindingType->isEqual(intTy));
|
|
|
|
const auto &literal = bindings.Literals.front().second;
|
|
ASSERT_TRUE(literal.isCovered());
|
|
ASSERT_TRUE(literal.isDirectRequirement());
|
|
ASSERT_TRUE(literal.getDefaultType()->isEqual(intTy));
|
|
}
|
|
|
|
// Now let's use non-default type that conforms to
|
|
// `ExpressibleByIntegerLiteral` protocol.
|
|
|
|
auto *floatLiteralTy =
|
|
cs.createTypeVariable(cs.getConstraintLocator(intLiteral),
|
|
/*options=*/0);
|
|
|
|
auto floatTy = getStdlibType("Float");
|
|
|
|
// $T_float <conforms to> ExpressibleByIntegerLiteral
|
|
cs.addConstraint(
|
|
ConstraintKind::LiteralConformsTo, floatLiteralTy,
|
|
Context.getProtocol(KnownProtocolKind::ExpressibleByIntegerLiteral)
|
|
->getDeclaredInterfaceType(),
|
|
cs.getConstraintLocator(intLiteral));
|
|
|
|
// Float <convertible> $T_float
|
|
cs.addConstraint(ConstraintKind::Conversion, floatTy, floatLiteralTy,
|
|
cs.getConstraintLocator(intLiteral));
|
|
|
|
{
|
|
auto bindings = cs.getBindingsFor(floatLiteralTy);
|
|
|
|
ASSERT_EQ(bindings.Bindings.size(), (unsigned)1);
|
|
ASSERT_EQ(bindings.Literals.size(), (unsigned)1);
|
|
|
|
ASSERT_TRUE(bindings.Bindings[0].BindingType->isEqual(floatTy));
|
|
|
|
const auto &literal = bindings.Literals.front().second;
|
|
ASSERT_TRUE(literal.isCovered());
|
|
ASSERT_TRUE(literal.isDirectRequirement());
|
|
ASSERT_FALSE(literal.getDefaultType()->isEqual(floatTy));
|
|
}
|
|
|
|
// Let's test transitive literal requirement coverage,
|
|
// literal requirements are propagated up the subtype chain.
|
|
|
|
auto *otherTy = cs.createTypeVariable(cs.getConstraintLocator({}),
|
|
/*options=*/0);
|
|
|
|
cs.addConstraint(ConstraintKind::Subtype, floatLiteralTy, otherTy,
|
|
cs.getConstraintLocator({}));
|
|
|
|
{
|
|
auto bindings = cs.getBindingsFor(otherTy);
|
|
|
|
// Make sure that there are no direct bindings or protocol requirements.
|
|
|
|
ASSERT_EQ(bindings.Bindings.size(), (unsigned)0);
|
|
ASSERT_EQ(bindings.Literals.size(), (unsigned)0);
|
|
|
|
llvm::SmallDenseMap<TypeVariableType *, BindingSet> env;
|
|
env.insert({floatLiteralTy, cs.getBindingsFor(floatLiteralTy)});
|
|
|
|
bindings.finalize(env);
|
|
|
|
// Inferred a single transitive binding through `$T_float`.
|
|
ASSERT_EQ(bindings.Bindings.size(), (unsigned)1);
|
|
// Inferred literal requirement through `$T_float` as well.
|
|
ASSERT_EQ(bindings.Literals.size(), (unsigned)1);
|
|
|
|
const auto &literal = bindings.Literals.front().second;
|
|
|
|
ASSERT_TRUE(literal.isCovered());
|
|
ASSERT_FALSE(literal.isDirectRequirement());
|
|
ASSERT_FALSE(literal.getDefaultType()->isEqual(floatTy));
|
|
}
|
|
}
|
|
|
|
// Given a set of inferred protocol requirements, make sure that
|
|
// all of the expected types are present.
|
|
static void verifyProtocolInferenceResults(
|
|
const llvm::SmallPtrSetImpl<Constraint *> &protocols,
|
|
ArrayRef<Type> expectedTypes) {
|
|
ASSERT_TRUE(protocols.size() >= expectedTypes.size());
|
|
|
|
llvm::SmallPtrSet<Type, 2> inferredProtocolTypes;
|
|
for (auto *protocol : protocols)
|
|
inferredProtocolTypes.insert(protocol->getSecondType());
|
|
|
|
for (auto expectedTy : expectedTypes) {
|
|
ASSERT_TRUE(inferredProtocolTypes.count(expectedTy));
|
|
}
|
|
}
|
|
|
|
TEST_F(SemaTest, TestTransitiveProtocolInference) {
|
|
ConstraintSystemOptions options;
|
|
ConstraintSystem cs(DC, options);
|
|
|
|
auto *protocolTy1 = createProtocol("P1");
|
|
auto *protocolTy2 = createProtocol("P2");
|
|
|
|
auto *GPT1 = cs.createTypeVariable(cs.getConstraintLocator({}),
|
|
/*options=*/TVO_CanBindToNoEscape);
|
|
auto *GPT2 = cs.createTypeVariable(cs.getConstraintLocator({}),
|
|
/*options=*/TVO_CanBindToNoEscape);
|
|
|
|
cs.addConstraint(
|
|
ConstraintKind::ConformsTo, GPT1, protocolTy1,
|
|
cs.getConstraintLocator({}, LocatorPathElt::TypeParameterRequirement(
|
|
0, RequirementKind::Conformance)));
|
|
|
|
cs.addConstraint(
|
|
ConstraintKind::ConformsTo, GPT2, protocolTy2,
|
|
cs.getConstraintLocator({}, LocatorPathElt::TypeParameterRequirement(
|
|
0, RequirementKind::Conformance)));
|
|
|
|
// First, let's try inferring through a single conversion
|
|
// relationship.
|
|
{
|
|
auto *typeVar = cs.createTypeVariable(cs.getConstraintLocator({}),
|
|
/*options=*/0);
|
|
|
|
cs.addConstraint(ConstraintKind::Conversion, typeVar, GPT1,
|
|
cs.getConstraintLocator({}, LocatorPathElt::ContextualType(
|
|
CTP_Initialization)));
|
|
|
|
auto bindings = inferBindings(cs, typeVar);
|
|
ASSERT_TRUE(bindings.getConformanceRequirements().empty());
|
|
ASSERT_TRUE(bool(bindings.TransitiveProtocols));
|
|
verifyProtocolInferenceResults(*bindings.TransitiveProtocols,
|
|
{protocolTy1});
|
|
}
|
|
|
|
// Now, let's make sure that protocol requirements could be propagated
|
|
// down conversion/equality chains through multiple hops.
|
|
{
|
|
// GPT1 is a subtype of GPT2 and GPT2 is convertible to a target type
|
|
// variable, target should get both protocols inferred - P1 & P2.
|
|
|
|
auto *typeVar = cs.createTypeVariable(cs.getConstraintLocator({}),
|
|
/*options=*/0);
|
|
|
|
cs.addConstraint(ConstraintKind::Subtype, GPT1, GPT2,
|
|
cs.getConstraintLocator({}));
|
|
|
|
cs.addConstraint(ConstraintKind::Conversion, typeVar, GPT1,
|
|
cs.getConstraintLocator({}));
|
|
|
|
auto bindings = inferBindings(cs, typeVar);
|
|
ASSERT_TRUE(bindings.getConformanceRequirements().empty());
|
|
ASSERT_TRUE(bool(bindings.TransitiveProtocols));
|
|
verifyProtocolInferenceResults(*bindings.TransitiveProtocols,
|
|
{protocolTy1, protocolTy2});
|
|
}
|
|
}
|
|
|
|
/// Let's try a more complicated situation where there protocols
|
|
/// are inferred from multiple sources on different levels of
|
|
/// conversion chain.
|
|
///
|
|
/// (P1) T0 T4 (T3) T6 (P4)
|
|
/// \ / /
|
|
/// T3 = T1 (P2) = T5
|
|
/// \ /
|
|
/// T2
|
|
|
|
TEST_F(SemaTest, TestComplexTransitiveProtocolInference) {
|
|
ConstraintSystemOptions options;
|
|
ConstraintSystem cs(DC, options);
|
|
|
|
auto *protocolTy1 = createProtocol("P1");
|
|
auto *protocolTy2 = createProtocol("P2");
|
|
auto *protocolTy3 = createProtocol("P3");
|
|
auto *protocolTy4 = createProtocol("P4");
|
|
|
|
auto *nilLocator = cs.getConstraintLocator({});
|
|
|
|
auto typeVar0 = cs.createTypeVariable(nilLocator, /*options=*/0);
|
|
auto typeVar1 = cs.createTypeVariable(nilLocator, /*options=*/0);
|
|
auto typeVar2 = cs.createTypeVariable(nilLocator, /*options=*/0);
|
|
// Allow this type variable to be bound to l-value type to prevent
|
|
// it from being merged with the rest of the type variables.
|
|
auto typeVar3 =
|
|
cs.createTypeVariable(nilLocator, /*options=*/TVO_CanBindToLValue);
|
|
auto typeVar4 = cs.createTypeVariable(nilLocator, /*options=*/0);
|
|
auto typeVar5 =
|
|
cs.createTypeVariable(nilLocator, /*options=*/TVO_CanBindToLValue);
|
|
auto typeVar6 = cs.createTypeVariable(nilLocator, /*options=*/0);
|
|
|
|
cs.addConstraint(ConstraintKind::ConformsTo, typeVar0, protocolTy1,
|
|
nilLocator);
|
|
cs.addConstraint(ConstraintKind::ConformsTo, typeVar1, protocolTy2,
|
|
nilLocator);
|
|
cs.addConstraint(ConstraintKind::ConformsTo, typeVar4, protocolTy3,
|
|
nilLocator);
|
|
cs.addConstraint(ConstraintKind::ConformsTo, typeVar6, protocolTy4,
|
|
nilLocator);
|
|
|
|
// T3 <: T0, T3 <: T4
|
|
cs.addConstraint(ConstraintKind::Conversion, typeVar3, typeVar0, nilLocator);
|
|
cs.addConstraint(ConstraintKind::Conversion, typeVar3, typeVar4, nilLocator);
|
|
|
|
// T2 <: T3, T2 <: T1, T3 == T1
|
|
cs.addConstraint(ConstraintKind::Subtype, typeVar2, typeVar3, nilLocator);
|
|
cs.addConstraint(ConstraintKind::Conversion, typeVar2, typeVar1, nilLocator);
|
|
cs.addConstraint(ConstraintKind::UnresolvedMemberChainBase, typeVar3,
|
|
typeVar1, nilLocator);
|
|
// T1 == T5, T <: T6
|
|
cs.addConstraint(ConstraintKind::Equal, typeVar1, typeVar5, nilLocator);
|
|
cs.addConstraint(ConstraintKind::Conversion, typeVar5, typeVar6, nilLocator);
|
|
|
|
auto bindingsForT1 = inferBindings(cs, typeVar1);
|
|
auto bindingsForT2 = inferBindings(cs, typeVar2);
|
|
auto bindingsForT3 = inferBindings(cs, typeVar3);
|
|
auto bindingsForT5 = inferBindings(cs, typeVar5);
|
|
|
|
ASSERT_TRUE(bool(bindingsForT1.TransitiveProtocols));
|
|
verifyProtocolInferenceResults(*bindingsForT1.TransitiveProtocols,
|
|
{protocolTy1, protocolTy3, protocolTy4});
|
|
|
|
ASSERT_TRUE(bool(bindingsForT2.TransitiveProtocols));
|
|
verifyProtocolInferenceResults(
|
|
*bindingsForT2.TransitiveProtocols,
|
|
{protocolTy1, protocolTy2, protocolTy3, protocolTy4});
|
|
|
|
ASSERT_TRUE(bool(bindingsForT3.TransitiveProtocols));
|
|
verifyProtocolInferenceResults(
|
|
*bindingsForT3.TransitiveProtocols,
|
|
{protocolTy1, protocolTy2, protocolTy3, protocolTy4});
|
|
|
|
ASSERT_TRUE(bool(bindingsForT5.TransitiveProtocols));
|
|
verifyProtocolInferenceResults(
|
|
*bindingsForT5.TransitiveProtocols,
|
|
{protocolTy1, protocolTy2, protocolTy3, protocolTy4});
|
|
}
|
|
|
|
/// Let's try a situation where there protocols are inferred from
|
|
/// multiple sources on different levels of equivalence chain.
|
|
///
|
|
/// T0 = T1
|
|
/// = T2 (P0)
|
|
/// = T3 (P1)
|
|
TEST_F(SemaTest, TestTransitiveProtocolInferenceThroughEquivalenceChains) {
|
|
ConstraintSystemOptions options;
|
|
ConstraintSystem cs(DC, options);
|
|
|
|
auto *protocolTy0 = createProtocol("P0");
|
|
auto *protocolTy1 = createProtocol("P1");
|
|
|
|
auto *nilLocator = cs.getConstraintLocator({});
|
|
|
|
auto typeVar0 = cs.createTypeVariable(nilLocator, /*options=*/0);
|
|
// Allow this type variable to be bound to l-value type to prevent
|
|
// it from being merged with the rest of the type variables.
|
|
auto typeVar1 =
|
|
cs.createTypeVariable(nilLocator, /*options=*/TVO_CanBindToLValue);
|
|
auto typeVar2 = cs.createTypeVariable(nilLocator, /*options=*/0);
|
|
auto typeVar3 = cs.createTypeVariable(nilLocator, TVO_CanBindToLValue);
|
|
|
|
cs.addConstraint(ConstraintKind::Conversion, typeVar0, typeVar1, nilLocator);
|
|
cs.addConstraint(ConstraintKind::Equal, typeVar1, typeVar2, nilLocator);
|
|
cs.addConstraint(ConstraintKind::Equal, typeVar2, typeVar3, nilLocator);
|
|
cs.addConstraint(ConstraintKind::ConformsTo, typeVar2, protocolTy0, nilLocator);
|
|
cs.addConstraint(ConstraintKind::ConformsTo, typeVar3, protocolTy1, nilLocator);
|
|
|
|
auto bindings = inferBindings(cs, typeVar0);
|
|
|
|
ASSERT_TRUE(bool(bindings.TransitiveProtocols));
|
|
verifyProtocolInferenceResults(*bindings.TransitiveProtocols,
|
|
{protocolTy0, protocolTy1});
|
|
}
|
|
|
|
TEST_F(SemaTest, TestNoDoubleVoidClosureResultInference) {
|
|
ConstraintSystemOptions options;
|
|
ConstraintSystem cs(DC, options);
|
|
|
|
auto verifyInference = [&](TypeVariableType *typeVar, unsigned numExpected) {
|
|
auto bindings = cs.getBindingsFor(typeVar);
|
|
TypeVarBindingProducer producer(bindings);
|
|
|
|
llvm::SmallPtrSet<Type, 2> inferredTypes;
|
|
|
|
while (auto binding = producer()) {
|
|
ASSERT_TRUE(binding.has_value());
|
|
ASSERT_EQ(binding->getTypeVariable(), typeVar);
|
|
ASSERT_TRUE(inferredTypes.insert(binding->getType()).second);
|
|
}
|
|
|
|
ASSERT_EQ(inferredTypes.size(), numExpected);
|
|
};
|
|
|
|
auto *closureResultLoc =
|
|
cs.getConstraintLocator({}, ConstraintLocator::ClosureResult);
|
|
|
|
auto *closureResult = cs.createTypeVariable(closureResultLoc, /*options=*/0);
|
|
|
|
cs.addConstraint(ConstraintKind::Subtype, getStdlibType("Int"), closureResult,
|
|
closureResultLoc);
|
|
cs.addConstraint(ConstraintKind::Subtype, closureResult, getStdlibType("Void"),
|
|
closureResultLoc);
|
|
|
|
verifyInference(closureResult, 2);
|
|
|
|
auto closureResultWithTransitiveVoid = cs.createTypeVariable(closureResultLoc,
|
|
/*options=*/0);
|
|
|
|
auto contextualVar = cs.createTypeVariable({}, /*options=*/0);
|
|
|
|
cs.addConstraint(ConstraintKind::Subtype, getStdlibType("Void"),
|
|
contextualVar, cs.getConstraintLocator({}));
|
|
|
|
cs.addConstraint(ConstraintKind::Subtype, contextualVar,
|
|
closureResultWithTransitiveVoid, closureResultLoc);
|
|
|
|
cs.addConstraint(ConstraintKind::Subtype, getStdlibType("Int"),
|
|
closureResultWithTransitiveVoid, closureResultLoc);
|
|
|
|
verifyInference(closureResultWithTransitiveVoid, 2);
|
|
|
|
auto closureResultWithoutVoid =
|
|
cs.createTypeVariable(closureResultLoc, /*options=*/0);
|
|
|
|
// Supertype triggers `Void` inference
|
|
cs.addConstraint(ConstraintKind::Subtype, getStdlibType("Int"),
|
|
closureResultWithoutVoid, closureResultLoc);
|
|
cs.addConstraint(ConstraintKind::Subtype, closureResultWithoutVoid,
|
|
getStdlibType("String"), closureResultLoc);
|
|
|
|
verifyInference(closureResultWithoutVoid, 3);
|
|
}
|
|
|
|
TEST_F(SemaTest, TestSupertypeInferenceWithDefaults) {
|
|
ConstraintSystemOptions options;
|
|
ConstraintSystem cs(DC, options);
|
|
|
|
auto *genericArg = cs.createTypeVariable(
|
|
cs.getConstraintLocator({}, ConstraintLocator::GenericArgument),
|
|
/*options=*/0);
|
|
|
|
// KeyPath<String, Int> i.e. \.utf8.count or something similar
|
|
auto keyPath =
|
|
BoundGenericType::get(Context.getKeyPathDecl(), /*parent=*/Type(),
|
|
{getStdlibType("String"), getStdlibType("Int")});
|
|
|
|
cs.addConstraint(ConstraintKind::Conversion, keyPath, genericArg,
|
|
cs.getConstraintLocator({}));
|
|
|
|
cs.addConstraint(ConstraintKind::Defaultable, genericArg, Context.TheAnyType,
|
|
cs.getConstraintLocator({}));
|
|
|
|
auto bindings = cs.getBindingsFor(genericArg);
|
|
TypeVarBindingProducer producer(bindings);
|
|
|
|
llvm::SmallVector<Type, 4> inferredTypes;
|
|
while (auto binding = producer()) {
|
|
ASSERT_TRUE(binding.has_value());
|
|
inferredTypes.push_back(binding->getType());
|
|
}
|
|
|
|
// The inference should produce 4 types: KeyPath<String, Int>,
|
|
// PartialKeyPath<String>, AnyKeyPath and Any - in that order.
|
|
|
|
ASSERT_EQ(inferredTypes.size(), 4);
|
|
ASSERT_TRUE(inferredTypes[0]->isEqual(keyPath));
|
|
ASSERT_TRUE(inferredTypes[1]->isEqual(
|
|
BoundGenericType::get(Context.getPartialKeyPathDecl(),
|
|
/*parent=*/Type(), {getStdlibType("String")})));
|
|
ASSERT_TRUE(inferredTypes[2]->isEqual(getStdlibType("AnyKeyPath")));
|
|
ASSERT_TRUE(inferredTypes[3]->isEqual(Context.TheAnyType));
|
|
}
|