Files
swift-mirror/lib/AST/NameLookup.cpp
Slava Pestov 9c3b514c7e AST: New getExistentialLayout() method on TypeBase and CanType
This consolidates calculations which need to look at every
protocol in an existential type. Soon we will also have to
deal with superclass constrained existentials, so start
updating call sites that look at all protocols to use the
new ExistentialLayout and correctly handle a class constraint
as well.

Also, eventually I will kill off the AnyObject protocol and
model it as a protocol composition with no protocols or
superclass, but the requiresClass() flag set.

This is not quite modeled this way yet and AnyObject still
exists, but the new abstraction is a step in the right
direction.
2017-04-10 17:04:37 -07:00

1634 lines
58 KiB
C++

//===--- NameLookup.cpp - Swift Name Lookup Routines ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements interfaces for performing name lookup.
//
//===----------------------------------------------------------------------===//
#include "NameLookupImpl.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTScope.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/DebuggerClient.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ReferencedNameTracker.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/STLExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TinyPtrVector.h"
using namespace swift;
void DebuggerClient::anchor() {}
void AccessFilteringDeclConsumer::foundDecl(ValueDecl *D,
DeclVisibilityKind reason) {
if (D->getASTContext().LangOpts.EnableAccessControl) {
if (TypeResolver)
TypeResolver->resolveAccessibility(D);
if (D->isInvalid() && !D->hasAccessibility())
return;
if (!D->isAccessibleFrom(DC))
return;
}
ChainedConsumer.foundDecl(D, reason);
}
template <typename Fn>
static void forAllVisibleModules(const DeclContext *DC, const Fn &fn) {
DeclContext *moduleScope = DC->getModuleScopeContext();
if (auto file = dyn_cast<FileUnit>(moduleScope))
file->forAllVisibleModules(fn);
else
cast<ModuleDecl>(moduleScope)->forAllVisibleModules(ModuleDecl::AccessPathTy(), fn);
}
bool swift::removeOverriddenDecls(SmallVectorImpl<ValueDecl*> &decls) {
if (decls.empty())
return false;
ASTContext &ctx = decls.front()->getASTContext();
llvm::SmallPtrSet<ValueDecl*, 8> overridden;
for (auto decl : decls) {
while (auto overrides = decl->getOverriddenDecl()) {
overridden.insert(overrides);
// Because initializers from Objective-C base classes have greater
// visibility than initializers written in Swift classes, we can
// have a "break" in the set of declarations we found, where
// C.init overrides B.init overrides A.init, but only C.init and
// A.init are in the chain. Make sure we still remove A.init from the
// set in this case.
if (decl->getFullName().getBaseName() == ctx.Id_init) {
/// FIXME: Avoid the possibility of an infinite loop by fixing the root
/// cause instead (incomplete circularity detection).
assert(decl != overrides && "Circular class inheritance?");
decl = overrides;
continue;
}
break;
}
}
// If no methods were overridden, we're done.
if (overridden.empty()) return false;
// Erase any overridden declarations
bool anyOverridden = false;
decls.erase(std::remove_if(decls.begin(), decls.end(),
[&](ValueDecl *decl) -> bool {
if (overridden.count(decl) > 0) {
anyOverridden = true;
return true;
}
return false;
}),
decls.end());
return anyOverridden;
}
enum class ConstructorComparison {
Worse,
Same,
Better,
};
/// Determines whether \p ctor1 is a "better" initializer than \p ctor2.
static ConstructorComparison compareConstructors(ConstructorDecl *ctor1,
ConstructorDecl *ctor2,
const swift::ASTContext &ctx) {
bool available1 = !ctor1->getAttrs().isUnavailable(ctx);
bool available2 = !ctor2->getAttrs().isUnavailable(ctx);
// An unavailable initializer is always worse than an available initializer.
if (available1 < available2)
return ConstructorComparison::Worse;
if (available1 > available2)
return ConstructorComparison::Better;
CtorInitializerKind kind1 = ctor1->getInitKind();
CtorInitializerKind kind2 = ctor2->getInitKind();
if (kind1 > kind2)
return ConstructorComparison::Worse;
if (kind1 < kind2)
return ConstructorComparison::Better;
return ConstructorComparison::Same;
}
bool swift::removeShadowedDecls(SmallVectorImpl<ValueDecl*> &decls,
const ModuleDecl *curModule,
LazyResolver *typeResolver) {
// Category declarations by their signatures.
llvm::SmallDenseMap<std::pair<CanType, Identifier>,
llvm::TinyPtrVector<ValueDecl *>>
CollidingDeclGroups;
/// Objective-C initializers are tracked by their context type and
/// full name.
llvm::SmallDenseMap<std::pair<CanType, DeclName>,
llvm::TinyPtrVector<ConstructorDecl *>>
ObjCCollidingConstructors;
bool anyCollisions = false;
for (auto decl : decls) {
// FIXME: Egregious hack to avoid failing when there are no declared types.
// FIXME: Pass this down instead of getting it from the ASTContext.
if (typeResolver)
typeResolver->resolveDeclSignature(decl);
// If the decl is currently being validated, this is likely a recursive
// reference and we'll want to skip ahead so as to avoid having its type
// attempt to desugar itself.
if (!decl->hasValidSignature())
continue;
// FIXME: the canonical type makes a poor signature, because we don't
// canonicalize away default arguments.
auto signature = decl->getInterfaceType()->getCanonicalType();
// FIXME: The type of a variable or subscript doesn't include
// enough context to distinguish entities from different
// constrained extensions, so use the overload signature's
// type. This is layering a partial fix upon a total hack.
if (auto asd = dyn_cast<AbstractStorageDecl>(decl))
signature = asd->getOverloadSignature().InterfaceType;
// If we've seen a declaration with this signature before, note it.
auto &knownDecls =
CollidingDeclGroups[std::make_pair(signature, decl->getName())];
if (!knownDecls.empty())
anyCollisions = true;
knownDecls.push_back(decl);
// Specifically keep track of Objective-C initializers, which can come from
// either init methods or factory methods.
if (decl->hasClangNode()) {
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
auto ctorSignature
= std::make_pair(ctor->getDeclContext()->getDeclaredInterfaceType()
->getCanonicalType(),
decl->getFullName());
auto &knownCtors = ObjCCollidingConstructors[ctorSignature];
if (!knownCtors.empty())
anyCollisions = true;
knownCtors.push_back(ctor);
}
}
}
// If there were no signature collisions, there is nothing to do.
if (!anyCollisions)
return false;
// Determine the set of declarations that are shadowed by other declarations.
llvm::SmallPtrSet<ValueDecl *, 4> shadowed;
ASTContext &ctx = decls[0]->getASTContext();
for (auto &collidingDecls : CollidingDeclGroups) {
// If only one declaration has this signature, it isn't shadowed by
// anything.
if (collidingDecls.second.size() == 1)
continue;
// Compare each declaration to every other declaration. This is
// unavoidably O(n^2) in the number of declarations, but because they
// all have the same signature, we expect n to remain small.
for (unsigned firstIdx = 0, n = collidingDecls.second.size();
firstIdx != n; ++firstIdx) {
auto firstDecl = collidingDecls.second[firstIdx];
auto firstModule = firstDecl->getModuleContext();
for (unsigned secondIdx = firstIdx + 1; secondIdx != n; ++secondIdx) {
// Determine whether one module takes precedence over another.
auto secondDecl = collidingDecls.second[secondIdx];
auto secondModule = secondDecl->getModuleContext();
// If one declaration is in a protocol or extension thereof and the
// other is not, prefer the one that is not.
if ((bool)firstDecl->getDeclContext()
->getAsProtocolOrProtocolExtensionContext()
!= (bool)secondDecl->getDeclContext()
->getAsProtocolOrProtocolExtensionContext()) {
if (firstDecl->getDeclContext()
->getAsProtocolOrProtocolExtensionContext()) {
shadowed.insert(firstDecl);
break;
} else {
shadowed.insert(secondDecl);
continue;
}
}
// If one declaration is available and the other is not, prefer the
// available one.
if (firstDecl->getAttrs().isUnavailable(ctx) !=
secondDecl->getAttrs().isUnavailable(ctx)) {
if (firstDecl->getAttrs().isUnavailable(ctx)) {
shadowed.insert(firstDecl);
break;
} else {
shadowed.insert(secondDecl);
continue;
}
}
// Don't apply module-shadowing rules to members of protocol types.
if (isa<ProtocolDecl>(firstDecl->getDeclContext()) ||
isa<ProtocolDecl>(secondDecl->getDeclContext()))
continue;
// Prefer declarations in the current module over those in another
// module.
// FIXME: This is a hack. We should query a (lazily-built, cached)
// module graph to determine shadowing.
if ((firstModule == curModule) == (secondModule == curModule))
continue;
// If the first module is the current module, the second declaration
// is shadowed by the first.
if (firstModule == curModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second. There is
// no point in continuing to compare the first declaration to others.
shadowed.insert(firstDecl);
break;
}
}
}
// Check for collisions among Objective-C initializers. When such collisions
// exist, we pick the
for (const auto &colliding : ObjCCollidingConstructors) {
if (colliding.second.size() == 1)
continue;
// Find the "best" constructor with this signature.
ConstructorDecl *bestCtor = colliding.second[0];
for (auto ctor : colliding.second) {
auto comparison = compareConstructors(ctor, bestCtor, ctx);
if (comparison == ConstructorComparison::Better)
bestCtor = ctor;
}
// Shadow any initializers that are worse.
for (auto ctor : colliding.second) {
auto comparison = compareConstructors(ctor, bestCtor, ctx);
if (comparison == ConstructorComparison::Worse)
shadowed.insert(ctor);
}
}
// If none of the declarations were shadowed, we're done.
if (shadowed.empty())
return false;
// Remove shadowed declarations from the list of declarations.
bool anyRemoved = false;
decls.erase(std::remove_if(decls.begin(), decls.end(),
[&](ValueDecl *vd) {
if (shadowed.count(vd) > 0) {
anyRemoved = true;
return true;
}
return false;
}),
decls.end());
return anyRemoved;
}
namespace {
enum class DiscriminatorMatch {
NoDiscriminator,
Matches,
Different
};
} // end anonymous namespace
static DiscriminatorMatch matchDiscriminator(Identifier discriminator,
const ValueDecl *value) {
if (value->getFormalAccess() > Accessibility::FilePrivate)
return DiscriminatorMatch::NoDiscriminator;
auto containingFile =
dyn_cast<FileUnit>(value->getDeclContext()->getModuleScopeContext());
if (!containingFile)
return DiscriminatorMatch::Different;
if (discriminator == containingFile->getDiscriminatorForPrivateValue(value))
return DiscriminatorMatch::Matches;
return DiscriminatorMatch::Different;
}
static DiscriminatorMatch
matchDiscriminator(Identifier discriminator,
UnqualifiedLookupResult lookupResult) {
return matchDiscriminator(discriminator, lookupResult.getValueDecl());
}
template <typename Result>
static void filterForDiscriminator(SmallVectorImpl<Result> &results,
DebuggerClient *debugClient) {
Identifier discriminator = debugClient->getPreferredPrivateDiscriminator();
if (discriminator.empty())
return;
auto lastMatchIter = std::find_if(results.rbegin(), results.rend(),
[discriminator](Result next) -> bool {
return
matchDiscriminator(discriminator, next) == DiscriminatorMatch::Matches;
});
if (lastMatchIter == results.rend())
return;
Result lastMatch = *lastMatchIter;
auto newEnd = std::remove_if(results.begin(), lastMatchIter.base()-1,
[discriminator](Result next) -> bool {
return
matchDiscriminator(discriminator, next) == DiscriminatorMatch::Different;
});
results.erase(newEnd, results.end());
results.push_back(lastMatch);
}
static void recordLookupOfTopLevelName(DeclContext *topLevelContext,
DeclName name,
bool isCascading) {
auto SF = dyn_cast<SourceFile>(topLevelContext);
if (!SF)
return;
auto *nameTracker = SF->getReferencedNameTracker();
if (!nameTracker)
return;
nameTracker->addTopLevelName(name.getBaseName(), isCascading);
}
/// Determine the local declaration visibility key for an \c ASTScope in which
/// name lookup successfully resolved.
static DeclVisibilityKind getLocalDeclVisibilityKind(const ASTScope *scope) {
switch (scope->getKind()) {
case ASTScopeKind::Preexpanded:
case ASTScopeKind::SourceFile:
case ASTScopeKind::TypeDecl:
case ASTScopeKind::AbstractFunctionDecl:
case ASTScopeKind::TypeOrExtensionBody:
case ASTScopeKind::AbstractFunctionBody:
case ASTScopeKind::DefaultArgument:
case ASTScopeKind::PatternBinding:
case ASTScopeKind::IfStmt:
case ASTScopeKind::GuardStmt:
case ASTScopeKind::RepeatWhileStmt:
case ASTScopeKind::ForEachStmt:
case ASTScopeKind::DoCatchStmt:
case ASTScopeKind::SwitchStmt:
case ASTScopeKind::ForStmt:
case ASTScopeKind::Accessors:
case ASTScopeKind::TopLevelCode:
llvm_unreachable("no local declarations?");
case ASTScopeKind::ExtensionGenericParams:
case ASTScopeKind::GenericParams:
return DeclVisibilityKind::GenericParameter;
case ASTScopeKind::AbstractFunctionParams:
case ASTScopeKind::Closure:
case ASTScopeKind::PatternInitializer: // lazy var 'self'
return DeclVisibilityKind::FunctionParameter;
case ASTScopeKind::AfterPatternBinding:
case ASTScopeKind::ConditionalClause:
case ASTScopeKind::ForEachPattern:
case ASTScopeKind::BraceStmt:
case ASTScopeKind::CatchStmt:
case ASTScopeKind::CaseStmt:
case ASTScopeKind::ForStmtInitializer:
return DeclVisibilityKind::LocalVariable;
}
llvm_unreachable("Unhandled ASTScopeKind in switch.");
}
UnqualifiedLookup::UnqualifiedLookup(DeclName Name, DeclContext *DC,
LazyResolver *TypeResolver,
bool IsKnownNonCascading,
SourceLoc Loc, bool IsTypeLookup,
bool AllowProtocolMembers,
bool IgnoreAccessControl) {
ModuleDecl &M = *DC->getParentModule();
ASTContext &Ctx = M.getASTContext();
const SourceManager &SM = Ctx.SourceMgr;
DebuggerClient *DebugClient = M.getDebugClient();
NamedDeclConsumer Consumer(Name, Results, IsTypeLookup);
Optional<bool> isCascadingUse;
if (IsKnownNonCascading)
isCascadingUse = false;
SmallVector<UnqualifiedLookupResult, 4> UnavailableInnerResults;
if (Loc.isValid() &&
DC->getParentSourceFile()->Kind != SourceFileKind::REPL &&
Ctx.LangOpts.EnableASTScopeLookup) {
// Find the source file in which we are performing the lookup.
SourceFile &sourceFile = *DC->getParentSourceFile();
// Find the scope from which we will initiate unqualified name lookup.
const ASTScope *lookupScope
= sourceFile.getScope().findInnermostEnclosingScope(Loc);
// Operator lookup is always at module scope.
if (Name.isOperator()) {
if (!isCascadingUse.hasValue()) {
DeclContext *innermostDC =
lookupScope->getInnermostEnclosingDeclContext();
isCascadingUse =
innermostDC->isCascadingContextForLookup(
/*functionsAreNonCascading=*/true);
}
lookupScope = &sourceFile.getScope();
}
// Walk scopes outward from the innermost scope until we find something.
ParamDecl *selfDecl = nullptr;
for (auto currentScope = lookupScope; currentScope;
currentScope = currentScope->getParent()) {
// Perform local lookup within this scope.
auto localBindings = currentScope->getLocalBindings();
for (auto local : localBindings) {
Consumer.foundDecl(local,
getLocalDeclVisibilityKind(currentScope));
}
// If we found anything, we're done.
if (!Results.empty())
return;
// When we are in the body of a method, get the 'self' declaration.
if (currentScope->getKind() == ASTScopeKind::AbstractFunctionBody &&
currentScope->getAbstractFunctionDecl()->getDeclContext()
->isTypeContext()) {
selfDecl =
currentScope->getAbstractFunctionDecl()->getImplicitSelfDecl();
continue;
}
// If there is a declaration context associated with this scope, we might
// want to look in it.
if (auto dc = currentScope->getDeclContext()) {
// If we haven't determined whether we have a cascading use, do so now.
if (!isCascadingUse.hasValue()) {
isCascadingUse =
dc->isCascadingContextForLookup(/*functionsAreNonCascading=*/false);
}
// Pattern binding initializers are only interesting insofar as they
// affect lookup in an enclosing nominal type or extension thereof.
if (auto *bindingInit = dyn_cast<PatternBindingInitializer>(dc)) {
if (auto binding = bindingInit->getBinding()) {
// Look for 'self' for a lazy variable initializer.
if (auto singleVar = binding->getSingleVar())
// We only care about lazy variables.
if (singleVar->getAttrs().hasAttribute<LazyAttr>()) {
// 'self' will be listed in the local bindings.
for (auto local : localBindings) {
auto param = dyn_cast<ParamDecl>(local);
if (!param) continue;
// If we have a variable that's the implicit self of its enclosing
// context, mark it as 'self'.
if (auto func = dyn_cast<FuncDecl>(param->getDeclContext())) {
if (param == func->getImplicitSelfDecl()) {
selfDecl = param;
break;
}
}
}
}
}
continue;
}
// Default arguments only have 'static' access to the members of the
// enclosing type, if there is one.
if (isa<DefaultArgumentInitializer>(dc)) continue;
// Functions/initializers/deinitializers are only interesting insofar as
// they affect lookup in an enclosing nominal type or extension thereof.
if (isa<AbstractFunctionDecl>(dc)) continue;
// Subscripts have no lookup of their own.
if (isa<SubscriptDecl>(dc)) continue;
// Closures have no lookup of their own.
if (isa<AbstractClosureExpr>(dc)) continue;
// Top-level declarations have no lookup of their own.
if (isa<TopLevelCodeDecl>(dc)) continue;
// Typealiases have no lookup of their own.
if (isa<TypeAliasDecl>(dc)) continue;
// Lookup in the source file's scope marks the end.
if (isa<SourceFile>(dc)) {
// FIXME: A bit of a hack.
DC = dc;
break;
}
// We have a nominal type or an extension thereof. Perform lookup into
// the nominal type.
auto nominal = dc->getAsNominalTypeOrNominalTypeExtensionContext();
if (!nominal) continue;
// FIXME: This is overkill for name lookup.
if (TypeResolver)
TypeResolver->resolveDeclSignature(nominal);
// Dig out the type we're looking into.
// FIXME: We shouldn't need to compute a type to perform this lookup.
Type lookupType = dc->getSelfTypeInContext();
if (lookupType->hasError()) continue;
// Perform lookup into the type.
NLOptions options = NL_UnqualifiedDefault;
if (isCascadingUse.getValue())
options |= NL_KnownCascadingDependency;
else
options |= NL_KnownNonCascadingDependency;
if (AllowProtocolMembers)
options |= NL_ProtocolMembers;
if (IsTypeLookup)
options |= NL_OnlyTypes;
if (IgnoreAccessControl)
options |= NL_IgnoreAccessibility;
SmallVector<ValueDecl *, 4> lookup;
dc->lookupQualified(lookupType, Name, options, TypeResolver, lookup);
ValueDecl *baseDecl = nominal;
if (selfDecl) baseDecl = selfDecl;
for (auto result : lookup) {
Results.push_back(UnqualifiedLookupResult(baseDecl, result));
}
if (!Results.empty()) {
// Predicate that determines whether a lookup result should
// be unavailable except as a last-ditch effort.
auto unavailableLookupResult =
[&](const UnqualifiedLookupResult &result) {
auto &effectiveVersion = Ctx.LangOpts.EffectiveLanguageVersion;
return result.getValueDecl()->getAttrs()
.isUnavailableInSwiftVersion(effectiveVersion);
};
// If all of the results we found are unavailable, keep looking.
if (std::all_of(Results.begin(), Results.end(),
unavailableLookupResult)) {
UnavailableInnerResults.append(Results.begin(), Results.end());
Results.clear();
} else {
if (DebugClient)
filterForDiscriminator(Results, DebugClient);
return;
}
}
// Forget the 'self' declaration.
selfDecl = nullptr;
}
}
} else {
// Never perform local lookup for operators.
if (Name.isOperator()) {
if (!isCascadingUse.hasValue()) {
isCascadingUse =
DC->isCascadingContextForLookup(/*functionsAreNonCascading=*/true);
}
DC = DC->getModuleScopeContext();
} else {
// If we are inside of a method, check to see if there are any ivars in
// scope, and if so, whether this is a reference to one of them.
// FIXME: We should persist this information between lookups.
while (!DC->isModuleScopeContext()) {
ValueDecl *BaseDecl = nullptr;
ValueDecl *MetaBaseDecl = nullptr;
GenericParamList *GenericParams = nullptr;
Type ExtendedType;
bool isTypeLookup = false;
// If this declcontext is an initializer for a static property, then we're
// implicitly doing a static lookup into the parent declcontext.
if (auto *PBI = dyn_cast<PatternBindingInitializer>(DC))
if (!DC->getParent()->isModuleScopeContext()) {
if (auto *PBD = PBI->getBinding()) {
isTypeLookup = PBD->isStatic();
DC = DC->getParent();
}
}
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(DC)) {
// Look for local variables; normally, the parser resolves these
// for us, but it can't do the right thing inside local types.
// FIXME: when we can parse and typecheck the function body partially
// for code completion, AFD->getBody() check can be removed.
if (Loc.isValid() && AFD->getBody()) {
if (!isCascadingUse.hasValue()) {
isCascadingUse =
!SM.rangeContainsTokenLoc(AFD->getBodySourceRange(), Loc);
}
namelookup::FindLocalVal localVal(SM, Loc, Consumer);
localVal.visit(AFD->getBody());
if (!Results.empty())
return;
for (auto *PL : AFD->getParameterLists())
localVal.checkParameterList(PL);
if (!Results.empty())
return;
}
if (!isCascadingUse.hasValue() || isCascadingUse.getValue())
isCascadingUse = AFD->isCascadingContextForLookup(false);
if (AFD->getDeclContext()->isTypeContext()) {
ExtendedType = AFD->getDeclContext()->getSelfTypeInContext();
BaseDecl = AFD->getImplicitSelfDecl();
MetaBaseDecl = AFD->getDeclContext()
->getAsNominalTypeOrNominalTypeExtensionContext();
DC = DC->getParent();
if (auto *FD = dyn_cast<FuncDecl>(AFD))
if (FD->isStatic())
isTypeLookup = true;
// If we're not in the body of the function, the base declaration
// is the nominal type, not 'self'.
if (Loc.isValid() &&
AFD->getBodySourceRange().isValid() &&
!SM.rangeContainsTokenLoc(AFD->getBodySourceRange(), Loc)) {
BaseDecl = MetaBaseDecl;
}
}
// Look in the generic parameters after checking our local declaration.
GenericParams = AFD->getGenericParams();
} else if (auto *SD = dyn_cast<SubscriptDecl>(DC)) {
GenericParams = SD->getGenericParams();
} else if (auto *ACE = dyn_cast<AbstractClosureExpr>(DC)) {
// Look for local variables; normally, the parser resolves these
// for us, but it can't do the right thing inside local types.
if (Loc.isValid()) {
if (auto *CE = dyn_cast<ClosureExpr>(ACE)) {
namelookup::FindLocalVal localVal(SM, Loc, Consumer);
localVal.visit(CE->getBody());
if (!Results.empty())
return;
localVal.checkParameterList(CE->getParameters());
if (!Results.empty())
return;
}
}
if (!isCascadingUse.hasValue())
isCascadingUse = ACE->isCascadingContextForLookup(false);
} else if (ExtensionDecl *ED = dyn_cast<ExtensionDecl>(DC)) {
ExtendedType = ED->getSelfTypeInContext();
BaseDecl = ED->getAsNominalTypeOrNominalTypeExtensionContext();
MetaBaseDecl = BaseDecl;
if (!isCascadingUse.hasValue())
isCascadingUse = ED->isCascadingContextForLookup(false);
} else if (NominalTypeDecl *ND = dyn_cast<NominalTypeDecl>(DC)) {
ExtendedType = ND->getDeclaredType();
BaseDecl = ND;
MetaBaseDecl = BaseDecl;
if (!isCascadingUse.hasValue())
isCascadingUse = ND->isCascadingContextForLookup(false);
} else if (auto I = dyn_cast<DefaultArgumentInitializer>(DC)) {
// In a default argument, skip immediately out of both the
// initializer and the function.
isCascadingUse = false;
DC = I->getParent()->getParent();
continue;
} else {
assert(isa<TopLevelCodeDecl>(DC) || isa<Initializer>(DC) ||
isa<TypeAliasDecl>(DC));
if (!isCascadingUse.hasValue())
isCascadingUse = DC->isCascadingContextForLookup(false);
}
// Check the generic parameters for something with the given name.
if (GenericParams) {
namelookup::FindLocalVal localVal(SM, Loc, Consumer);
localVal.checkGenericParams(GenericParams);
if (!Results.empty())
return;
}
if (BaseDecl) {
if (TypeResolver)
TypeResolver->resolveDeclSignature(BaseDecl);
NLOptions options = NL_UnqualifiedDefault;
if (isCascadingUse.getValue())
options |= NL_KnownCascadingDependency;
else
options |= NL_KnownNonCascadingDependency;
if (AllowProtocolMembers)
options |= NL_ProtocolMembers;
if (IsTypeLookup)
options |= NL_OnlyTypes;
if (IgnoreAccessControl)
options |= NL_IgnoreAccessibility;
if (ExtendedType->hasError())
continue;
SmallVector<ValueDecl *, 4> Lookup;
DC->lookupQualified(ExtendedType, Name, options, TypeResolver, Lookup);
bool FoundAny = false;
for (auto Result : Lookup) {
// In Swift 3 mode, unqualified lookup skips static methods when
// performing lookup from instance context.
//
// We don't want to carry this forward to Swift 4, since it makes
// for poor diagnostics.
//
// Also, it was quite a special case and not as general as it
// should be -- it didn't apply to properties or subscripts, and
// the opposite case where we're in static context and an instance
// member shadows the module member wasn't handled either.
if (Ctx.isSwiftVersion3() &&
!isTypeLookup &&
isa<FuncDecl>(Result) &&
cast<FuncDecl>(Result)->isStatic()) {
continue;
}
// Classify this declaration.
FoundAny = true;
// Types are local or metatype members.
if (auto TD = dyn_cast<TypeDecl>(Result)) {
if (isa<GenericTypeParamDecl>(TD))
Results.push_back(UnqualifiedLookupResult(Result));
else
Results.push_back(UnqualifiedLookupResult(MetaBaseDecl, Result));
continue;
}
Results.push_back(UnqualifiedLookupResult(BaseDecl, Result));
}
if (FoundAny) {
// Predicate that determines whether a lookup result should
// be unavailable except as a last-ditch effort.
auto unavailableLookupResult =
[&](const UnqualifiedLookupResult &result) {
auto &effectiveVersion = Ctx.LangOpts.EffectiveLanguageVersion;
return result.getValueDecl()->getAttrs()
.isUnavailableInSwiftVersion(effectiveVersion);
};
// If all of the results we found are unavailable, keep looking.
if (std::all_of(Results.begin(), Results.end(),
unavailableLookupResult)) {
UnavailableInnerResults.append(Results.begin(), Results.end());
Results.clear();
FoundAny = false;
} else {
if (DebugClient)
filterForDiscriminator(Results, DebugClient);
return;
}
}
// Check the generic parameters if our context is a generic type or
// extension thereof.
GenericParamList *dcGenericParams = nullptr;
if (auto nominal = dyn_cast<NominalTypeDecl>(DC))
dcGenericParams = nominal->getGenericParams();
else if (auto ext = dyn_cast<ExtensionDecl>(DC))
dcGenericParams = ext->getGenericParams();
else if (auto subscript = dyn_cast<SubscriptDecl>(DC))
dcGenericParams = subscript->getGenericParams();
while (dcGenericParams) {
namelookup::FindLocalVal localVal(SM, Loc, Consumer);
localVal.checkGenericParams(dcGenericParams);
if (!Results.empty())
return;
if (!isa<ExtensionDecl>(DC))
break;
dcGenericParams = dcGenericParams->getOuterParameters();
}
}
DC = DC->getParent();
}
if (!isCascadingUse.hasValue())
isCascadingUse = true;
}
if (auto SF = dyn_cast<SourceFile>(DC)) {
if (Loc.isValid()) {
// Look for local variables in top-level code; normally, the parser
// resolves these for us, but it can't do the right thing for
// local types.
namelookup::FindLocalVal localVal(SM, Loc, Consumer);
localVal.checkSourceFile(*SF);
if (!Results.empty())
return;
}
}
}
// TODO: Does the debugger client care about compound names?
if (Name.isSimpleName()
&& DebugClient && DebugClient->lookupOverrides(Name.getBaseName(), DC,
Loc, IsTypeLookup, Results))
return;
recordLookupOfTopLevelName(DC, Name, isCascadingUse.getValue());
// Add private imports to the extra search list.
SmallVector<ModuleDecl::ImportedModule, 8> extraImports;
if (auto FU = dyn_cast<FileUnit>(DC))
FU->getImportedModules(extraImports, ModuleDecl::ImportFilter::Private);
using namespace namelookup;
SmallVector<ValueDecl *, 8> CurModuleResults;
auto resolutionKind =
IsTypeLookup ? ResolutionKind::TypesOnly : ResolutionKind::Overloadable;
lookupInModule(&M, {}, Name, CurModuleResults, NLKind::UnqualifiedLookup,
resolutionKind, TypeResolver, DC, extraImports);
for (auto VD : CurModuleResults)
Results.push_back(UnqualifiedLookupResult(VD));
if (DebugClient)
filterForDiscriminator(Results, DebugClient);
// Now add any names the DebugClient knows about to the lookup.
if (Name.isSimpleName() && DebugClient)
DebugClient->lookupAdditions(Name.getBaseName(), DC, Loc, IsTypeLookup,
Results);
// If we've found something, we're done.
if (!Results.empty())
return;
// If we still haven't found anything, but we do have some
// declarations that are "unavailable in the current Swift", drop
// those in.
if (!UnavailableInnerResults.empty()) {
Results = std::move(UnavailableInnerResults);
return;
}
if (!Name.isSimpleName())
return;
// Look for a module with the given name.
if (Name.isSimpleName(M.getName())) {
Results.push_back(UnqualifiedLookupResult(&M));
return;
}
ModuleDecl *desiredModule = Ctx.getLoadedModule(Name.getBaseName());
if (!desiredModule && Name == Ctx.TheBuiltinModule->getName())
desiredModule = Ctx.TheBuiltinModule;
if (desiredModule) {
forAllVisibleModules(DC, [&](const ModuleDecl::ImportedModule &import) -> bool {
if (import.second == desiredModule) {
Results.push_back(UnqualifiedLookupResult(import.second));
return false;
}
return true;
});
}
}
TypeDecl* UnqualifiedLookup::getSingleTypeResult() {
if (Results.size() != 1)
return nullptr;
return dyn_cast<TypeDecl>(Results.back().getValueDecl());
}
#pragma mark Member lookup table
void LazyMemberLoader::anchor() {}
/// Lookup table used to store members of a nominal type (and its extensions)
/// for fast retrieval.
class swift::MemberLookupTable {
/// The last extension that was included within the member lookup table's
/// results.
ExtensionDecl *LastExtensionIncluded = nullptr;
/// The type of the internal lookup table.
typedef llvm::DenseMap<DeclName, llvm::TinyPtrVector<ValueDecl *>>
LookupTable;
/// Lookup table mapping names to the set of declarations with that name.
LookupTable Lookup;
public:
/// Create a new member lookup table.
explicit MemberLookupTable(ASTContext &ctx);
/// Update a lookup table with members from newly-added extensions.
void updateLookupTable(NominalTypeDecl *nominal);
/// \brief Add the given member to the lookup table.
void addMember(Decl *members);
/// \brief Add the given members to the lookup table.
void addMembers(DeclRange members);
/// \brief The given extension has been extended with new members; add them
/// if appropriate.
void addExtensionMembers(NominalTypeDecl *nominal,
ExtensionDecl *ext,
DeclRange members);
/// Iterator into the lookup table.
typedef LookupTable::iterator iterator;
iterator begin() { return Lookup.begin(); }
iterator end() { return Lookup.end(); }
iterator find(DeclName name) {
return Lookup.find(name);
}
// Only allow allocation of member lookup tables using the allocator in
// ASTContext or by doing a placement new.
void *operator new(size_t Bytes, ASTContext &C,
unsigned Alignment = alignof(MemberLookupTable)) {
return C.Allocate(Bytes, Alignment);
}
void *operator new(size_t Bytes, void *Mem) {
assert(Mem);
return Mem;
}
};
namespace {
/// Stores the set of Objective-C methods with a given selector within the
/// Objective-C method lookup table.
struct StoredObjCMethods {
/// The generation count at which this list was last updated.
unsigned Generation = 0;
/// The set of methods with the given selector.
llvm::TinyPtrVector<AbstractFunctionDecl *> Methods;
};
} // end anonymous namespace
/// Class member lookup table, which is a member lookup table with a second
/// table for lookup based on Objective-C selector.
class ClassDecl::ObjCMethodLookupTable
: public llvm::DenseMap<std::pair<ObjCSelector, char>,
StoredObjCMethods>
{
public:
// Only allow allocation of member lookup tables using the allocator in
// ASTContext or by doing a placement new.
void *operator new(size_t Bytes, ASTContext &C,
unsigned Alignment = alignof(MemberLookupTable)) {
return C.Allocate(Bytes, Alignment);
}
void *operator new(size_t Bytes, void *Mem) {
assert(Mem);
return Mem;
}
};
MemberLookupTable::MemberLookupTable(ASTContext &ctx) {
// Register a cleanup with the ASTContext to call the lookup table
// destructor.
ctx.addCleanup([this]() {
this->~MemberLookupTable();
});
}
void MemberLookupTable::addMember(Decl *member) {
// Only value declarations matter.
auto vd = dyn_cast<ValueDecl>(member);
if (!vd)
return;
// Unnamed entities cannot be found by name lookup.
if (!vd->hasName())
return;
// If this declaration is already in the lookup table, don't add it
// again.
if (vd->ValueDeclBits.AlreadyInLookupTable) {
return;
}
vd->ValueDeclBits.AlreadyInLookupTable = true;
// Add this declaration to the lookup set under its compound name and simple
// name.
vd->getFullName().addToLookupTable(Lookup, vd);
}
void MemberLookupTable::addMembers(DeclRange members) {
for (auto member : members) {
addMember(member);
}
}
void MemberLookupTable::addExtensionMembers(NominalTypeDecl *nominal,
ExtensionDecl *ext,
DeclRange members) {
// We have not processed any extensions yet, so there's nothing to do.
if (!LastExtensionIncluded)
return;
// If this extension shows up in the list of extensions not yet included
// in the lookup table, there's nothing to do.
for (auto notIncluded = LastExtensionIncluded->NextExtension.getPointer();
notIncluded;
notIncluded = notIncluded->NextExtension.getPointer()) {
if (notIncluded == ext)
return;
}
// Add the new members to the lookup table.
addMembers(members);
}
void MemberLookupTable::updateLookupTable(NominalTypeDecl *nominal) {
// If the last extension we included is the same as the last known extension,
// we're already up-to-date.
if (LastExtensionIncluded == nominal->LastExtension)
return;
// Add members from each of the extensions that we have not yet visited.
for (auto next = LastExtensionIncluded
? LastExtensionIncluded->NextExtension.getPointer()
: nominal->FirstExtension;
next;
(LastExtensionIncluded = next,next = next->NextExtension.getPointer())) {
addMembers(next->getMembers());
}
}
void NominalTypeDecl::addedMember(Decl *member) {
// If we have a lookup table, add the new member to it.
if (LookupTable.getPointer()) {
LookupTable.getPointer()->addMember(member);
}
}
void ExtensionDecl::addedMember(Decl *member) {
if (NextExtension.getInt()) {
if (getExtendedType()->hasError())
return;
auto nominal = getExtendedType()->getAnyNominal();
if (nominal->LookupTable.getPointer()) {
// Make sure we have the complete list of extensions.
// FIXME: This is completely unnecessary. We want to determine whether
// our own extension has already been included in the lookup table.
(void)nominal->getExtensions();
nominal->LookupTable.getPointer()->addMember(member);
}
}
}
void NominalTypeDecl::prepareLookupTable(bool ignoreNewExtensions) {
// If we haven't allocated the lookup table yet, do so now.
if (!LookupTable.getPointer()) {
auto &ctx = getASTContext();
LookupTable.setPointer(new (ctx) MemberLookupTable(ctx));
}
// If we haven't walked the member list yet to update the lookup
// table, do so now.
if (!LookupTable.getInt()) {
// Note that we'll have walked the members now.
LookupTable.setInt(true);
// Add the members of the nominal declaration to the table.
LookupTable.getPointer()->addMembers(getMembers());
}
if (!ignoreNewExtensions) {
// Update the lookup table to introduce members from extensions.
LookupTable.getPointer()->updateLookupTable(this);
}
}
void NominalTypeDecl::makeMemberVisible(ValueDecl *member) {
if (!LookupTable.getPointer()) {
auto &ctx = getASTContext();
LookupTable.setPointer(new (ctx) MemberLookupTable(ctx));
}
LookupTable.getPointer()->addMember(member);
}
TinyPtrVector<ValueDecl *> NominalTypeDecl::lookupDirect(
DeclName name,
bool ignoreNewExtensions) {
(void)getMembers();
// Make sure we have the complete list of members (in this nominal and in all
// extensions).
if (!ignoreNewExtensions) {
for (auto E : getExtensions())
(void)E->getMembers();
}
prepareLookupTable(ignoreNewExtensions);
// Look for the declarations with this name.
auto known = LookupTable.getPointer()->find(name);
if (known == LookupTable.getPointer()->end())
return { };
// We found something; return it.
return known->second;
}
void ClassDecl::createObjCMethodLookup() {
assert(!ObjCMethodLookup && "Already have an Objective-C member table");
auto &ctx = getASTContext();
ObjCMethodLookup = new (ctx) ObjCMethodLookupTable();
// Register a cleanup with the ASTContext to call the lookup table
// destructor.
ctx.addCleanup([this]() {
this->ObjCMethodLookup->~ObjCMethodLookupTable();
});
}
MutableArrayRef<AbstractFunctionDecl *>
ClassDecl::lookupDirect(ObjCSelector selector, bool isInstance) {
if (!ObjCMethodLookup) {
createObjCMethodLookup();
}
// If any modules have been loaded since we did the search last (or if we
// hadn't searched before), look in those modules, too.
auto &stored = (*ObjCMethodLookup)[{selector, isInstance}];
ASTContext &ctx = getASTContext();
if (ctx.getCurrentGeneration() > stored.Generation) {
ctx.loadObjCMethods(this, selector, isInstance, stored.Generation,
stored.Methods);
stored.Generation = ctx.getCurrentGeneration();
}
return { stored.Methods.begin(), stored.Methods.end() };
}
void ClassDecl::recordObjCMethod(AbstractFunctionDecl *method) {
if (!ObjCMethodLookup) {
createObjCMethodLookup();
}
assert(method->isObjC() && "Not an Objective-C method");
// Record the method.
bool isInstanceMethod = method->isObjCInstanceMethod();
auto selector = method->getObjCSelector();
auto &vec = (*ObjCMethodLookup)[{selector, isInstanceMethod}].Methods;
// In a non-empty vector, we could have duplicates or conflicts.
if (!vec.empty()) {
// Check whether we have a duplicate. This only checks more than one
// element in ill-formed code, so the linear search is acceptable.
if (std::find(vec.begin(), vec.end(), method) != vec.end())
return;
if (vec.size() == 1) {
// We have a conflict.
getASTContext().recordObjCMethodConflict(this, selector,
isInstanceMethod);
}
} else {
// Record the first method that has this selector.
getASTContext().recordObjCMethod(method);
}
vec.push_back(method);
}
static bool checkAccessibility(const DeclContext *useDC,
const DeclContext *sourceDC,
Accessibility access) {
if (!useDC)
return access >= Accessibility::Public;
assert(sourceDC && "ValueDecl being accessed must have a valid DeclContext");
switch (access) {
case Accessibility::Private:
return useDC == sourceDC || useDC->isChildContextOf(sourceDC);
case Accessibility::FilePrivate:
return useDC->getModuleScopeContext() == sourceDC->getModuleScopeContext();
case Accessibility::Internal: {
const ModuleDecl *sourceModule = sourceDC->getParentModule();
const DeclContext *useFile = useDC->getModuleScopeContext();
if (useFile->getParentModule() == sourceModule)
return true;
if (auto *useSF = dyn_cast<SourceFile>(useFile))
if (useSF->hasTestableImport(sourceModule))
return true;
return false;
}
case Accessibility::Public:
case Accessibility::Open:
return true;
}
llvm_unreachable("bad Accessibility");
}
bool ValueDecl::isAccessibleFrom(const DeclContext *DC) const {
return checkAccessibility(DC, getDeclContext(), getFormalAccess());
}
bool AbstractStorageDecl::isSetterAccessibleFrom(const DeclContext *DC) const {
assert(isSettable(DC));
// If a stored property does not have a setter, it is still settable from the
// designated initializer constructor. In this case, don't check setter
// accessibility, it is not set.
if (hasStorage() && !isSettable(nullptr))
return true;
return checkAccessibility(DC, getDeclContext(), getSetterAccessibility());
}
bool DeclContext::lookupQualified(Type type,
DeclName member,
NLOptions options,
LazyResolver *typeResolver,
SmallVectorImpl<ValueDecl *> &decls) const {
using namespace namelookup;
assert(decls.empty() && "additive lookup not supported");
auto checkLookupCascading = [this, options]() -> Optional<bool> {
switch (static_cast<unsigned>(options & NL_KnownDependencyMask)) {
case 0:
return isCascadingContextForLookup(/*functionsAreNonCascading=*/false);
case NL_KnownNonCascadingDependency:
return false;
case NL_KnownCascadingDependency:
return true;
case NL_KnownNoDependency:
return None;
default:
// FIXME: Use llvm::CountPopulation_64 when that's declared constexpr.
#if defined(__clang__) || defined(__GNUC__)
static_assert(__builtin_popcountll(NL_KnownDependencyMask) == 2,
"mask should only include four values");
#endif
llvm_unreachable("mask only includes four values");
}
};
// Look for module references.
if (auto moduleTy = type->getAs<ModuleType>()) {
ModuleDecl *module = moduleTy->getModule();
auto topLevelScope = getModuleScopeContext();
if (module == topLevelScope->getParentModule()) {
if (auto maybeLookupCascade = checkLookupCascading()) {
recordLookupOfTopLevelName(topLevelScope, member,
maybeLookupCascade.getValue());
}
lookupInModule(module, /*accessPath=*/{}, member, decls,
NLKind::QualifiedLookup, ResolutionKind::Overloadable,
typeResolver, topLevelScope);
} else {
// Note: This is a lookup into another module. Unless we're compiling
// multiple modules at once, or if the other module re-exports this one,
// it shouldn't be possible to have a dependency from that module on
// anything in this one.
// Perform the lookup in all imports of this module.
forAllVisibleModules(this,
[&](const ModuleDecl::ImportedModule &import) -> bool {
if (import.second != module)
return true;
lookupInModule(import.second, import.first, member, decls,
NLKind::QualifiedLookup, ResolutionKind::Overloadable,
typeResolver, topLevelScope);
// If we're able to do an unscoped lookup, we see everything. No need
// to keep going.
return !import.first.empty();
});
}
llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
decls.erase(std::remove_if(decls.begin(), decls.end(),
[&](ValueDecl *vd) -> bool {
// If we're performing a type lookup, don't even attempt to validate
// the decl if its not a type.
if ((options & NL_OnlyTypes) && !isa<TypeDecl>(vd))
return true;
return !knownDecls.insert(vd).second;
}), decls.end());
if (auto *debugClient = topLevelScope->getParentModule()->getDebugClient())
filterForDiscriminator(decls, debugClient);
return !decls.empty();
}
auto &ctx = getASTContext();
if (!ctx.LangOpts.EnableAccessControl)
options |= NL_IgnoreAccessibility;
// The set of nominal type declarations we should (and have) visited.
SmallVector<NominalTypeDecl *, 4> stack;
llvm::SmallPtrSet<NominalTypeDecl *, 4> visited;
// Handle nominal types.
bool wantProtocolMembers = (options & NL_ProtocolMembers);
bool wantLookupInAllClasses = false;
if (auto nominal = type->getAnyNominal()) {
visited.insert(nominal);
stack.push_back(nominal);
// If we want dynamic lookup and we're searching in the
// AnyObject protocol, note this for later.
//
// FIXME: This will go away soon.
if (options & NL_DynamicLookup) {
if (auto proto = dyn_cast<ProtocolDecl>(nominal)) {
if (proto->isSpecificProtocol(KnownProtocolKind::AnyObject))
wantLookupInAllClasses = true;
}
}
}
// Handle archetypes
else if (auto archetypeTy = type->getAs<ArchetypeType>()) {
// Look in the protocols to which the archetype conforms (always).
for (auto proto : archetypeTy->getConformsTo())
if (visited.insert(proto).second)
stack.push_back(proto);
// Look into the superclasses of this archetype.
if (auto superclassTy = archetypeTy->getSuperclass())
if (auto superclassDecl = superclassTy->getAnyNominal())
if (visited.insert(superclassDecl).second)
stack.push_back(superclassDecl);
}
// Handle protocol compositions.
else if (auto compositionTy = type->getAs<ProtocolCompositionType>()) {
auto layout = compositionTy->getExistentialLayout();
if (layout.isAnyObject() &&
(options & NL_DynamicLookup))
wantLookupInAllClasses = true;
for (auto proto : layout.getProtocols()) {
auto *protoDecl = proto->getDecl();
if (visited.insert(protoDecl).second)
stack.push_back(protoDecl);
}
if (layout.superclass) {
auto *nominalDecl = layout.superclass->getAnyNominal();
if (visited.insert(nominalDecl).second)
stack.push_back(nominalDecl);
}
} else {
llvm_unreachable("Bad type for qualified lookup");
}
// Allow filtering of the visible declarations based on various
// criteria.
bool onlyCompleteObjectInits = false;
auto isAcceptableDecl = [&](NominalTypeDecl *current, ValueDecl *decl) -> bool {
// If the decl is currently being type checked, then we have something
// cyclic going on. Instead of poking at parts that are potentially not
// set up, just assume it is acceptable. This will make sure we produce an
// error later.
if (!decl->hasValidSignature())
return true;
// Filter out designated initializers, if requested.
if (onlyCompleteObjectInits) {
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
if (!ctor->isInheritable())
return false;
} else {
return false;
}
}
// Ignore stub implementations.
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
if (ctor->hasStubImplementation())
return false;
}
// Check access.
if (!(options & NL_IgnoreAccessibility))
return decl->isAccessibleFrom(this);
return true;
};
ReferencedNameTracker *tracker = nullptr;
if (auto containingSourceFile = dyn_cast<SourceFile>(getModuleScopeContext()))
tracker = containingSourceFile->getReferencedNameTracker();
bool isLookupCascading;
if (tracker) {
if (auto maybeLookupCascade = checkLookupCascading())
isLookupCascading = maybeLookupCascade.getValue();
else
tracker = nullptr;
}
// Visit all of the nominal types we know about, discovering any others
// we need along the way.
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
if (tracker)
tracker->addUsedMember({current, member.getBaseName()},isLookupCascading);
// Make sure we've resolved implicit constructors, if we need them.
if (member.getBaseName() == ctx.Id_init && typeResolver)
typeResolver->resolveImplicitConstructors(current);
// Look for results within the current nominal type and its extensions.
bool currentIsProtocol = isa<ProtocolDecl>(current);
for (auto decl : current->lookupDirect(member)) {
// If we're performing a type lookup, don't even attempt to validate
// the decl if its not a type.
if ((options & NL_OnlyTypes) && !isa<TypeDecl>(decl))
continue;
// Resolve the declaration signature when we find the
// declaration.
if (typeResolver)
typeResolver->resolveDeclSignature(decl);
if (isAcceptableDecl(current, decl))
decls.push_back(decl);
}
// Visit superclass.
if (auto classDecl = dyn_cast<ClassDecl>(current)) {
// If we're looking for initializers, only look at the superclass if the
// current class permits inheritance. Even then, only find complete
// object initializers.
bool visitSuperclass = true;
if (member.getBaseName() == ctx.Id_init) {
if (classDecl->inheritsSuperclassInitializers(typeResolver))
onlyCompleteObjectInits = true;
else
visitSuperclass = false;
}
if (visitSuperclass) {
if (auto superclassType = classDecl->getSuperclass())
if (auto superclassDecl = superclassType->getClassOrBoundGenericClass())
if (visited.insert(superclassDecl).second)
stack.push_back(superclassDecl);
}
}
// If we're not looking at a protocol and we're not supposed to
// visit the protocols that this type conforms to, skip the next
// step.
if (!wantProtocolMembers && !currentIsProtocol)
continue;
SmallVector<ProtocolDecl *, 4> protocols;
for (auto proto : current->getAllProtocols()) {
if (visited.insert(proto).second) {
stack.push_back(proto);
}
}
// For a class, we don't need to visit the protocol members of the
// superclass: that's already handled.
if (isa<ClassDecl>(current))
wantProtocolMembers = false;
}
// If we want to perform lookup into all classes, do so now.
if (wantLookupInAllClasses) {
if (tracker)
tracker->addDynamicLookupName(member.getBaseName(), isLookupCascading);
// Collect all of the visible declarations.
SmallVector<ValueDecl *, 4> allDecls;
forAllVisibleModules(this, [&](ModuleDecl::ImportedModule import) {
import.second->lookupClassMember(import.first, member, allDecls);
});
// For each declaration whose context is not something we've
// already visited above, add it to the list of declarations.
llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
for (auto decl : allDecls) {
// If we're performing a type lookup, don't even attempt to validate
// the decl if its not a type.
if ((options & NL_OnlyTypes) && !isa<TypeDecl>(decl))
continue;
if (typeResolver)
typeResolver->resolveDeclSignature(decl);
// If the declaration has an override, name lookup will also have
// found the overridden method. Skip this declaration, because we
// prefer the overridden method.
if (decl->getOverriddenDecl())
continue;
auto dc = decl->getDeclContext();
auto nominal = dyn_cast<NominalTypeDecl>(dc);
if (!nominal) {
auto ext = cast<ExtensionDecl>(dc);
nominal = ext->getExtendedType()->getAnyNominal();
assert(nominal && "Couldn't find nominal type?");
}
// If we didn't visit this nominal type above, add this
// declaration to the list.
if (!visited.count(nominal) && knownDecls.insert(decl).second &&
isAcceptableDecl(nominal, decl))
decls.push_back(decl);
}
}
// If we're supposed to remove overridden declarations, do so now.
if (options & NL_RemoveOverridden)
removeOverriddenDecls(decls);
// If we're supposed to remove shadowed/hidden declarations, do so now.
ModuleDecl *M = getParentModule();
if (options & NL_RemoveNonVisible)
removeShadowedDecls(decls, M, typeResolver);
if (auto *debugClient = M->getDebugClient())
filterForDiscriminator(decls, debugClient);
// We're done. Report success/failure.
return !decls.empty();
}
void DeclContext::lookupAllObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// Collect all of the methods with this selector.
forAllVisibleModules(this, [&](ModuleDecl::ImportedModule import) {
import.second->lookupObjCMethods(selector, results);
});
// Filter out duplicates.
llvm::SmallPtrSet<AbstractFunctionDecl *, 8> visited;
results.erase(
std::remove_if(results.begin(), results.end(),
[&](AbstractFunctionDecl *func) -> bool {
return !visited.insert(func).second;
}),
results.end());
}