mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
1112 lines
40 KiB
C++
1112 lines
40 KiB
C++
//===--- Devirtualize.cpp - Helper for devirtualizing apply ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-devirtualize-utility"
|
|
#include "swift/SILOptimizer/Analysis/ClassHierarchyAnalysis.h"
|
|
#include "swift/SILOptimizer/Utils/Devirtualize.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/SubstitutionMap.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/SIL/SILDeclRef.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILType.h"
|
|
#include "swift/SIL/SILValue.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Casting.h"
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumClassDevirt, "Number of class_method applies devirtualized");
|
|
STATISTIC(NumWitnessDevirt, "Number of witness_method applies devirtualized");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Class Method Optimization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Compute all subclasses of a given class.
|
|
///
|
|
/// \p CHA class hierarchy analysis
|
|
/// \p CD class declaration
|
|
/// \p ClassType type of the instance
|
|
/// \p M SILModule
|
|
/// \p Subs a container to be used for storing the set of subclasses
|
|
static void getAllSubclasses(ClassHierarchyAnalysis *CHA,
|
|
ClassDecl *CD,
|
|
SILType ClassType,
|
|
SILModule &M,
|
|
ClassHierarchyAnalysis::ClassList &Subs) {
|
|
// Collect the direct and indirect subclasses for the class.
|
|
// Sort these subclasses in the order they should be tested by the
|
|
// speculative devirtualization. Different strategies could be used,
|
|
// E.g. breadth-first, depth-first, etc.
|
|
// Currently, let's use the breadth-first strategy.
|
|
// The exact static type of the instance should be tested first.
|
|
auto &DirectSubs = CHA->getDirectSubClasses(CD);
|
|
auto &IndirectSubs = CHA->getIndirectSubClasses(CD);
|
|
|
|
Subs.append(DirectSubs.begin(), DirectSubs.end());
|
|
//SmallVector<ClassDecl *, 8> Subs(DirectSubs);
|
|
Subs.append(IndirectSubs.begin(), IndirectSubs.end());
|
|
|
|
if (ClassType.is<BoundGenericClassType>()) {
|
|
// Filter out any subclasses that do not inherit from this
|
|
// specific bound class.
|
|
auto RemovedIt = std::remove_if(Subs.begin(), Subs.end(),
|
|
[&ClassType](ClassDecl *Sub){
|
|
auto SubCanTy = Sub->getDeclaredType()->getCanonicalType();
|
|
// Unbound generic type can override a method from
|
|
// a bound generic class, but this unbound generic
|
|
// class is not considered to be a subclass of a
|
|
// bound generic class in a general case.
|
|
if (isa<UnboundGenericType>(SubCanTy))
|
|
return false;
|
|
// Handle the usual case here: the class in question
|
|
// should be a real subclass of a bound generic class.
|
|
return !ClassType.isBindableToSuperclassOf(
|
|
SILType::getPrimitiveObjectType(SubCanTy));
|
|
});
|
|
Subs.erase(RemovedIt, Subs.end());
|
|
}
|
|
}
|
|
|
|
/// \brief Returns true, if a method implementation corresponding to
|
|
/// the class_method applied to an instance of the class CD is
|
|
/// effectively final, i.e. it is statically known to be not overridden
|
|
/// by any subclasses of the class CD.
|
|
///
|
|
/// \p AI invocation instruction
|
|
/// \p ClassType type of the instance
|
|
/// \p CD static class of the instance whose method is being invoked
|
|
/// \p CHA class hierarchy analysis
|
|
bool isEffectivelyFinalMethod(FullApplySite AI,
|
|
SILType ClassType,
|
|
ClassDecl *CD,
|
|
ClassHierarchyAnalysis *CHA) {
|
|
if (CD && CD->isFinal())
|
|
return true;
|
|
|
|
const DeclContext *DC = AI.getModule().getAssociatedContext();
|
|
|
|
// Without an associated context we cannot perform any
|
|
// access-based optimizations.
|
|
if (!DC)
|
|
return false;
|
|
|
|
auto *CMI = cast<MethodInst>(AI.getCallee());
|
|
|
|
if (!calleesAreStaticallyKnowable(AI.getModule(), CMI->getMember()))
|
|
return false;
|
|
|
|
auto *Method = CMI->getMember().getAbstractFunctionDecl();
|
|
assert(Method && "Expected abstract function decl!");
|
|
assert(!Method->isFinal() && "Unexpected indirect call to final method!");
|
|
|
|
// If this method is not overridden in the module,
|
|
// there is no other implementation.
|
|
if (!Method->isOverridden())
|
|
return true;
|
|
|
|
// Class declaration may be nullptr, e.g. for cases like:
|
|
// func foo<C:Base>(c: C) {}, where C is a class, but
|
|
// it does not have a class decl.
|
|
if (!CD)
|
|
return false;
|
|
|
|
if (!CHA)
|
|
return false;
|
|
|
|
// This is a private or a module internal class.
|
|
//
|
|
// We can analyze the class hierarchy rooted at it and
|
|
// eventually devirtualize a method call more efficiently.
|
|
|
|
ClassHierarchyAnalysis::ClassList Subs;
|
|
getAllSubclasses(CHA, CD, ClassType, AI.getModule(), Subs);
|
|
|
|
// This is the implementation of the method to be used
|
|
// if the exact class of the instance would be CD.
|
|
auto *ImplMethod = CD->findImplementingMethod(Method);
|
|
|
|
// First, analyze all direct subclasses.
|
|
for (auto S : Subs) {
|
|
// Check if the subclass overrides a method and provides
|
|
// a different implementation.
|
|
auto *ImplFD = S->findImplementingMethod(Method);
|
|
if (ImplFD != ImplMethod)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check if a given class is final in terms of a current
|
|
/// compilation, i.e.:
|
|
/// - it is really final
|
|
/// - or it is private and has not sub-classes
|
|
/// - or it is an internal class without sub-classes and
|
|
/// it is a whole-module compilation.
|
|
static bool isKnownFinalClass(ClassDecl *CD, SILModule &M,
|
|
ClassHierarchyAnalysis *CHA) {
|
|
const DeclContext *DC = M.getAssociatedContext();
|
|
|
|
if (CD->isFinal())
|
|
return true;
|
|
|
|
// Without an associated context we cannot perform any
|
|
// access-based optimizations.
|
|
if (!DC)
|
|
return false;
|
|
|
|
// Only handle classes defined within the SILModule's associated context.
|
|
if (!CD->isChildContextOf(DC))
|
|
return false;
|
|
|
|
if (!CD->hasAccessibility())
|
|
return false;
|
|
|
|
// Only consider 'private' members, unless we are in whole-module compilation.
|
|
switch (CD->getEffectiveAccess()) {
|
|
case Accessibility::Open:
|
|
return false;
|
|
case Accessibility::Public:
|
|
case Accessibility::Internal:
|
|
if (!M.isWholeModule())
|
|
return false;
|
|
break;
|
|
case Accessibility::FilePrivate:
|
|
case Accessibility::Private:
|
|
break;
|
|
}
|
|
|
|
// Take the ClassHierarchyAnalysis into account.
|
|
// If a given class has no subclasses and
|
|
// - private
|
|
// - or internal and it is a WMO compilation
|
|
// then this class can be considered final for the purpose
|
|
// of devirtualization.
|
|
if (CHA) {
|
|
if (!CHA->hasKnownDirectSubclasses(CD)) {
|
|
switch (CD->getEffectiveAccess()) {
|
|
case Accessibility::Open:
|
|
return false;
|
|
case Accessibility::Public:
|
|
case Accessibility::Internal:
|
|
if (!M.isWholeModule())
|
|
return false;
|
|
break;
|
|
case Accessibility::FilePrivate:
|
|
case Accessibility::Private:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Attempt to get the instance for S, whose static type is the same as
|
|
// its exact dynamic type, returning a null SILValue() if we cannot find it.
|
|
// The information that a static type is the same as the exact dynamic,
|
|
// can be derived e.g.:
|
|
// - from a constructor or
|
|
// - from a successful outcome of a checked_cast_br [exact] instruction.
|
|
SILValue swift::getInstanceWithExactDynamicType(SILValue S, SILModule &M,
|
|
ClassHierarchyAnalysis *CHA) {
|
|
|
|
while (S) {
|
|
S = stripCasts(S);
|
|
|
|
if (isa<AllocRefInst>(S) || isa<MetatypeInst>(S)) {
|
|
if (S->getType().getSwiftRValueType()->hasDynamicSelfType())
|
|
return SILValue();
|
|
return S;
|
|
}
|
|
|
|
auto *Arg = dyn_cast<SILArgument>(S);
|
|
if (!Arg)
|
|
break;
|
|
|
|
auto *SinglePred = Arg->getParent()->getSinglePredecessorBlock();
|
|
if (!SinglePred) {
|
|
if (!isa<SILFunctionArgument>(Arg))
|
|
break;
|
|
auto *CD = Arg->getType().getClassOrBoundGenericClass();
|
|
// Check if this class is effectively final.
|
|
if (!CD || !isKnownFinalClass(CD, M, CHA))
|
|
break;
|
|
return Arg;
|
|
}
|
|
|
|
// Traverse the chain of predecessors.
|
|
if (isa<BranchInst>(SinglePred->getTerminator()) ||
|
|
isa<CondBranchInst>(SinglePred->getTerminator())) {
|
|
S = cast<SILPHIArgument>(Arg)->getIncomingValue(SinglePred);
|
|
continue;
|
|
}
|
|
|
|
// If it is a BB argument received on a success branch
|
|
// of a checked_cast_br, then we know its exact type.
|
|
auto *CCBI = dyn_cast<CheckedCastBranchInst>(SinglePred->getTerminator());
|
|
if (!CCBI)
|
|
break;
|
|
if (!CCBI->isExact() || CCBI->getSuccessBB() != Arg->getParent())
|
|
break;
|
|
return S;
|
|
}
|
|
|
|
return SILValue();
|
|
}
|
|
|
|
/// Try to determine the exact dynamic type of an object.
|
|
/// returns the exact dynamic type of the object, or an empty type if the exact
|
|
/// type could not be determined.
|
|
SILType swift::getExactDynamicType(SILValue S, SILModule &M,
|
|
ClassHierarchyAnalysis *CHA,
|
|
bool ForUnderlyingObject) {
|
|
// Set of values to be checked for their exact types.
|
|
SmallVector<SILValue, 8> WorkList;
|
|
// The detected type of the underlying object.
|
|
SILType ResultType;
|
|
// Set of processed values.
|
|
llvm::SmallSet<SILValue, 8> Processed;
|
|
WorkList.push_back(S);
|
|
|
|
while (!WorkList.empty()) {
|
|
auto V = WorkList.pop_back_val();
|
|
if (!V)
|
|
return SILType();
|
|
if (Processed.count(V))
|
|
continue;
|
|
Processed.insert(V);
|
|
// For underlying object strip casts and projections.
|
|
// For the object itself, simply strip casts.
|
|
V = ForUnderlyingObject ? getUnderlyingObject(V) : stripCasts(V);
|
|
|
|
if (isa<AllocRefInst>(V) || isa<MetatypeInst>(V)) {
|
|
if (ResultType && ResultType != V->getType())
|
|
return SILType();
|
|
ResultType = V->getType();
|
|
continue;
|
|
}
|
|
|
|
if (isa<LiteralInst>(V)) {
|
|
if (ResultType && ResultType != V->getType())
|
|
return SILType();
|
|
ResultType = V->getType();
|
|
continue;
|
|
}
|
|
|
|
if (isa<StructInst>(V) || isa<TupleInst>(V) || isa<EnumInst>(V)) {
|
|
if (ResultType && ResultType != V->getType())
|
|
return SILType();
|
|
ResultType = V->getType();
|
|
continue;
|
|
}
|
|
|
|
if (ForUnderlyingObject) {
|
|
if (isa<AllocationInst>(V)) {
|
|
if (ResultType && ResultType != V->getType())
|
|
return SILType();
|
|
ResultType = V->getType();
|
|
continue;
|
|
}
|
|
// Look through strong_pin instructions.
|
|
if (isa<StrongPinInst>(V)) {
|
|
WorkList.push_back(cast<SILInstruction>(V)->getOperand(0));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
auto Arg = dyn_cast<SILArgument>(V);
|
|
if (!Arg) {
|
|
// We don't know what it is.
|
|
return SILType();
|
|
}
|
|
|
|
if (auto *FArg = dyn_cast<SILFunctionArgument>(Arg)) {
|
|
// Bail on metatypes for now.
|
|
if (FArg->getType().is<AnyMetatypeType>()) {
|
|
return SILType();
|
|
}
|
|
auto *CD = FArg->getType().getClassOrBoundGenericClass();
|
|
// If it is not class and it is a trivial type, then it
|
|
// should be the exact type.
|
|
if (!CD && FArg->getType().isTrivial(M)) {
|
|
if (ResultType && ResultType != FArg->getType())
|
|
return SILType();
|
|
ResultType = FArg->getType();
|
|
continue;
|
|
}
|
|
|
|
if (!CD) {
|
|
// It is not a class or a trivial type, so we don't know what it is.
|
|
return SILType();
|
|
}
|
|
|
|
// Check if this class is effectively final.
|
|
if (!isKnownFinalClass(CD, M, CHA)) {
|
|
return SILType();
|
|
}
|
|
|
|
if (ResultType && ResultType != FArg->getType())
|
|
return SILType();
|
|
ResultType = FArg->getType();
|
|
continue;
|
|
}
|
|
|
|
auto *SinglePred = Arg->getParent()->getSinglePredecessorBlock();
|
|
if (SinglePred) {
|
|
// If it is a BB argument received on a success branch
|
|
// of a checked_cast_br, then we know its exact type.
|
|
auto *CCBI = dyn_cast<CheckedCastBranchInst>(SinglePred->getTerminator());
|
|
if (CCBI && CCBI->isExact() && CCBI->getSuccessBB() == Arg->getParent()) {
|
|
if (ResultType && ResultType != Arg->getType())
|
|
return SILType();
|
|
ResultType = Arg->getType();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// It is a BB argument, look through incoming values. If they all have the
|
|
// same exact type, then we consider it to be the type of the BB argument.
|
|
SmallVector<SILValue, 4> IncomingValues;
|
|
|
|
if (Arg->getIncomingValues(IncomingValues)) {
|
|
for (auto InValue : IncomingValues) {
|
|
WorkList.push_back(InValue);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// The exact type is unknown.
|
|
return SILType();
|
|
}
|
|
|
|
return ResultType;
|
|
}
|
|
|
|
|
|
/// Try to determine the exact dynamic type of the underlying object.
|
|
/// returns the exact dynamic type of a value, or an empty type if the exact
|
|
/// type could not be determined.
|
|
SILType
|
|
swift::getExactDynamicTypeOfUnderlyingObject(SILValue S, SILModule &M,
|
|
ClassHierarchyAnalysis *CHA) {
|
|
return getExactDynamicType(S, M, CHA, /* ForUnderlyingObject */ true);
|
|
}
|
|
|
|
// Start with the substitutions from the apply.
|
|
// Try to propagate them to find out the real substitutions required
|
|
// to invoke the method.
|
|
static void
|
|
getSubstitutionsForCallee(SILModule &M,
|
|
CanSILFunctionType baseCalleeType,
|
|
CanType derivedSelfType,
|
|
FullApplySite AI,
|
|
SmallVectorImpl<Substitution> &newSubs) {
|
|
|
|
// If the base method is not polymorphic, no substitutions are required,
|
|
// even if we originally had substitutions for calling the derived method.
|
|
if (!baseCalleeType->isPolymorphic())
|
|
return;
|
|
|
|
// Add any generic substitutions for the base class.
|
|
Type baseSelfType = baseCalleeType->getSelfParameter().getType();
|
|
if (auto metatypeType = baseSelfType->getAs<MetatypeType>())
|
|
baseSelfType = metatypeType->getInstanceType();
|
|
|
|
auto *baseClassDecl = baseSelfType->getClassOrBoundGenericClass();
|
|
assert(baseClassDecl && "not a class method");
|
|
|
|
unsigned baseDepth = 0;
|
|
SubstitutionMap baseSubMap;
|
|
if (auto baseClassSig = baseClassDecl->getGenericSignatureOfContext()) {
|
|
baseDepth = baseClassSig->getGenericParams().back()->getDepth() + 1;
|
|
|
|
// Compute the type of the base class, starting from the
|
|
// derived class type and the type of the method's self
|
|
// parameter.
|
|
Type derivedClass = derivedSelfType;
|
|
if (auto metatypeType = derivedClass->getAs<MetatypeType>())
|
|
derivedClass = metatypeType->getInstanceType();
|
|
baseSubMap = derivedClass->getContextSubstitutionMap(
|
|
M.getSwiftModule(), baseClassDecl);
|
|
}
|
|
|
|
SubstitutionMap origSubMap;
|
|
if (auto origCalleeSig = AI.getOrigCalleeType()->getGenericSignature())
|
|
origSubMap = origCalleeSig->getSubstitutionMap(AI.getSubstitutions());
|
|
|
|
Type calleeSelfType = AI.getOrigCalleeType()->getSelfParameter().getType();
|
|
if (auto metatypeType = calleeSelfType->getAs<MetatypeType>())
|
|
calleeSelfType = metatypeType->getInstanceType();
|
|
auto *calleeClassDecl = calleeSelfType->getClassOrBoundGenericClass();
|
|
assert(calleeClassDecl && "self is not a class type");
|
|
|
|
// Add generic parameters from the method itself, ignoring any generic
|
|
// parameters from the derived class.
|
|
unsigned origDepth = 0;
|
|
if (auto calleeClassSig = calleeClassDecl->getGenericSignatureOfContext())
|
|
origDepth = calleeClassSig->getGenericParams().back()->getDepth() + 1;
|
|
|
|
auto baseCalleeSig = baseCalleeType->getGenericSignature();
|
|
|
|
auto subMap =
|
|
SubstitutionMap::combineSubstitutionMaps(baseSubMap,
|
|
origSubMap,
|
|
CombineSubstitutionMaps::AtDepth,
|
|
baseDepth,
|
|
origDepth,
|
|
baseCalleeSig);
|
|
|
|
// Build the new substitutions using the base method signature.
|
|
baseCalleeSig->getSubstitutions(subMap, newSubs);
|
|
}
|
|
|
|
SILFunction *swift::getTargetClassMethod(SILModule &M,
|
|
SILType ClassOrMetatypeType,
|
|
MethodInst *MI) {
|
|
assert((isa<ClassMethodInst>(MI) || isa<WitnessMethodInst>(MI) ||
|
|
isa<SuperMethodInst>(MI)) &&
|
|
"Only class_method and witness_method instructions are supported");
|
|
|
|
SILDeclRef Member = MI->getMember();
|
|
if (ClassOrMetatypeType.is<MetatypeType>())
|
|
ClassOrMetatypeType = ClassOrMetatypeType.getMetatypeInstanceType(M);
|
|
|
|
auto *CD = ClassOrMetatypeType.getClassOrBoundGenericClass();
|
|
return M.lookUpFunctionInVTable(CD, Member);
|
|
}
|
|
|
|
/// \brief Check if it is possible to devirtualize an Apply instruction
|
|
/// and a class member obtained using the class_method instruction into
|
|
/// a direct call to a specific member of a specific class.
|
|
///
|
|
/// \p AI is the apply to devirtualize.
|
|
/// \p ClassOrMetatypeType is the class type or metatype type we are
|
|
/// devirtualizing for.
|
|
/// return true if it is possible to devirtualize, false - otherwise.
|
|
bool swift::canDevirtualizeClassMethod(FullApplySite AI,
|
|
SILType ClassOrMetatypeType) {
|
|
|
|
DEBUG(llvm::dbgs() << " Trying to devirtualize : " << *AI.getInstruction());
|
|
|
|
SILModule &Mod = AI.getModule();
|
|
|
|
// First attempt to lookup the origin for our class method. The origin should
|
|
// either be a metatype or an alloc_ref.
|
|
DEBUG(llvm::dbgs() << " Origin Type: " << ClassOrMetatypeType);
|
|
|
|
auto *MI = cast<MethodInst>(AI.getCallee());
|
|
|
|
// Find the implementation of the member which should be invoked.
|
|
auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI);
|
|
|
|
// If we do not find any such function, we have no function to devirtualize
|
|
// to... so bail.
|
|
if (!F) {
|
|
DEBUG(llvm::dbgs() << " FAIL: Could not find matching VTable or "
|
|
"vtable method for this class.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!F->shouldOptimize()) {
|
|
// Do not consider functions that should not be optimized.
|
|
DEBUG(llvm::dbgs() << " FAIL: Could not optimize function "
|
|
<< " because it is marked no-opt: " << F->getName()
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
|
|
if (AI.getFunction()->isSerialized()) {
|
|
// function_ref inside fragile function cannot reference a private or
|
|
// hidden symbol.
|
|
if (!F->hasValidLinkageForFragileRef())
|
|
return false;
|
|
}
|
|
|
|
if (MI->isVolatile()) {
|
|
// dynamic dispatch is semantically required, can't devirtualize
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Devirtualize an apply of a class method.
|
|
///
|
|
/// \p AI is the apply to devirtualize.
|
|
/// \p ClassOrMetatype is a class value or metatype value that is the
|
|
/// self argument of the apply we will devirtualize.
|
|
/// return the result value of the new ApplyInst if created one or null.
|
|
DevirtualizationResult swift::devirtualizeClassMethod(FullApplySite AI,
|
|
SILValue ClassOrMetatype) {
|
|
DEBUG(llvm::dbgs() << " Trying to devirtualize : " << *AI.getInstruction());
|
|
|
|
SILModule &Mod = AI.getModule();
|
|
auto *MI = cast<MethodInst>(AI.getCallee());
|
|
auto ClassOrMetatypeType = ClassOrMetatype->getType();
|
|
auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI);
|
|
|
|
CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();
|
|
|
|
SmallVector<Substitution, 4> Subs;
|
|
getSubstitutionsForCallee(Mod, GenCalleeType,
|
|
ClassOrMetatypeType.getSwiftRValueType(),
|
|
AI, Subs);
|
|
CanSILFunctionType SubstCalleeType = GenCalleeType;
|
|
if (GenCalleeType->isPolymorphic())
|
|
SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Subs);
|
|
SILFunctionConventions substConv(SubstCalleeType, Mod);
|
|
|
|
SILBuilderWithScope B(AI.getInstruction());
|
|
FunctionRefInst *FRI = B.createFunctionRef(AI.getLoc(), F);
|
|
|
|
// Create the argument list for the new apply, casting when needed
|
|
// in order to handle covariant indirect return types and
|
|
// contravariant argument types.
|
|
llvm::SmallVector<SILValue, 8> NewArgs;
|
|
|
|
auto IndirectResultArgIter = AI.getIndirectSILResults().begin();
|
|
for (auto ResultTy : substConv.getIndirectSILResultTypes()) {
|
|
NewArgs.push_back(
|
|
castValueToABICompatibleType(&B, AI.getLoc(), *IndirectResultArgIter,
|
|
IndirectResultArgIter->getType(), ResultTy));
|
|
++IndirectResultArgIter;
|
|
}
|
|
|
|
auto ParamArgIter = AI.getArgumentsWithoutIndirectResults().begin();
|
|
// Skip the last parameter, which is `self`. Add it below.
|
|
for (auto param : substConv.getParameters().drop_back()) {
|
|
auto paramType = substConv.getSILType(param);
|
|
NewArgs.push_back(
|
|
castValueToABICompatibleType(&B, AI.getLoc(), *ParamArgIter,
|
|
ParamArgIter->getType(), paramType));
|
|
++ParamArgIter;
|
|
}
|
|
|
|
// Add the self argument, upcasting if required because we're
|
|
// calling a base class's method.
|
|
auto SelfParamTy = substConv.getSILType(SubstCalleeType->getSelfParameter());
|
|
NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(),
|
|
ClassOrMetatype,
|
|
ClassOrMetatypeType,
|
|
SelfParamTy));
|
|
|
|
SILType ResultTy = substConv.getSILResultType();
|
|
|
|
SILType SubstCalleeSILType =
|
|
SILType::getPrimitiveObjectType(SubstCalleeType);
|
|
FullApplySite NewAI;
|
|
|
|
SILBasicBlock *ResultBB = nullptr;
|
|
SILBasicBlock *NormalBB = nullptr;
|
|
SILValue ResultValue;
|
|
bool ResultCastRequired = false;
|
|
SmallVector<Operand *, 4> OriginalResultUses;
|
|
|
|
if (!isa<TryApplyInst>(AI)) {
|
|
NewAI = B.createApply(AI.getLoc(), FRI, SubstCalleeSILType, ResultTy,
|
|
Subs, NewArgs, cast<ApplyInst>(AI)->isNonThrowing());
|
|
ResultValue = NewAI.getInstruction();
|
|
} else {
|
|
auto *TAI = cast<TryApplyInst>(AI);
|
|
// Create new normal and error BBs only if:
|
|
// - re-using a BB would create a critical edge
|
|
// - or, the result of the new apply would be of different
|
|
// type than the argument of the original normal BB.
|
|
if (TAI->getNormalBB()->getSinglePredecessorBlock())
|
|
ResultBB = TAI->getNormalBB();
|
|
else {
|
|
ResultBB = B.getFunction().createBasicBlock();
|
|
ResultBB->createPHIArgument(ResultTy, ValueOwnershipKind::Owned);
|
|
}
|
|
|
|
NormalBB = TAI->getNormalBB();
|
|
|
|
SILBasicBlock *ErrorBB = nullptr;
|
|
if (TAI->getErrorBB()->getSinglePredecessorBlock())
|
|
ErrorBB = TAI->getErrorBB();
|
|
else {
|
|
ErrorBB = B.getFunction().createBasicBlock();
|
|
ErrorBB->createPHIArgument(TAI->getErrorBB()->getArgument(0)->getType(),
|
|
ValueOwnershipKind::Owned);
|
|
}
|
|
|
|
NewAI = B.createTryApply(AI.getLoc(), FRI, SubstCalleeSILType,
|
|
Subs, NewArgs,
|
|
ResultBB, ErrorBB);
|
|
if (ErrorBB != TAI->getErrorBB()) {
|
|
B.setInsertionPoint(ErrorBB);
|
|
B.createBranch(TAI->getLoc(), TAI->getErrorBB(),
|
|
{ErrorBB->getArgument(0)});
|
|
}
|
|
|
|
// Does the result value need to be casted?
|
|
ResultCastRequired = ResultTy != NormalBB->getArgument(0)->getType();
|
|
|
|
if (ResultBB != NormalBB)
|
|
B.setInsertionPoint(ResultBB);
|
|
else if (ResultCastRequired) {
|
|
B.setInsertionPoint(NormalBB->begin());
|
|
// Collect all uses, before casting.
|
|
for (auto *Use : NormalBB->getArgument(0)->getUses()) {
|
|
OriginalResultUses.push_back(Use);
|
|
}
|
|
NormalBB->getArgument(0)->replaceAllUsesWith(
|
|
SILUndef::get(AI.getType(), Mod));
|
|
NormalBB->replacePHIArgument(0, ResultTy, ValueOwnershipKind::Owned);
|
|
}
|
|
|
|
// The result value is passed as a parameter to the normal block.
|
|
ResultValue = ResultBB->getArgument(0);
|
|
}
|
|
|
|
// Check if any casting is required for the return value.
|
|
ResultValue = castValueToABICompatibleType(&B, NewAI.getLoc(), ResultValue,
|
|
ResultTy, AI.getType());
|
|
|
|
DEBUG(llvm::dbgs() << " SUCCESS: " << F->getName() << "\n");
|
|
NumClassDevirt++;
|
|
|
|
if (NormalBB) {
|
|
if (NormalBB != ResultBB) {
|
|
// If artificial normal BB was introduced, branch
|
|
// to the original normal BB.
|
|
B.createBranch(NewAI.getLoc(), NormalBB, { ResultValue });
|
|
} else if (ResultCastRequired) {
|
|
// Update all original uses by the new value.
|
|
for (auto *Use: OriginalResultUses) {
|
|
Use->set(ResultValue);
|
|
}
|
|
}
|
|
return std::make_pair(NewAI.getInstruction(), NewAI);
|
|
}
|
|
|
|
// We need to return a pair of values here:
|
|
// - the first one is the actual result of the devirtualized call, possibly
|
|
// casted into an appropriate type. This SILValue may be a BB arg, if it
|
|
// was a cast between optional types.
|
|
// - the second one is the new apply site.
|
|
return std::make_pair(ResultValue, NewAI);
|
|
}
|
|
|
|
DevirtualizationResult swift::tryDevirtualizeClassMethod(FullApplySite AI,
|
|
SILValue ClassInstance) {
|
|
if (!canDevirtualizeClassMethod(AI, ClassInstance->getType()))
|
|
return std::make_pair(nullptr, FullApplySite());
|
|
return devirtualizeClassMethod(AI, ClassInstance);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Witness Method Optimization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static SubstitutionMap
|
|
getSubstitutionsForProtocolConformance(ProtocolConformanceRef CRef) {
|
|
auto C = CRef.getConcrete();
|
|
|
|
// Walk down to the base NormalProtocolConformance.
|
|
SubstitutionList Subs;
|
|
const ProtocolConformance *ParentC = C;
|
|
while (!isa<NormalProtocolConformance>(ParentC)) {
|
|
switch (ParentC->getKind()) {
|
|
case ProtocolConformanceKind::Normal:
|
|
llvm_unreachable("should have exited the loop?!");
|
|
case ProtocolConformanceKind::Inherited:
|
|
ParentC = cast<InheritedProtocolConformance>(ParentC)
|
|
->getInheritedConformance();
|
|
break;
|
|
case ProtocolConformanceKind::Specialized: {
|
|
auto SC = cast<SpecializedProtocolConformance>(ParentC);
|
|
ParentC = SC->getGenericConformance();
|
|
assert(Subs.empty() && "multiple conformance specializations?!");
|
|
Subs = SC->getGenericSubstitutions();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
const NormalProtocolConformance *NormalC
|
|
= cast<NormalProtocolConformance>(ParentC);
|
|
|
|
// If the normal conformance is for a generic type, and we didn't hit a
|
|
// specialized conformance, collect the substitutions from the generic type.
|
|
// FIXME: The AST should do this for us.
|
|
if (!NormalC->getType()->isSpecialized())
|
|
return SubstitutionMap();
|
|
|
|
if (Subs.empty()) {
|
|
auto *DC = NormalC->getDeclContext();
|
|
return NormalC->getType()
|
|
->getContextSubstitutionMap(DC->getParentModule(), DC);
|
|
}
|
|
|
|
return NormalC->getGenericSignature()->getSubstitutionMap(Subs);
|
|
}
|
|
|
|
/// Compute substitutions for making a direct call to a SIL function with
|
|
/// @convention(witness_method) convention.
|
|
///
|
|
/// Such functions have a substituted generic signature where the
|
|
/// abstract `Self` parameter from the original type of the protocol
|
|
/// requirement is replaced by a concrete type.
|
|
///
|
|
/// Thus, the original substitutions of the apply instruction that
|
|
/// are written in terms of the requirement's generic signature need
|
|
/// to be remapped to substitutions suitable for the witness signature.
|
|
///
|
|
/// \param conformanceRef The (possibly-specialized) conformance
|
|
/// \param requirementSig The generic signature of the requirement
|
|
/// \param witnessThunkSig The generic signature of the witness method
|
|
/// \param origSubs The substitutions from the call instruction
|
|
static SubstitutionMap
|
|
getWitnessMethodSubstitutions(
|
|
ProtocolConformanceRef conformanceRef,
|
|
GenericSignature *requirementSig,
|
|
GenericSignature *witnessThunkSig,
|
|
SubstitutionList origSubs,
|
|
bool isDefaultWitness) {
|
|
|
|
if (witnessThunkSig == nullptr)
|
|
return SubstitutionMap();
|
|
|
|
auto origSubMap = requirementSig->getSubstitutionMap(origSubs);
|
|
|
|
if (isDefaultWitness)
|
|
return origSubMap;
|
|
|
|
assert(!conformanceRef.isAbstract());
|
|
auto conformance = conformanceRef.getConcrete();
|
|
|
|
// If `Self` maps to a bound generic type, this gives us the
|
|
// substitutions for the concrete type's generic parameters.
|
|
auto baseSubMap = getSubstitutionsForProtocolConformance(conformanceRef);
|
|
|
|
unsigned baseDepth = 0;
|
|
auto *rootConformance = conformance->getRootNormalConformance();
|
|
if (auto *witnessSig = rootConformance->getGenericSignature())
|
|
baseDepth = witnessSig->getGenericParams().back()->getDepth() + 1;
|
|
|
|
auto origDepth = 1;
|
|
|
|
return SubstitutionMap::combineSubstitutionMaps(
|
|
baseSubMap,
|
|
origSubMap,
|
|
CombineSubstitutionMaps::AtDepth,
|
|
baseDepth,
|
|
origDepth,
|
|
witnessThunkSig);
|
|
}
|
|
|
|
static SubstitutionMap
|
|
getWitnessMethodSubstitutions(SILModule &Module, ApplySite AI, SILFunction *F,
|
|
ProtocolConformanceRef CRef) {
|
|
auto requirementSig = AI.getOrigCalleeType()->getGenericSignature();
|
|
auto witnessThunkSig = F->getLoweredFunctionType()->getGenericSignature();
|
|
|
|
SubstitutionList origSubs = AI.getSubstitutions();
|
|
|
|
bool isDefaultWitness =
|
|
F->getLoweredFunctionType()->getRepresentation()
|
|
== SILFunctionTypeRepresentation::WitnessMethod &&
|
|
F->getLoweredFunctionType()->getDefaultWitnessMethodProtocol(
|
|
*Module.getSwiftModule())
|
|
== CRef.getRequirement();
|
|
|
|
return getWitnessMethodSubstitutions(
|
|
CRef, requirementSig, witnessThunkSig,
|
|
origSubs, isDefaultWitness);
|
|
}
|
|
|
|
/// Generate a new apply of a function_ref to replace an apply of a
|
|
/// witness_method when we've determined the actual function we'll end
|
|
/// up calling.
|
|
static DevirtualizationResult
|
|
devirtualizeWitnessMethod(ApplySite AI, SILFunction *F,
|
|
ProtocolConformanceRef C) {
|
|
// We know the witness thunk and the corresponding set of substitutions
|
|
// required to invoke the protocol method at this point.
|
|
auto &Module = AI.getModule();
|
|
|
|
// Collect all the required substitutions.
|
|
//
|
|
// The complete set of substitutions may be different, e.g. because the found
|
|
// witness thunk F may have been created by a specialization pass and have
|
|
// additional generic parameters.
|
|
auto SubMap = getWitnessMethodSubstitutions(Module, AI, F, C);
|
|
|
|
// Figure out the exact bound type of the function to be called by
|
|
// applying all substitutions.
|
|
auto CalleeCanType = F->getLoweredFunctionType();
|
|
auto SubstCalleeCanType = CalleeCanType->substGenericArgs(Module, SubMap);
|
|
|
|
// Collect arguments from the apply instruction.
|
|
auto Arguments = SmallVector<SILValue, 4>();
|
|
|
|
// Iterate over the non self arguments and add them to the
|
|
// new argument list, upcasting when required.
|
|
SILBuilderWithScope B(AI.getInstruction());
|
|
SILFunctionConventions substConv(SubstCalleeCanType, Module);
|
|
unsigned substArgIdx = AI.getCalleeArgIndexOfFirstAppliedArg();
|
|
for (auto arg : AI.getArguments()) {
|
|
auto paramType = substConv.getSILArgumentType(substArgIdx++);
|
|
if (arg->getType() != paramType)
|
|
arg = castValueToABICompatibleType(&B, AI.getLoc(), arg,
|
|
arg->getType(), paramType);
|
|
Arguments.push_back(arg);
|
|
}
|
|
assert(substArgIdx == substConv.getNumSILArguments());
|
|
|
|
// Replace old apply instruction by a new apply instruction that invokes
|
|
// the witness thunk.
|
|
SILBuilderWithScope Builder(AI.getInstruction());
|
|
SILLocation Loc = AI.getLoc();
|
|
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, F);
|
|
|
|
auto SubstCalleeSILType = SILType::getPrimitiveObjectType(SubstCalleeCanType);
|
|
auto ResultSILType = substConv.getSILResultType();
|
|
ApplySite SAI;
|
|
|
|
SmallVector<Substitution, 4> NewSubs;
|
|
if (auto GenericSig = CalleeCanType->getGenericSignature())
|
|
GenericSig->getSubstitutions(SubMap, NewSubs);
|
|
|
|
SILValue ResultValue;
|
|
if (auto *A = dyn_cast<ApplyInst>(AI)) {
|
|
auto *NewAI =
|
|
Builder.createApply(Loc, FRI, SubstCalleeSILType, ResultSILType,
|
|
NewSubs, Arguments, A->isNonThrowing());
|
|
// Check if any casting is required for the return value.
|
|
ResultValue = castValueToABICompatibleType(&Builder, Loc, NewAI,
|
|
NewAI->getType(), AI.getType());
|
|
SAI = ApplySite::isa(NewAI);
|
|
}
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(AI))
|
|
SAI = Builder.createTryApply(Loc, FRI, SubstCalleeSILType,
|
|
NewSubs, Arguments,
|
|
TAI->getNormalBB(), TAI->getErrorBB());
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(AI)) {
|
|
auto PartialApplyConvention = PAI->getType()
|
|
.getSwiftRValueType()
|
|
->getAs<SILFunctionType>()
|
|
->getCalleeConvention();
|
|
auto PAIResultType = SILBuilder::getPartialApplyResultType(
|
|
SubstCalleeSILType, Arguments.size(), Module, {},
|
|
PartialApplyConvention);
|
|
auto *NewPAI = Builder.createPartialApply(
|
|
Loc, FRI, SubstCalleeSILType, NewSubs, Arguments, PAIResultType);
|
|
// Check if any casting is required for the return value.
|
|
ResultValue = castValueToABICompatibleType(
|
|
&Builder, Loc, NewPAI, NewPAI->getType(), PAI->getType());
|
|
SAI = ApplySite::isa(NewPAI);
|
|
}
|
|
|
|
NumWitnessDevirt++;
|
|
return std::make_pair(ResultValue, SAI);
|
|
}
|
|
|
|
static bool canDevirtualizeWitnessMethod(ApplySite AI) {
|
|
SILFunction *F;
|
|
SILWitnessTable *WT;
|
|
|
|
auto *WMI = cast<WitnessMethodInst>(AI.getCallee());
|
|
|
|
std::tie(F, WT) =
|
|
AI.getModule().lookUpFunctionInWitnessTable(WMI->getConformance(),
|
|
WMI->getMember());
|
|
|
|
if (!F)
|
|
return false;
|
|
|
|
if (AI.getFunction()->isSerialized()) {
|
|
// function_ref inside fragile function cannot reference a private or
|
|
// hidden symbol.
|
|
if (!F->hasValidLinkageForFragileRef())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// In the cases where we can statically determine the function that
|
|
/// we'll call to, replace an apply of a witness_method with an apply
|
|
/// of a function_ref, returning the new apply.
|
|
DevirtualizationResult swift::tryDevirtualizeWitnessMethod(ApplySite AI) {
|
|
if (!canDevirtualizeWitnessMethod(AI))
|
|
return std::make_pair(nullptr, FullApplySite());
|
|
|
|
SILFunction *F;
|
|
SILWitnessTable *WT;
|
|
|
|
auto *WMI = cast<WitnessMethodInst>(AI.getCallee());
|
|
|
|
std::tie(F, WT) =
|
|
AI.getModule().lookUpFunctionInWitnessTable(WMI->getConformance(),
|
|
WMI->getMember());
|
|
|
|
return devirtualizeWitnessMethod(AI, F, WMI->getConformance());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Driver
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Attempt to devirtualize the given apply if possible, and return a
|
|
/// new instruction in that case, or nullptr otherwise.
|
|
DevirtualizationResult
|
|
swift::tryDevirtualizeApply(ApplySite AI, ClassHierarchyAnalysis *CHA) {
|
|
DEBUG(llvm::dbgs() << " Trying to devirtualize: " << *AI.getInstruction());
|
|
|
|
// Devirtualize apply instructions that call witness_method instructions:
|
|
//
|
|
// %8 = witness_method $Optional<UInt16>, #LogicValue.boolValue!getter.1
|
|
// %9 = apply %8<Self = CodeUnit?>(%6#1) : ...
|
|
//
|
|
if (isa<WitnessMethodInst>(AI.getCallee()))
|
|
return tryDevirtualizeWitnessMethod(AI);
|
|
|
|
// TODO: check if we can also de-virtualize partial applies of class methods.
|
|
FullApplySite FAS = FullApplySite::isa(AI.getInstruction());
|
|
if (!FAS)
|
|
return std::make_pair(nullptr, ApplySite());
|
|
|
|
/// Optimize a class_method and alloc_ref pair into a direct function
|
|
/// reference:
|
|
///
|
|
/// \code
|
|
/// %XX = alloc_ref $Foo
|
|
/// %YY = class_method %XX : $Foo, #Foo.get!1 : $@convention(method)...
|
|
/// \endcode
|
|
///
|
|
/// or
|
|
///
|
|
/// %XX = metatype $...
|
|
/// %YY = class_method %XX : ...
|
|
///
|
|
/// into
|
|
///
|
|
/// %YY = function_ref @...
|
|
if (auto *CMI = dyn_cast<ClassMethodInst>(FAS.getCallee())) {
|
|
auto &M = FAS.getModule();
|
|
auto Instance = stripUpCasts(CMI->getOperand());
|
|
auto ClassType = Instance->getType();
|
|
if (ClassType.is<MetatypeType>())
|
|
ClassType = ClassType.getMetatypeInstanceType(M);
|
|
|
|
auto *CD = ClassType.getClassOrBoundGenericClass();
|
|
|
|
if (isEffectivelyFinalMethod(FAS, ClassType, CD, CHA))
|
|
return tryDevirtualizeClassMethod(FAS, Instance);
|
|
|
|
// Try to check if the exact dynamic type of the instance is statically
|
|
// known.
|
|
if (auto Instance = getInstanceWithExactDynamicType(CMI->getOperand(),
|
|
CMI->getModule(),
|
|
CHA))
|
|
return tryDevirtualizeClassMethod(FAS, Instance);
|
|
|
|
if (auto ExactTy = getExactDynamicType(CMI->getOperand(), CMI->getModule(),
|
|
CHA)) {
|
|
if (ExactTy == CMI->getOperand()->getType())
|
|
return tryDevirtualizeClassMethod(FAS, CMI->getOperand());
|
|
}
|
|
}
|
|
|
|
if (isa<SuperMethodInst>(FAS.getCallee())) {
|
|
if (FAS.hasSelfArgument()) {
|
|
return tryDevirtualizeClassMethod(FAS, FAS.getSelfArgument());
|
|
}
|
|
|
|
// It is an invocation of a class method.
|
|
// Last operand is the metatype that should be used for dispatching.
|
|
return tryDevirtualizeClassMethod(FAS, FAS.getArguments().back());
|
|
}
|
|
|
|
return std::make_pair(nullptr, ApplySite());
|
|
}
|
|
|
|
bool swift::canDevirtualizeApply(FullApplySite AI, ClassHierarchyAnalysis *CHA) {
|
|
DEBUG(llvm::dbgs() << " Trying to devirtualize: " << *AI.getInstruction());
|
|
|
|
// Devirtualize apply instructions that call witness_method instructions:
|
|
//
|
|
// %8 = witness_method $Optional<UInt16>, #LogicValue.boolValue!getter.1
|
|
// %9 = apply %8<Self = CodeUnit?>(%6#1) : ...
|
|
//
|
|
if (isa<WitnessMethodInst>(AI.getCallee()))
|
|
return canDevirtualizeWitnessMethod(AI);
|
|
|
|
/// Optimize a class_method and alloc_ref pair into a direct function
|
|
/// reference:
|
|
///
|
|
/// \code
|
|
/// %XX = alloc_ref $Foo
|
|
/// %YY = class_method %XX : $Foo, #Foo.get!1 : $@convention(method)...
|
|
/// \endcode
|
|
///
|
|
/// or
|
|
///
|
|
/// %XX = metatype $...
|
|
/// %YY = class_method %XX : ...
|
|
///
|
|
/// into
|
|
///
|
|
/// %YY = function_ref @...
|
|
if (auto *CMI = dyn_cast<ClassMethodInst>(AI.getCallee())) {
|
|
auto &M = AI.getModule();
|
|
auto Instance = stripUpCasts(CMI->getOperand());
|
|
auto ClassType = Instance->getType();
|
|
if (ClassType.is<MetatypeType>())
|
|
ClassType = ClassType.getMetatypeInstanceType(M);
|
|
|
|
auto *CD = ClassType.getClassOrBoundGenericClass();
|
|
|
|
if (isEffectivelyFinalMethod(AI, ClassType, CD, CHA))
|
|
return canDevirtualizeClassMethod(AI, Instance->getType());
|
|
|
|
// Try to check if the exact dynamic type of the instance is statically
|
|
// known.
|
|
if (auto Instance = getInstanceWithExactDynamicType(CMI->getOperand(),
|
|
CMI->getModule(),
|
|
CHA))
|
|
return canDevirtualizeClassMethod(AI, Instance->getType());
|
|
|
|
if (auto ExactTy = getExactDynamicType(CMI->getOperand(), CMI->getModule(),
|
|
CHA)) {
|
|
if (ExactTy == CMI->getOperand()->getType())
|
|
return canDevirtualizeClassMethod(AI, CMI->getOperand()->getType());
|
|
}
|
|
}
|
|
|
|
if (isa<SuperMethodInst>(AI.getCallee())) {
|
|
if (AI.hasSelfArgument()) {
|
|
return canDevirtualizeClassMethod(AI, AI.getSelfArgument()->getType());
|
|
}
|
|
|
|
// It is an invocation of a class method.
|
|
// Last operand is the metatype that should be used for dispatching.
|
|
return canDevirtualizeClassMethod(AI, AI.getArguments().back()->getType());
|
|
}
|
|
|
|
return false;
|
|
}
|