Files
swift-mirror/lib/SILOptimizer/Mandatory/OSLogOptimization.cpp
Ravi Kandhadai f2ec557619 [OSLogOptimization] Improve the replaceAndFixLifetimes function
of the OSLogOptimization pass. This commit contain two changes:
 - It handles non-OSSA better (but it is meant to be phased out) so
   that array and closure folding can be supported
 - It fixes a bug in the OSSA folding by making sure that when an
   owned value replaces a guaranteed value, the owned value is
   borrowed and the borrow is used in place of the guaranteed value.
2019-11-12 18:14:48 -08:00

1044 lines
43 KiB
C++

//===--- OSLogOptimizer.cpp - Optimizes calls to OS Log ===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This pass implements SIL-level optimizations and diagnostics for the
/// os log APIs based on string interpolations. The APIs are implemented
/// in the files: OSLogMessage.swift, OSLog.swift. This pass constant evaluates
/// the log calls along with the auto-generated calls to the custom string
/// interpolation methods, which processes the string interpolation
/// passed to the log calls, and folds the constants found during the
/// evaluation. The constants that are folded include the C format string that
/// is constructed by the custom string interpolation methods from the string
/// interpolation, and the size and headers of the byte buffer into which
/// arguments are packed. This pass is closely tied to the implementation of
/// the log APIs.
///
/// Pass Dependencies: This pass depends on MandatoryInlining and Mandatory
/// Linking happening before this pass and ConstantPropagation happening after
/// this pass. This pass also uses `ConstExprStepEvaluator` defined in
/// `Utils/ConstExpr.cpp`.
///
/// Algorithm Overview:
///
/// This pass implements a function-level transformation that collects calls
/// to the initializer of the custom string interpolation type: OSLogMessage,
/// which are annotated with an @_semantics attribute, and performs the
/// following steps on each such call.
///
/// 1. Determines the range of instructions to constant evaluate.
/// The range starts from the first SIL instruction that begins the
/// construction of the custom string interpolation type: OSLogMessage to
/// the last transitive users of OSLogMessage. The log call which is marked
/// as @_transparent will be inlined into the caller before this pass
/// begins.
///
/// 2. Constant evaluates the range of instruction identified in Step 1 and
/// collects string and integer-valued instructions who values were found
/// to be constants. The evaluation uses 'ConsExprStepEvaluator' utility.
///
/// 3. After constant evaluation, the string and integer-value properties
/// of the custom string interpolation type: `OSLogInterpolation` must be
/// constants. This property is checked and any violations are diagnosed.
/// The errors discovered here may arise from the implementation of the
/// log APIs in the overlay or could be because of wrong usage of the
/// log APIs.
/// TODO: these errors will be diagnosed by a separate, dedicated pass.
///
/// 4. The constant instructions that were found in step 2 are folded by
/// generating SIL code that produces the constants. This also removes
/// instructions that are dead after folding.
///
/// Code Overview:
///
/// The function 'OSLogOptimization::run' implements the overall driver for
/// steps 1 to 4. The function 'beginOfInterpolation' identifies the begining of
/// interpolation (step 1) and the function 'getEndPointsOfDataDependentChain'
/// identifies the last transitive users of the OSLogMessage instance (step 1).
/// The function 'constantFold' is a driver for the steps 2 to 4. Step 2 is
/// implemented by the function 'collectConstants', step 3 by
/// 'detectAndDiagnoseErrors' and 'checkOSLogMessageIsConstant', and step 4 by
/// 'substituteConstants' and 'emitCodeForSymbolicValue'. The remaining
/// functions in the file implement the subtasks and utilities needed by the
/// above functions.
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/OptimizationMode.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Demangling/Demangler.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILConstants.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/ConstExpr.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/BreadthFirstIterator.h"
#include "llvm/ADT/MapVector.h"
using namespace swift;
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&... args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
namespace {
/// If the given instruction is a call to the compiler-intrinsic initializer
/// of String that accepts string literals, return the called function.
/// Otherwise, return nullptr.
static SILFunction *getStringMakeUTF8Init(SILInstruction *inst) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply)
return nullptr;
SILFunction *callee = apply->getCalleeFunction();
if (!callee || !callee->hasSemanticsAttr("string.makeUTF8"))
return nullptr;
return callee;
}
// A cache of string-related, SIL information that is needed to create and
// initalize strings from raw string literals. This information is
// extracted from instructions while they are constant evaluated. Though the
// information contained here can be constructed from scratch, extracting it
// from existing instructions is more efficient.
class StringSILInfo {
/// SILFunction corresponding to an intrinsic string initializer that
/// constructs a Swift String from a string literal.
SILFunction *stringInitIntrinsic = nullptr;
/// SIL metatype of String.
SILType stringMetatype = SILType();
public:
/// Extract and cache the required string-related information from the
/// given instruction, if possible.
void extractStringInfoFromInstruction(SILInstruction *inst) {
// If the cache is already initialized do nothing.
if (stringInitIntrinsic)
return;
SILFunction *callee = getStringMakeUTF8Init(inst);
if (!callee)
return;
this->stringInitIntrinsic = callee;
MetatypeInst *stringMetatypeInst =
dyn_cast<MetatypeInst>(inst->getOperand(4)->getDefiningInstruction());
this->stringMetatype = stringMetatypeInst->getType();
}
SILFunction *getStringInitIntrinsic() const {
assert(stringInitIntrinsic);
return stringInitIntrinsic;
}
SILType getStringMetatype() const {
assert(stringMetatype);
return stringMetatype;
}
};
/// State needed for constant folding.
class FoldState {
public:
/// Storage for symbolic values constructed during interpretation.
SymbolicValueBumpAllocator allocator;
/// Evaluator for evaluating instructions one by one.
ConstExprStepEvaluator constantEvaluator;
/// Information needed for folding strings.
StringSILInfo stringInfo;
/// Instruction from where folding must begin.
SILInstruction *beginInstruction;
/// Instructions that mark the end points of constant evaluation.
SmallSetVector<SILInstruction *, 2> endInstructions;
private:
/// SIL values that were found to be constants during
/// constant evaluation.
SmallVector<SILValue, 4> constantSILValues;
public:
FoldState(SILFunction *fun, unsigned assertConfig, SILInstruction *beginInst,
ArrayRef<SILInstruction *> endInsts)
: constantEvaluator(allocator, fun, assertConfig),
beginInstruction(beginInst),
endInstructions(endInsts.begin(), endInsts.end()) {}
void addConstantSILValue(SILValue value) {
constantSILValues.push_back(value);
}
ArrayRef<SILValue> getConstantSILValues() {
return ArrayRef<SILValue>(constantSILValues);
}
};
/// Return true if and only if the given nominal type declaration is that of
/// a stdlib Int or stdlib Bool.
static bool isStdlibIntegerOrBoolDecl(NominalTypeDecl *numberDecl,
ASTContext &astCtx) {
return (numberDecl == astCtx.getIntDecl() ||
numberDecl == astCtx.getInt8Decl() ||
numberDecl == astCtx.getInt16Decl() ||
numberDecl == astCtx.getInt32Decl() ||
numberDecl == astCtx.getInt64Decl() ||
numberDecl == astCtx.getUIntDecl() ||
numberDecl == astCtx.getUInt8Decl() ||
numberDecl == astCtx.getUInt16Decl() ||
numberDecl == astCtx.getUInt32Decl() ||
numberDecl == astCtx.getUInt64Decl() ||
numberDecl == astCtx.getBoolDecl());
}
/// Return true if and only if the given SIL type represents a Stdlib or builtin
/// integer type or a Bool type.
static bool isIntegerOrBoolType(SILType silType, ASTContext &astContext) {
if (silType.is<BuiltinIntegerType>()) {
return true;
}
NominalTypeDecl *nominalDecl = silType.getNominalOrBoundGenericNominal();
return nominalDecl && isStdlibIntegerOrBoolDecl(nominalDecl, astContext);
}
/// Return true if and only if the given SIL type represents a String type.
static bool isStringType(SILType silType, ASTContext &astContext) {
NominalTypeDecl *nominalDecl = silType.getNominalOrBoundGenericNominal();
return nominalDecl && nominalDecl == astContext.getStringDecl();
}
/// Decide if the given instruction (which could possibly be a call) should
/// be constant evaluated.
///
/// \returns true iff the given instruction is not a call or if it is, it calls
/// a known constant-evaluable function such as string append etc., or calls
/// a function annotate as "constant_evaluable".
static bool shouldAttemptEvaluation(SILInstruction *inst) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply)
return true;
SILFunction *calleeFun = apply->getCalleeFunction();
if (!calleeFun)
return false;
return isKnownConstantEvaluableFunction(calleeFun) ||
isConstantEvaluable(calleeFun);
}
/// Skip or evaluate the given instruction based on the evaluation policy and
/// handle errors. The policy is to evaluate all non-apply instructions as well
/// as apply instructions that are marked as "constant_evaluable".
static std::pair<Optional<SILBasicBlock::iterator>, Optional<SymbolicValue>>
evaluateOrSkip(ConstExprStepEvaluator &stepEval,
SILBasicBlock::iterator instI) {
SILInstruction *inst = &(*instI);
// Note that skipping a call conservatively approximates its effects on the
// interpreter state.
if (shouldAttemptEvaluation(inst)) {
return stepEval.tryEvaluateOrElseMakeEffectsNonConstant(instI);
}
return stepEval.skipByMakingEffectsNonConstant(instI);
}
/// Return true iff the given value is a stdlib Int or Bool and it not a direct
/// construction of Int or Bool.
static bool isFoldableIntOrBool(SILValue value, SILInstruction *definingInst,
ASTContext &astContext) {
assert(definingInst);
return !isa<StructInst>(definingInst) &&
isIntegerOrBoolType(value->getType(), astContext);
}
/// Return true iff the given value is a string and is not an initialization
/// of an string from a string literal.
static bool isFoldableString(SILValue value, SILInstruction *definingInst,
ASTContext &astContext) {
assert(definingInst);
return isStringType(value->getType(), astContext) &&
!getStringMakeUTF8Init(definingInst);
}
/// Check whether a SILValue is foldable. String, integer, array and
/// function values are foldable with the following exceptions:
/// - Addresses cannot be folded.
/// - Literals need not be folded.
/// - Results of ownership instructions like load_borrow/copy_value need not
/// be folded
/// - Constructors such as \c struct Int or \c string.init() need not be folded.
static bool isSILValueFoldable(SILValue value) {
SILInstruction *definingInst = value->getDefiningInstruction();
if (!definingInst)
return false;
ASTContext &astContext = definingInst->getFunction()->getASTContext();
SILType silType = value->getType();
return (!silType.isAddress() && !isa<LiteralInst>(definingInst) &&
!isa<LoadBorrowInst>(definingInst) &&
!isa<BeginBorrowInst>(definingInst) &&
!isa<CopyValueInst>(definingInst) &&
(isFoldableIntOrBool(value, definingInst, astContext) ||
isFoldableString(value, definingInst, astContext)));
}
/// Diagnose failure during evaluation of a call to a constant-evaluable
/// function. Note that all auto-generated 'appendInterpolation' calls are
/// constant evaluable. This function detects and specially handles such
/// functions to present better diagnostic messages.
static void diagnoseErrorInConstantEvaluableFunction(ApplyInst *call,
SymbolicValue errorInfo) {
SILNode *unknownNode = errorInfo.getUnknownNode();
UnknownReason unknownReason = errorInfo.getUnknownReason();
SILFunction *callee = call->getCalleeFunction();
assert(callee);
SILLocation loc = call->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
ASTContext &astContext = callee->getASTContext();
std::string demangledCalleeName = Demangle::demangleSymbolAsString(
callee->getName(),
Demangle::DemangleOptions::SimplifiedUIDemangleOptions());
// If an 'appendInterpolation' evaluation failed, it is probably due to
// invalid privacy or format specifiers. These are the only possible errors
// that the users of the log API could make. The rest are for library authors
// or users who extend the log APIs.
if (unknownReason.getKind() == UnknownReason::CallArgumentUnknown &&
dyn_cast<ApplyInst>(unknownNode) == call) {
if (StringRef(demangledCalleeName)
.contains(astContext.Id_appendInterpolation.str())) {
// TODO: extract and report the label of the parameter that is not a
// constant.
diagnose(astContext, sourceLoc,
diag::oslog_non_const_interpolation_options);
return;
}
}
diagnose(astContext, sourceLoc, diag::oslog_const_evaluable_fun_error,
demangledCalleeName);
errorInfo.emitUnknownDiagnosticNotes(loc);
return;
}
/// Detect and emit diagnostics for errors found during evaluation. Errors
/// can happen due to incorrect implementation of the os log API in the
/// overlay or due to incorrect use of the os log API.
/// TODO: errors due to incorrect use of the API should be diagnosed by a
/// dedicated diagnostics pass that will happen before this optimization starts.
static bool detectAndDiagnoseErrors(SymbolicValue errorInfo,
SILInstruction *unevaluableInst) {
SILFunction *parentFun = unevaluableInst->getFunction();
ASTContext &astContext = parentFun->getASTContext();
// If evaluation of any other constant_evaluable function call fails, point
// to that failed function along with a reason: such as that a parameter is
// non-constant parameter or that body is not constant evaluable.
ApplyInst *call = dyn_cast<ApplyInst>(unevaluableInst);
if (call) {
SILFunction *callee = call->getCalleeFunction();
if (callee && isConstantEvaluable(callee)) {
diagnoseErrorInConstantEvaluableFunction(call, errorInfo);
return true; // abort evaluation.
}
}
// Every other error must happen in the body of the os_log function which
// is inlined in the 'parentFun' before this pass. In this case, if we have a
// fail-stop error, point to the error and abort evaluation. Otherwise, just
// ignore the error and continue evaluation as this error might not affect the
// constant value of the OSLogMessage instance.
if (isFailStopError(errorInfo)) {
assert(errorInfo.getKind() == SymbolicValue::Unknown);
SILLocation loc = unevaluableInst->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
diagnose(astContext, sourceLoc, diag::oslog_fail_stop_error);
errorInfo.emitUnknownDiagnosticNotes(loc);
return true;
}
return false;
}
/// Given a 'foldState', constant evaluate instructions from
/// 'foldState.beginInstruction' until an instruction in
/// 'foldState.endInstructions' is seen. Add foldable, constant-valued
/// instructions discovered during the evaluation to
/// 'foldState.constantSILValues'.
/// \returns error information if the evaluation failed.
static Optional<SymbolicValue> collectConstants(FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
SILBasicBlock::iterator currI = foldState.beginInstruction->getIterator();
auto &endInstructions = foldState.endInstructions;
// The loop will break when it sees a return instruction or an instruction in
// endInstructions.
while (true) {
SILInstruction *currInst = &(*currI);
if (endInstructions.count(currInst))
break;
// Initialize string info from this instruction if possible.
foldState.stringInfo.extractStringInfoFromInstruction(currInst);
Optional<SymbolicValue> errorInfo = None;
Optional<SILBasicBlock::iterator> nextI = None;
std::tie(nextI, errorInfo) = evaluateOrSkip(constantEvaluator, currI);
// If the evaluation of this instruction failed, check whether it should be
// diagnosed and reported. If so, abort evaluation. Otherwise, continue
// evaluation if possible as this error could be due to an instruction that
// doesn't affect the OSLogMessage value.
if (errorInfo && detectAndDiagnoseErrors(errorInfo.getValue(), currInst)) {
return errorInfo;
}
if (!nextI) {
// We cannnot find the next instruction to continue evaluation, and we
// haven't seen any reportable errors during evaluation. Therefore,
// consider this the end point of evaluation.
return None; // No error.
}
// Set the next instruction to continue evaluation from.
currI = nextI.getValue();
// If the instruction results are foldable and if we found a constant value
// for the results, record it.
for (SILValue instructionResult : currInst->getResults()) {
if (!isSILValueFoldable(instructionResult))
continue;
Optional<SymbolicValue> constantVal =
constantEvaluator.lookupConstValue(instructionResult);
if (constantVal.hasValue()) {
foldState.addConstantSILValue(instructionResult);
}
}
}
return None; // No error.
}
/// Generate SIL code that computes the constant given by the symbolic value
/// `symVal`. Note that strings and struct-typed constant values will require
/// multiple instructions to be emitted.
/// \param symVal symbolic value for which SIL code needs to be emitted.
/// \param expectedType the expected type of the instruction that would be
/// computing the symbolic value `symVal`. The type is accepted as a
/// parameter as some symbolic values like integer constants can inhabit more
/// than one type.
/// \param builder SILBuilder that provides the context for emitting the code
/// for the symbolic value
/// \param loc SILLocation to use in the emitted instructions.
/// \param stringInfo String.init and metatype information for generating code
/// for string literals.
static SILValue emitCodeForSymbolicValue(SymbolicValue symVal,
Type expectedType, SILBuilder &builder,
SILLocation &loc,
StringSILInfo &stringInfo) {
ASTContext &astContext = expectedType->getASTContext();
switch (symVal.getKind()) {
case SymbolicValue::String: {
assert(astContext.getStringDecl() ==
expectedType->getNominalOrBoundGenericNominal());
StringRef stringVal = symVal.getStringValue();
StringLiteralInst *stringLitInst = builder.createStringLiteral(
loc, stringVal, StringLiteralInst::Encoding::UTF8);
// Create a builtin word for the size of the string
IntegerLiteralInst *sizeInst = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), stringVal.size());
// Set isAscii to false.
IntegerLiteralInst *isAscii = builder.createIntegerLiteral(
loc, SILType::getBuiltinIntegerType(1, astContext), 0);
// Create a metatype inst.
MetatypeInst *metatypeInst =
builder.createMetatype(loc, stringInfo.getStringMetatype());
auto args = SmallVector<SILValue, 4>();
args.push_back(stringLitInst);
args.push_back(sizeInst);
args.push_back(isAscii);
args.push_back(metatypeInst);
FunctionRefInst *stringInitRef =
builder.createFunctionRef(loc, stringInfo.getStringInitIntrinsic());
ApplyInst *applyInst = builder.createApply(
loc, stringInitRef, SubstitutionMap(), ArrayRef<SILValue>(args), false);
return applyInst;
}
case SymbolicValue::Integer: { // Builtin integer types.
APInt resInt = symVal.getIntegerValue();
assert(expectedType->is<BuiltinIntegerType>());
SILType builtinIntType =
SILType::getPrimitiveObjectType(expectedType->getCanonicalType());
IntegerLiteralInst *intLiteralInst =
builder.createIntegerLiteral(loc, builtinIntType, resInt);
return intLiteralInst;
}
case SymbolicValue::Aggregate: {
// Support only stdlib integer or bool structs.
StructDecl *structDecl = expectedType->getStructOrBoundGenericStruct();
assert(structDecl);
assert(isStdlibIntegerOrBoolDecl(structDecl, astContext));
assert(symVal.getAggregateType()->isEqual(expectedType) &&
"aggregate symbolic value's type and expected type do not match");
VarDecl *propertyDecl = structDecl->getStoredProperties().front();
Type propertyType = expectedType->getTypeOfMember(
propertyDecl->getModuleContext(), propertyDecl);
SymbolicValue propertyVal = symVal.lookThroughSingleElementAggregates();
SILValue newPropertySIL = emitCodeForSymbolicValue(
propertyVal, propertyType, builder, loc, stringInfo);
// The lowered SIL type of an integer/bool type is just the primitive
// object type containing the Swift type.
SILType aggregateType =
SILType::getPrimitiveObjectType(expectedType->getCanonicalType());
StructInst *newStructInst = builder.createStruct(
loc, aggregateType, ArrayRef<SILValue>(newPropertySIL));
return newStructInst;
}
default: {
llvm_unreachable("Symbolic value kind is not supported");
}
}
}
/// Collect the end points of the instructions that are data dependent on \c
/// value. A instruction is data dependent on \c value if its result may
/// transitively depends on \c value. Note that data dependencies through
/// addresses are not tracked by this function.
///
/// \param value SILValue that is not an address.
/// \param fun SILFunction that defines \c value.
/// \param endUsers buffer for storing the found end points of the data
/// dependence chain.
static void
getEndPointsOfDataDependentChain(SILValue value, SILFunction *fun,
SmallVectorImpl<SILInstruction *> &endUsers) {
assert(!value->getType().isAddress());
// Collect the instructions that are data dependent on the value using a
// fix point iteration.
SmallPtrSet<SILInstruction *, 16> visitedUsers;
SmallVector<SILValue, 16> worklist;
worklist.push_back(value);
while (!worklist.empty()) {
SILValue currVal = worklist.pop_back_val();
for (Operand *use : currVal->getUses()) {
SILInstruction *user = use->getUser();
if (visitedUsers.count(user))
continue;
visitedUsers.insert(user);
llvm::copy(user->getResults(), std::back_inserter(worklist));
}
}
// At this point, visitedUsers have all the transitive, data-dependent uses.
// Compute the lifetime frontier of all the uses which are the instructions
// following the last uses. Every exit from the last uses will have a
// lifetime frontier.
SILInstruction *valueDefinition = value->getDefiningInstruction();
SILInstruction *def =
valueDefinition ? valueDefinition : &(value->getParentBlock()->front());
ValueLifetimeAnalysis lifetimeAnalysis =
ValueLifetimeAnalysis(def, SmallVector<SILInstruction *, 16>(
visitedUsers.begin(), visitedUsers.end()));
ValueLifetimeAnalysis::Frontier frontier;
bool hasCriticlEdges = lifetimeAnalysis.computeFrontier(
frontier, ValueLifetimeAnalysis::DontModifyCFG);
endUsers.append(frontier.begin(), frontier.end());
if (!hasCriticlEdges)
return;
// If there are some lifetime frontiers on the critical edges, take the
// first instruction of the target of the critical edge as the frontier. This
// will suffice as every exit from the visitedUsers must go through one of
// them.
for (auto edgeIndexPair : lifetimeAnalysis.getCriticalEdges()) {
SILBasicBlock *targetBB =
edgeIndexPair.first->getSuccessors()[edgeIndexPair.second];
endUsers.push_back(&targetBB->front());
}
}
/// Given an instruction \p inst, invoke the given clean-up function \p cleanup
/// on its lifetime frontier, which are instructions that follow the last use of
/// the results of \c inst. E.g. the clean-up function could destory/release
/// the function result.
static void
cleanupAtEndOfLifetime(SILInstruction *inst,
llvm::function_ref<void(SILInstruction *)> cleanup) {
ValueLifetimeAnalysis lifetimeAnalysis = ValueLifetimeAnalysis(inst);
ValueLifetimeAnalysis::Frontier frontier;
(void)lifetimeAnalysis.computeFrontier(
frontier, ValueLifetimeAnalysis::AllowToModifyCFG);
for (SILInstruction *lifetimeEndInst : frontier) {
cleanup(lifetimeEndInst);
}
}
/// Replace all uses of \c originalVal by \c foldedVal and adjust lifetimes of
/// original and folded values by emitting required destory/release instructions
/// at the right places. Note that this function does not remove any
/// instruction.
///
/// \param originalVal the SIL value that is replaced.
/// \param foldedVal the SIL value that replaces the \c originalVal.
/// \param fun the SIL function containing the \c foldedVal and \c originalVal
static void replaceAllUsesAndFixLifetimes(SILValue foldedVal,
SILValue originalVal,
SILFunction *fun) {
SILInstruction *originalInst = originalVal->getDefiningInstruction();
SILInstruction *foldedInst = foldedVal->getDefiningInstruction();
assert(originalInst &&
"cannot constant fold function or basic block parameter");
assert(!isa<TermInst>(originalInst) &&
"cannot constant fold a terminator instruction");
assert(foldedInst && "constant value does not have a defining instruction");
if (originalVal->getType().isTrivial(*fun)) {
assert(foldedVal->getType().isTrivial(*fun));
// Just replace originalVal by foldedVal.
originalVal->replaceAllUsesWith(foldedVal);
return;
}
assert(!foldedVal->getType().isTrivial(*fun));
if (!fun->hasOwnership()) {
// In non-ownership SIL, handle only folding of struct_extract instruction,
// which is the only important instruction that should be folded by this
// pass. The logic used here is not correct in general and overfits a
// specific form of SIL. This code should be removed once OSSA is enabled
// for this pass.
// TODO: this code can be safely removed once ownership SIL becomes the
// default SIL this pass works on.
assert(isa<StructExtractInst>(originalInst) &&
!originalVal->getType().isAddress());
// First, replace all uses of originalVal by foldedVal, and then adjust
// their lifetimes if necessary.
originalVal->replaceAllUsesWith(foldedVal);
unsigned retainCount = 0;
unsigned consumeCount = 0;
for (Operand *use : foldedVal->getUses()) {
SILInstruction *user = use->getUser();
if (isa<ReleaseValueInst>(user) || isa<StoreInst>(user))
consumeCount++;
if (isa<RetainValueInst>(user))
retainCount++;
// Note that there could other consuming operations but they are not
// handled here as this code should be phased out soon.
}
if (consumeCount > retainCount) {
// The original value was at +1 and therefore consumed at the end. Since
// the foldedVal is also at +1 there is nothing to be done.
return;
}
cleanupAtEndOfLifetime(foldedInst, [&](SILInstruction *lifetimeEndInst) {
SILBuilderWithScope builder(lifetimeEndInst);
builder.emitReleaseValue(lifetimeEndInst->getLoc(), foldedVal);
});
return;
}
assert(foldedVal.getOwnershipKind() == ValueOwnershipKind::Owned &&
"constant value must have owned ownership kind");
if (originalVal.getOwnershipKind() == ValueOwnershipKind::Owned) {
originalVal->replaceAllUsesWith(foldedVal);
// Destroy originalVal, which is now unused, immediately after its
// definition. Note that originalVal's destorys are now transferred to
// foldedVal.
SILInstruction *insertionPoint = &(*std::next(originalInst->getIterator()));
SILBuilderWithScope builder(insertionPoint);
SILLocation loc = insertionPoint->getLoc();
builder.emitDestroyValueOperation(loc, originalVal);
return;
}
// Here, originalVal is not owned. Hence, borrow form foldedVal and use the
// borrow in place of originalVal. Also, destroy foldedVal at the end of its
// lifetime.
assert(originalVal.getOwnershipKind() == ValueOwnershipKind::Guaranteed);
SILBuilderWithScope builder(&*std::next(foldedInst->getIterator()));
BeginBorrowInst *borrow =
builder.createBeginBorrow(foldedInst->getLoc(), foldedVal);
originalVal->replaceAllUsesWith(borrow);
cleanupAtEndOfLifetime(borrow, [&](SILInstruction *lifetimeEndInst) {
SILBuilderWithScope builder(lifetimeEndInst);
builder.createEndBorrow(lifetimeEndInst->getLoc(), borrow);
builder.emitDestroyValueOperation(lifetimeEndInst->getLoc(), foldedVal);
});
return;
}
/// Given a fold state with constant-valued instructions, substitute the
/// instructions with the constant values. The constant values could be strings
/// or Stdlib integer-struct values or builtin integers.
static void substituteConstants(FoldState &foldState) {
ConstExprStepEvaluator &evaluator = foldState.constantEvaluator;
// Instructions that are possibly dead since their results are folded.
SmallVector<SILInstruction *, 4> possiblyDeadInsts;
for (SILValue constantSILValue : foldState.getConstantSILValues()) {
SymbolicValue constantSymbolicVal =
evaluator.lookupConstValue(constantSILValue).getValue();
SILInstruction *definingInst = constantSILValue->getDefiningInstruction();
assert(definingInst);
SILFunction *fun = definingInst->getFunction();
// Do not attempt to fold anything but struct_extract in non-OSSA.
// TODO: this condition should be removed once migration OSSA is complete.
if (!fun->hasOwnership() && !isa<StructExtractInst>(definingInst))
continue;
SILBuilderWithScope builder(definingInst);
SILLocation loc = definingInst->getLoc();
CanType instType = constantSILValue->getType().getASTType();
SILValue foldedSILVal = emitCodeForSymbolicValue(
constantSymbolicVal, instType, builder, loc, foldState.stringInfo);
// Replace constantSILValue with foldedSILVal and adjust the lifetime and
// ownership of the values appropriately.
replaceAllUsesAndFixLifetimes(foldedSILVal, constantSILValue, fun);
possiblyDeadInsts.push_back(definingInst);
}
recursivelyDeleteTriviallyDeadInstructions(possiblyDeadInsts, /*force*/ false,
[&](SILInstruction *DeadI) {});
}
/// Check whether OSLogMessage and OSLogInterpolation instances and all their
/// stored properties are constants. If not, it indicates errors that are due to
/// incorrect implementation OSLogMessage either in the overlay or in the
/// extensions created by users. Detect and emit diagnostics for such errors.
/// The diagnostics here are for os log library authors.
static bool checkOSLogMessageIsConstant(SingleValueInstruction *osLogMessage,
FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
SILLocation loc = osLogMessage->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
SILFunction *fn = osLogMessage->getFunction();
SILModule &module = fn->getModule();
ASTContext &astContext = fn->getASTContext();
Optional<SymbolicValue> osLogMessageValueOpt =
constantEvaluator.lookupConstValue(osLogMessage);
if (!osLogMessageValueOpt ||
osLogMessageValueOpt->getKind() != SymbolicValue::Aggregate) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_message);
return true;
}
// The first (and only) property of OSLogMessage is the OSLogInterpolation
// instance.
SymbolicValue osLogInterpolationValue =
osLogMessageValueOpt->getAggregateMembers()[0];
if (!osLogInterpolationValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_interpolation);
return true;
}
// Check if every proprety of the OSLogInterpolation instance has a constant
// value.
SILType osLogMessageType = osLogMessage->getType();
StructDecl *structDecl = osLogMessageType.getStructOrBoundGenericStruct();
assert(structDecl);
auto typeExpansionContext =
TypeExpansionContext(*osLogMessage->getFunction());
VarDecl *interpolationPropDecl = structDecl->getStoredProperties().front();
SILType osLogInterpolationType = osLogMessageType.getFieldType(
interpolationPropDecl, module, typeExpansionContext);
StructDecl *interpolationStruct =
osLogInterpolationType.getStructOrBoundGenericStruct();
assert(interpolationStruct);
auto propertyDecls = interpolationStruct->getStoredProperties();
ArrayRef<SymbolicValue> propertyValues =
osLogInterpolationValue.getAggregateMembers();
auto propValueI = propertyValues.begin();
bool errorDetected = false;
for (auto *propDecl : propertyDecls) {
SymbolicValue propertyValue = *(propValueI++);
if (!propertyValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_property_not_constant,
propDecl->getNameStr());
errorDetected = true;
break;
}
}
return errorDetected;
}
/// Constant evaluate instructions starting from 'start' and fold the uses
/// of the value 'oslogMessage'. Stop when oslogMessageValue is released.
static void constantFold(SILInstruction *start,
SingleValueInstruction *oslogMessage,
unsigned assertConfig) {
SILFunction *fun = start->getFunction();
// Initialize fold state.
SmallVector<SILInstruction *, 2> endUsersOfOSLogMessage;
getEndPointsOfDataDependentChain(oslogMessage, fun, endUsersOfOSLogMessage);
assert(!endUsersOfOSLogMessage.empty());
FoldState state(fun, assertConfig, start, endUsersOfOSLogMessage);
auto errorInfo = collectConstants(state);
if (errorInfo) // Evaluation failed with diagnostics.
return;
// At this point, the `OSLogMessage` instance should be mapped to a constant
// value in the interpreter state. If this is not the case, it means the
// overlay implementation of OSLogMessage (or its extensions by users) are
// incorrect. Detect and diagnose this scenario.
bool errorDetected = checkOSLogMessageIsConstant(oslogMessage, state);
if (errorDetected)
return;
substituteConstants(state);
}
/// Given a call to the initializer of OSLogMessage, which conforms to
/// 'ExpressibleByStringInterpolation', find the first instruction, if any, that
/// marks the begining of the string interpolation that is used to create an
/// OSLogMessage instance. This function traverses the backward data-dependence
/// chain of the given OSLogMessage initializer: \p oslogInit. As a special case
/// it avoid chasing the data-dependenceies through a partial-apply as they are
/// considered as constants.
static SILInstruction *beginOfInterpolation(ApplyInst *oslogInit) {
auto oslogInitCallSite = FullApplySite(oslogInit);
SILFunction *callee = oslogInitCallSite.getCalleeFunction();
assert (callee->hasSemanticsAttrThatStartsWith("oslog.message.init"));
// The initializer must return the OSLogMessage instance directly.
assert(oslogInitCallSite.getNumArguments() >= 1 &&
oslogInitCallSite.getNumIndirectSILResults() == 0);
// List of backward dependencies that needs to be analyzed.
SmallVector<SILInstruction *, 4> worklist = { oslogInit };
SmallPtrSet<SILInstruction *, 4> seenInstructions = { oslogInit };
// List of instructions that could potentially mark the beginning of the
// interpolation.
SmallPtrSet<SILInstruction *, 4> candidateStartInstructions;
unsigned i = 0;
while (i < worklist.size()) {
SILInstruction *inst = worklist[i++];
if (isa<PartialApplyInst>(inst)) {
// Partial applies are used to capture the dynamic arguments passed to
// the string interpolation. Their arguments are not required to be
// known at compile time and they need not be constant evaluated.
// Therefore, do not follow this dependency chain.
continue;
}
for (Operand &operand : inst->getAllOperands()) {
if (SILInstruction *definingInstruction =
operand.get()->getDefiningInstruction()) {
if (seenInstructions.count(definingInstruction))
continue;
worklist.push_back(definingInstruction);
seenInstructions.insert(definingInstruction);
candidateStartInstructions.insert(definingInstruction);
}
// If there is no definining instruction for this operand, it could be a
// basic block or function parameter. Such operands are not considered
// in the backward slice. Dependencies through them are safe to ignore
// in this context.
}
// If the instruction: `inst` has an operand, its definition should precede
// `inst` in the control-flow order. Therefore, remove `inst` from the
// candidate start instructions.
if (inst->getNumOperands() > 0) {
candidateStartInstructions.erase(inst);
}
if (!isa<AllocStackInst>(inst)) {
continue;
}
// If we have an alloc_stack instruction, include stores into it into the
// backward dependency list. However, whether alloc_stack precedes the
// definitions of values stored into the location in the control-flow order
// can only be determined by traversing the instrutions in the control-flow
// order.
AllocStackInst *allocStackInst = cast<AllocStackInst>(inst);
for (StoreInst *storeInst : allocStackInst->getUsersOfType<StoreInst>()) {
worklist.push_back(storeInst);
candidateStartInstructions.insert(storeInst);
}
}
// Find the first basic block in the control-flow order. Typically, if
// formatting and privacy options are literals, all candidate instructions
// must be in the same basic block. But, this code doesn't rely on that
// assumption.
SmallPtrSet<SILBasicBlock *, 4> candidateBBs;
for (auto *candidate: candidateStartInstructions) {
SILBasicBlock *candidateBB = candidate->getParent();
candidateBBs.insert(candidateBB);
}
SILBasicBlock *firstBB = nullptr;
SILBasicBlock *entryBB = oslogInit->getFunction()->getEntryBlock();
for (SILBasicBlock *bb: llvm::breadth_first<SILBasicBlock *>(entryBB)) {
if (candidateBBs.count(bb)) {
firstBB = bb;
break;
}
}
assert(firstBB);
// Iterate over the instructions in the firstBB and find the instruction that
// starts the interpolation.
SILInstruction *startInst = nullptr;
for (SILInstruction &inst : *firstBB) {
if (candidateStartInstructions.count(&inst)) {
startInst = &inst;
break;
}
}
assert(startInst);
return startInst;
}
/// If the SILInstruction is an initialization of OSLogMessage, return the
/// initialization call as an ApplyInst. Otherwise, return nullptr.
static ApplyInst *getAsOSLogMessageInit(SILInstruction *inst) {
auto *applyInst = dyn_cast<ApplyInst>(inst);
if (!applyInst) {
return nullptr;
}
SILFunction *callee = applyInst->getCalleeFunction();
if (!callee ||
!callee->hasSemanticsAttrThatStartsWith("oslog.message.init")) {
return nullptr;
}
// Default argument generators created for a function also inherit
// the semantics attribute of the function. Therefore, check that there are
// at least two operands for this apply instruction.
if (applyInst->getNumOperands() > 1) {
return applyInst;
}
return nullptr;
}
/// Return true iff the SIL function \c fun is a method of the \c OSLogMessage
/// type.
bool isMethodOfOSLogMessage(SILFunction &fun) {
DeclContext *declContext = fun.getDeclContext();
if (!declContext)
return false;
Decl *decl = declContext->getAsDecl();
if (!decl)
return false;
ConstructorDecl *ctor = dyn_cast<ConstructorDecl>(decl);
if (!ctor)
return false;
DeclContext *parentContext = ctor->getParent();
if (!parentContext)
return false;
NominalTypeDecl *typeDecl = parentContext->getSelfNominalTypeDecl();
if (!typeDecl)
return false;
return typeDecl->getName() == fun.getASTContext().Id_OSLogMessage;
}
class OSLogOptimization : public SILFunctionTransform {
~OSLogOptimization() override {}
/// The entry point to the transformation.
void run() override {
auto &fun = *getFunction();
unsigned assertConfig = getOptions().AssertConfig;
// Don't rerun optimization on deserialized functions or stdlib functions.
if (fun.wasDeserializedCanonical()) {
return;
}
// Skip methods of OSLogMessage type. This avoid unnecessary work and also
// avoids falsely diagnosing the auto-generated (transparent) witness method
// of OSLogMessage, which ends up invoking the OSLogMessage initializer:
// "oslog.message.init_interpolation" without an interpolated string
// literal that is expected by this pass.
if (isMethodOfOSLogMessage(fun)) {
return;
}
// Collect all 'OSLogMessage.init' in the function. 'OSLogMessage' is a
// custom string interpolation type used by the new OS log APIs.
SmallVector<ApplyInst *, 4> oslogMessageInits;
for (auto &bb : fun) {
for (auto &inst : bb) {
auto init = getAsOSLogMessageInit(&inst);
if (!init)
continue;
oslogMessageInits.push_back(init);
}
}
// Constant fold the uses of properties of OSLogMessage instance. Note that
// the function body will change due to constant folding, after each
// iteration.
for (auto *oslogInit : oslogMessageInits) {
SILInstruction *interpolationStart = beginOfInterpolation(oslogInit);
assert(interpolationStart);
constantFold(interpolationStart, oslogInit, assertConfig);
}
}
};
} // end anonymous namespace
SILTransform *swift::createOSLogOptimization() {
return new OSLogOptimization();
}