Files
swift-mirror/lib/Parse/ParseDecl.cpp
Dmitri Hrybenko f8026519f4 Parser: don't set 'Invalid' bit on SubscriptDecls too eagerly.
This makes the typechecker skip the decl completely, and it does not set types
on parameter patterns (not even to ErrorType).  In fact, in the problematic
case the type checker can cope with the decl just fine, so don't set the
Invalid bit.

This fixes a crash in code completion when it encounters such a decl,
rdar://16132349


Swift SVN r14459
2014-02-27 13:57:54 +00:00

3227 lines
105 KiB
C++

//===--- ParseDecl.cpp - Swift Language Parser for Declarations -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Declaration Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/Parse/CodeCompletionCallbacks.h"
#include "swift/Parse/DelayedParsingCallbacks.h"
#include "swift/Parse/Lexer.h"
#include "swift/Subsystems.h"
#include "swift/AST/Attr.h"
#include "swift/AST/DiagnosticsParse.h"
#include "swift/Basic/Fallthrough.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include <algorithm>
using namespace swift;
/// \brief Build an implicit 'self' parameter for the specified DeclContext.
static Pattern *buildImplicitSelfParameter(SourceLoc Loc,
DeclContext *CurDeclContext,
VarDecl **SelfDeclRet = nullptr) {
ASTContext &Ctx = CurDeclContext->getASTContext();
auto *SelfDecl = new (Ctx) VarDecl(/*static*/ false, /*IsLet*/ true,
Loc, Ctx.Id_self,
Type(), CurDeclContext);
// FIXME: Remove SelfDeclRet when we don't need it anymore.
if (SelfDeclRet)
*SelfDeclRet = SelfDecl;
SelfDecl->setImplicit();
Pattern *P = new (Ctx) NamedPattern(SelfDecl, /*Implicit=*/true);
return new (Ctx) TypedPattern(P, TypeLoc());
}
/// \brief Main entrypoint for the parser.
///
/// \verbatim
/// top-level:
/// stmt-brace-item*
/// decl-sil [[only in SIL mode]
/// decl-sil-stage [[only in SIL mode]
/// \endverbatim
bool Parser::parseTopLevel() {
SF.ASTStage = SourceFile::Parsing;
// Prime the lexer.
if (Tok.is(tok::NUM_TOKENS))
consumeToken();
CurDeclContext = &SF;
// Parse the body of the file.
SmallVector<ASTNode, 128> Items;
skipExtraTopLevelRBraces();
// If we are in SIL mode, and if the first token is the start of a sil
// declaration, parse that one SIL function and return to the top level. This
// allows type declarations and other things to be parsed, name bound, and
// type checked in batches, similar to immediate mode. This also enforces
// that SIL bodies can only be at the top level.
if (Tok.is(tok::kw_sil)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseDeclSIL();
} else if (Tok.is(tok::kw_sil_stage)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseDeclSILStage();
} else if (Tok.is(tok::kw_sil_vtable)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseSILVTable();
} else if (Tok.is(tok::kw_sil_global)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseSILGlobal();
} else if (Tok.is(tok::kw_sil_witness_table)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseSILWitnessTable();
} else {
parseBraceItems(Items,
allowTopLevelCode() ? BraceItemListKind::TopLevelCode
: BraceItemListKind::TopLevelLibrary);
}
// If this is a Main source file, determine if we found code that needs to be
// executed (this is used by the repl to know whether to compile and run the
// newly parsed stuff).
bool FoundTopLevelCodeToExecute = false;
if (allowTopLevelCode()) {
for (auto V : Items)
if (isa<TopLevelCodeDecl>(V.get<Decl*>()))
FoundTopLevelCodeToExecute = true;
}
// Add newly parsed decls to the module.
for (auto Item : Items)
if (Decl *D = Item.dyn_cast<Decl*>())
SF.Decls.push_back(D);
// Note that the source file is fully parsed and verify it.
SF.ASTStage = SourceFile::Parsed;
verify(SF);
// Next time start relexing from the beginning of the comment so that we can
// attach it to the token.
State->markParserPosition(Tok.getCommentRange().getStart(), PreviousLoc);
return FoundTopLevelCodeToExecute;
}
bool Parser::skipExtraTopLevelRBraces() {
if (!Tok.is(tok::r_brace))
return false;
while (Tok.is(tok::r_brace)) {
diagnose(Tok, diag::extra_rbrace)
.fixItRemove(Tok.getLoc());
consumeToken();
}
return true;
}
/// getTypeAttrFromString - If the specified string is a valid type attribute,
/// return the kind. Otherwise, return TAK_Count as a sentinel.
static TypeAttrKind getTypeAttrFromString(StringRef Str) {
return llvm::StringSwitch<TypeAttrKind>(Str)
#define TYPE_ATTR(X) .Case(#X, TAK_##X)
#include "swift/AST/Attr.def"
.Default(TAK_Count);
}
/// \verbatim
/// attribute:
/// 'asmname' '=' identifier
/// 'infix' '=' numeric_constant
/// 'unary'
/// 'stdlib'
/// 'weak'
/// 'inout'
/// 'unowned'
/// 'noreturn'
/// 'optional'
/// '!'? 'mutating'
/// 'requires_stored_property_inits'
/// \endverbatim
bool Parser::parseDeclAttribute(DeclAttributes &Attributes) {
SourceLoc InversionLoc = Tok.getLoc();
bool isInverted = consumeIf(tok::exclaim_postfix);
// If this not an identifier, the attribute is malformed.
if (Tok.isNot(tok::identifier) &&
Tok.isNot(tok::kw_in) &&
Tok.isNot(tok::kw_weak) &&
Tok.isNot(tok::kw_unowned)) {
diagnose(Tok, diag::expected_attribute_name);
return true;
}
// Determine which attribute it is, and diagnose it if unknown.
AttrKind attr = llvm::StringSwitch<AttrKind>(Tok.getText())
#define ATTR(X) .Case(#X, AK_##X)
#define VIRTUAL_ATTR(X)
#include "swift/AST/Attr.def"
.Default(AK_Count);
if (attr == AK_Count) {
if (getTypeAttrFromString(Tok.getText()) != TAK_Count)
diagnose(Tok, diag::type_attribute_applied_to_decl);
else
diagnose(Tok, diag::unknown_attribute, Tok.getText());
// Recover by eating @foo when foo is not known.
consumeToken();
// Recovery by eating "@foo=bar" if present.
if (consumeIf(tok::equal)) {
if (Tok.is(tok::identifier) ||
Tok.is(tok::integer_literal) ||
Tok.is(tok::floating_literal))
consumeToken();
}
return true;
}
// Ok, it is a valid attribute, eat it, and then process it.
SourceLoc Loc = consumeToken();
// Diagnose duplicated attributes.
if (Attributes.has(attr)) {
diagnose(Loc, diag::duplicate_attribute);
return false;
}
Attributes.setAttr(attr, Loc);
// If this is an inverted attribute like "@!mutating", verify that inversion
// is ok.
if (isInverted) {
if (attr == AK_mutating) {
Attributes.MutatingInverted = true;
} else {
diagnose(InversionLoc, diag::invalid_attribute_inversion);
isInverted = false;
}
}
// Handle any attribute-specific processing logic.
switch (attr) {
default: break;
// Ownership attributes.
case AK_weak:
case AK_unowned:
// Test for duplicate entries by temporarily removing this one.
Attributes.clearAttribute(attr);
if (Attributes.hasOwnership()) {
diagnose(Loc, diag::duplicate_attribute);
break;
}
Attributes.setAttr(attr, Loc);
break;
// Resilience attributes.
case AK_resilient:
case AK_fragile:
case AK_born_fragile:
// Test for duplicate entries by temporarily removing this one.
Attributes.clearAttribute(attr);
if (Attributes.getResilienceKind() != Resilience::Default) {
diagnose(Loc, diag::duplicate_attribute);
break;
}
Attributes.setAttr(attr, Loc);
break;
case AK_prefix:
if (Attributes.isPostfix()) {
diagnose(Loc, diag::cannot_combine_attribute, "postfix");
Attributes.clearAttribute(attr);
}
break;
case AK_postfix:
if (Attributes.isPrefix()) {
diagnose(Loc, diag::cannot_combine_attribute, "prefix");
Attributes.clearAttribute(attr);
}
break;
case AK_asmname: {
if (!consumeIf(tok::equal)) {
diagnose(Loc, diag::asmname_expected_equals);
Attributes.clearAttribute(attr);
return false;
}
if (Tok.isNot(tok::string_literal)) {
diagnose(Loc, diag::asmname_expected_string_literal);
Attributes.clearAttribute(attr);
return false;
}
SmallVector<Lexer::StringSegment, 1> Segments;
L->getStringLiteralSegments(Tok, Segments);
if (Segments.size() != 1 ||
Segments.front().Kind == Lexer::StringSegment::Expr) {
diagnose(Loc, diag::asmname_interpolated_string);
Attributes.clearAttribute(attr);
} else {
Attributes.AsmName = StringRef(
SourceMgr->getMemoryBuffer(BufferID)->getBufferStart() +
SourceMgr.getLocOffsetInBuffer(Segments.front().Loc, BufferID),
Segments.front().Length);
}
consumeToken(tok::string_literal);
break;
}
}
return false;
}
/// \verbatim
/// attribute-type:
/// 'noreturn'
/// \endverbatim
bool Parser::parseTypeAttribute(TypeAttributes &Attributes) {
// If this not an identifier, the attribute is malformed.
if (Tok.isNot(tok::identifier) && !Tok.is(tok::kw_in)) {
diagnose(Tok, diag::expected_attribute_name);
return true;
}
// Determine which attribute it is, and diagnose it if unknown.
TypeAttrKind attr = getTypeAttrFromString(Tok.getText());
if (attr == TAK_Count) {
StringRef Text = Tok.getText();
bool isDeclAttribute = false
#define ATTR(X) || Text == #X
#define VIRTUAL_ATTR(X)
#include "swift/AST/Attr.def"
;
if (isDeclAttribute)
diagnose(Tok, diag::decl_attribute_applied_to_type);
else
diagnose(Tok, diag::unknown_attribute, Tok.getText());
// Recover by eating @foo when foo is not known.
consumeToken();
// Recovery by eating "@foo=bar" if present.
if (consumeIf(tok::equal)) {
if (Tok.is(tok::identifier) ||
Tok.is(tok::integer_literal) ||
Tok.is(tok::floating_literal))
consumeToken();
}
return true;
}
// Ok, it is a valid attribute, eat it, and then process it.
StringRef Text = Tok.getText();
SourceLoc Loc = consumeToken();
// Diagnose duplicated attributes.
if (Attributes.has(attr))
diagnose(Loc, diag::duplicate_attribute);
else
Attributes.setAttr(attr, Loc);
// Handle any attribute-specific processing logic.
switch (attr) {
default: break;
case TAK_local_storage:
case TAK_sil_self:
case TAK_out:
case TAK_in:
case TAK_owned:
case TAK_guaranteed:
case TAK_autoreleased:
case TAK_callee_owned:
case TAK_callee_guaranteed:
case TAK_objc_metatype:
if (!isInSILMode()) {
diagnose(Loc, diag::only_allowed_in_sil, Text);
Attributes.clearAttribute(attr);
}
break;
// Ownership attributes.
case TAK_sil_weak:
case TAK_sil_unowned:
Attributes.clearAttribute(attr);
if (!isInSILMode()) {
diagnose(Loc, diag::only_allowed_in_sil, "local_storage");
return false;
}
if (Attributes.hasOwnership()) {
diagnose(Loc, diag::duplicate_attribute);
break;
}
Attributes.setAttr(attr, Loc);
break;
// 'inout' attribute.
case TAK_inout:
if (!isInSILMode()) {
diagnose(Loc, diag::inout_not_attribute);
return false;
}
break;
case TAK_opened: {
// Parse the opened existential ID in parents
SourceLoc beginLoc = Tok.getLoc(), idLoc, endLoc;
Attributes.setAttr(TAK_opened, beginLoc);
if (consumeIfNotAtStartOfLine(tok::l_paren)) {
if (Tok.is(tok::integer_literal)) {
unsigned openedID = 0;
idLoc = Tok.getLoc();
if (Tok.getText().getAsInteger(0, openedID)) {
diagnose(Tok, diag::opened_attribute_id_value);
} else {
Attributes.OpenedID = openedID;
}
consumeToken();
} else {
diagnose(Tok, diag::opened_attribute_id_value);
}
parseMatchingToken(tok::r_paren, endLoc,
diag::opened_attribute_expected_rparen,
beginLoc);
} else {
diagnose(Tok, diag::opened_attribute_expected_lparen);
}
if (!isInSILMode()) {
diagnose(Loc, diag::only_allowed_in_sil, "opened");
Attributes.clearAttribute(TAK_opened);
}
break;
}
// 'cc' attribute.
case TAK_cc: {
// Parse the cc name in parens.
SourceLoc beginLoc = Tok.getLoc(), nameLoc, endLoc;
StringRef name;
if (consumeIfNotAtStartOfLine(tok::l_paren)) {
if (Tok.is(tok::identifier)) {
nameLoc = Tok.getLoc();
name = Tok.getText();
consumeToken();
} else {
diagnose(Tok, diag::cc_attribute_expected_name);
}
parseMatchingToken(tok::r_paren, endLoc,
diag::cc_attribute_expected_rparen,
beginLoc);
} else {
diagnose(Tok, diag::cc_attribute_expected_lparen);
}
if (!name.empty()) {
Attributes.cc = llvm::StringSwitch<Optional<AbstractCC>>(name)
.Case("freestanding", AbstractCC::Freestanding)
.Case("method", AbstractCC::Method)
.Case("cdecl", AbstractCC::C)
.Case("objc_method", AbstractCC::ObjCMethod)
.Case("witness_method", AbstractCC::WitnessMethod)
.Default(Nothing);
if (!Attributes.cc) {
diagnose(nameLoc, diag::cc_attribute_unknown_cc_name, name);
Attributes.clearAttribute(attr);
}
}
return false;
}
}
return false;
}
/// \brief This is the internal implementation of \c parseDeclAttributeList,
/// which we expect to be inlined to handle the common case of an absent
/// attribute list.
///
/// \verbatim
/// attribute-list:
/// /*empty*/
/// attribute-list-clause attribute-list
/// attribute-list-clause:
/// '@' attribute
/// '@' attribute ','? attribute-list-clause
/// \endverbatim
bool Parser::parseDeclAttributeListPresent(DeclAttributes &Attributes) {
Attributes.AtLoc = Tok.getLoc();
do {
if (parseToken(tok::at_sign, diag::expected_in_attribute_list) ||
parseDeclAttribute(Attributes))
return true;
// Attribute lists allow, but don't require, separating commas.
} while (Tok.is(tok::at_sign) || consumeIf(tok::comma));
return false;
}
/// \brief This is the internal implementation of \c parseTypeAttributeList,
/// which we expect to be inlined to handle the common case of an absent
/// attribute list.
///
/// \verbatim
/// attribute-list:
/// /*empty*/
/// attribute-list-clause attribute-list
/// attribute-list-clause:
/// '@' attribute
/// '@' attribute ','? attribute-list-clause
/// \endverbatim
bool Parser::parseTypeAttributeListPresent(TypeAttributes &Attributes) {
Attributes.AtLoc = Tok.getLoc();
do {
if (parseToken(tok::at_sign, diag::expected_in_attribute_list) ||
parseTypeAttribute(Attributes))
return true;
// Attribute lists don't require separating commas.
} while (Tok.is(tok::at_sign) || consumeIf(tok::comma));
return false;
}
static bool isStartOfOperatorDecl(const Token &Tok, const Token &Tok2) {
return Tok.isContextualKeyword("operator")
&& (Tok2.isContextualKeyword("prefix")
|| Tok2.isContextualKeyword("postfix")
|| Tok2.isContextualKeyword("infix"));
}
static bool isStartOfModifiedDecl(const Token &Tok, const Token &Tok2,
bool &IsMutating) {
if (Tok.is(tok::kw_static)) {
IsMutating = false;
// Declarations beginning with 'static' are always modified decls.
return true;
}
if (Tok.is(tok::kw_class)) {
IsMutating = false;
// By looking at 'Tok' only, we don't know yet if it is a class function or
// property, or a class decl.
} else if (Tok.isContextualKeyword("mutating"))
IsMutating = true;
else
return false;
return
(Tok2.is(tok::kw_func) || Tok2.is(tok::kw_let) || Tok2.is(tok::kw_var) ||
Tok2.is(tok::kw_init) || Tok2.is(tok::kw_destructor) ||
Tok2.is(tok::kw_deinit) ||
Tok2.is(tok::kw_subscript) || Tok2.is(tok::kw_struct) ||
Tok2.is(tok::kw_enum) || Tok2.is(tok::kw_class) ||
Tok2.is(tok::kw_protocol) || Tok2.is(tok::kw_typealias));
}
/// isStartOfDecl - Return true if this is the start of a decl or decl-import.
bool Parser::isStartOfDecl(const Token &Tok, const Token &Tok2) {
switch (Tok.getKind()) {
case tok::at_sign:
case tok::kw_static:
case tok::kw_extension:
case tok::kw_let:
case tok::kw_var:
case tok::kw_typealias:
case tok::kw_enum:
case tok::kw_case:
case tok::kw_struct:
case tok::kw_class:
case tok::kw_import:
case tok::kw_subscript:
case tok::kw_init:
case tok::kw_deinit:
case tok::kw_destructor:
case tok::kw_func:
case tok::pound_if:
return true;
case tok::kw_protocol:
return !Tok2.isAnyOperator() || !Tok2.getText().equals("<");
default:
if (isStartOfOperatorDecl(Tok, Tok2)) return true;
bool isMutating = false;
return isStartOfModifiedDecl(Tok, Tok2, isMutating);
}
}
void Parser::consumeDecl(ParserPosition BeginParserPosition,
ParseDeclOptions Flags,
bool IsTopLevel) {
backtrackToPosition(BeginParserPosition);
SourceLoc BeginLoc = Tok.getLoc();
// Consume tokens up to code completion token.
while (Tok.isNot(tok::code_complete))
consumeToken();
// Consume the code completion token, if there is one.
consumeIf(tok::code_complete);
SourceLoc EndLoc = Tok.getLoc();
State->delayDecl(PersistentParserState::DelayedDeclKind::Decl, Flags.toRaw(),
CurDeclContext, { BeginLoc, EndLoc },
BeginParserPosition.PreviousLoc);
if (IsTopLevel) {
// Skip the rest of the file to prevent the parser from constructing the
// AST for it. Forward references are not allowed at the top level.
skipUntil(tok::eof);
}
}
void Parser::setLocalDiscriminator(ValueDecl *D) {
// If we're not in a local context, this is unnecessary.
if (!CurLocalContext || !D->getDeclContext()->isLocalContext())
return;
Identifier name = D->getName();
unsigned discriminator = CurLocalContext->claimNextNamedDiscriminator(name);
D->setLocalDiscriminator(discriminator);
}
/// \brief Parse a single syntactic declaration and return a list of decl
/// ASTs. This can return multiple results for var decls that bind to multiple
/// values, structs that define a struct decl and a constructor, etc.
///
/// \verbatim
/// decl:
/// decl-typealias
/// decl-extension
/// decl-let
/// decl-var
/// decl-class
/// decl-func
/// decl-enum
/// decl-struct
/// decl-import
/// decl-operator
/// \endverbatim
ParserStatus Parser::parseDecl(SmallVectorImpl<Decl*> &Entries,
ParseDeclOptions Flags) {
ParserPosition BeginParserPosition;
if (isCodeCompletionFirstPass())
BeginParserPosition = getParserPosition();
// Note that we're parsing a declaration.
StructureMarkerRAII ParsingDecl(*this, Tok.getLoc(),
StructureMarkerKind::Declaration);
DeclAttributes Attributes;
if (Tok.hasComment()) {
Attributes.CommentRange = Tok.getCommentRange();
Attributes.setAttr(AK_raw_doc_comment, SourceLoc());
}
parseDeclAttributeList(Attributes);
// If we see the 'static', 'class' or 'mutating' followed by a declaration
// keyword, parse it now.
SourceLoc StaticLoc, MutatingLoc;
bool UnhandledStatic = false, UnhandledMutating = false;
StaticSpellingKind StaticSpelling = StaticSpellingKind::None;
bool IsMutating = false;
if (isStartOfModifiedDecl(Tok, peekToken(), IsMutating)) {
if (IsMutating) {
MutatingLoc = consumeToken(tok::identifier);
UnhandledMutating = true;
} else {
assert(Tok.is(tok::kw_static) || Tok.is(tok::kw_class));
if (Tok.is(tok::kw_static))
StaticSpelling = StaticSpellingKind::KeywordStatic;
else
StaticSpelling = StaticSpellingKind::KeywordClass;
StaticLoc = consumeToken();
UnhandledStatic = true;
}
}
ParserResult<Decl> DeclResult;
ParserStatus Status;
switch (Tok.getKind()) {
case tok::kw_import:
DeclResult = parseDeclImport(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_extension:
DeclResult = parseDeclExtension(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_let:
case tok::kw_var:
Status = parseDeclVar(Flags, Attributes, Entries, StaticLoc,
StaticSpelling);
UnhandledStatic = false;
break;
case tok::kw_typealias:
DeclResult = parseDeclTypeAlias(!(Flags & PD_DisallowTypeAliasDef),
Flags.contains(PD_InProtocol), Attributes);
Status = DeclResult;
break;
case tok::kw_enum:
DeclResult = parseDeclEnum(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_case:
Status = parseDeclEnumCase(Flags, Attributes, Entries);
break;
case tok::kw_struct:
DeclResult = parseDeclStruct(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_class:
DeclResult = parseDeclClass(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_init:
DeclResult = parseDeclConstructor(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_deinit:
case tok::kw_destructor:
DeclResult = parseDeclDestructor(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_protocol:
DeclResult = parseDeclProtocol(Flags, Attributes);
Status = DeclResult;
break;
case tok::pound_if:
DeclResult = parseDeclIfConfig(Entries, Flags);
Status = DeclResult;
break;
case tok::kw_func:
DeclResult = parseDeclFunc(StaticLoc, StaticSpelling, MutatingLoc, Flags,
Attributes);
Status = DeclResult;
UnhandledStatic = false;
UnhandledMutating = false;
break;
case tok::kw_subscript:
if (StaticLoc.isValid()) {
diagnose(Tok, diag::subscript_static, StaticSpelling)
.fixItRemove(SourceRange(StaticLoc));
UnhandledStatic = false;
}
Status = parseDeclSubscript(Flags, Attributes, Entries);
break;
case tok::identifier:
if (isStartOfOperatorDecl(Tok, peekToken())) {
DeclResult = parseDeclOperator(Flags.contains(PD_AllowTopLevel),
Attributes);
break;
}
SWIFT_FALLTHROUGH;
default:
diagnose(Tok, diag::expected_decl);
DeclResult = makeParserErrorResult<Decl>();
Status = DeclResult;
break;
}
if (Status.hasCodeCompletion() && isCodeCompletionFirstPass() &&
!CurDeclContext->isModuleScopeContext()) {
// Only consume non-toplevel decls.
consumeDecl(BeginParserPosition, Flags, /*IsTopLevel=*/false);
// Pretend that there was no error.
return makeParserSuccess();
}
if (DeclResult.isNonNull())
Entries.push_back(DeclResult.get());
if (Status.isSuccess() && Tok.is(tok::semi))
Entries.back()->TrailingSemiLoc = consumeToken(tok::semi);
if (Status.isSuccess()) {
// If we parsed 'class' or 'static', but didn't handle it above, complain
// about it.
if (UnhandledStatic)
diagnose(Entries.back()->getLoc(), diag::decl_not_static,
StaticSpelling)
.fixItRemove(SourceRange(StaticLoc));
// If we parsed 'mutating' but didn't handle it above, complain about it.
if (UnhandledMutating)
diagnose(Entries.back()->getLoc(), diag::mutating_invalid)
.fixItRemove(SourceRange(MutatingLoc));
}
return Status;
}
void Parser::parseDeclDelayed() {
auto DelayedState = State->takeDelayedDeclState();
assert(DelayedState.get() && "should have delayed state");
auto BeginParserPosition = getParserPosition(DelayedState->BodyPos);
auto EndLexerState = L->getStateForEndOfTokenLoc(DelayedState->BodyEnd);
// ParserPositionRAII needs a primed parser to restore to.
if (Tok.is(tok::NUM_TOKENS))
consumeToken();
// Ensure that we restore the parser state at exit.
ParserPositionRAII PPR(*this);
// Create a lexer that can not go past the end state.
Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState);
// Temporarily swap out the parser's current lexer with our new one.
llvm::SaveAndRestore<Lexer *> T(L, &LocalLex);
// Rewind to the beginning of the decl.
restoreParserPosition(BeginParserPosition);
// Re-enter the lexical scope.
Scope S(this, DelayedState->takeScope());
ContextChange CC(*this, DelayedState->ParentContext);
SmallVector<Decl *, 2> Entries;
parseDecl(Entries, ParseDeclOptions(DelayedState->Flags));
}
/// \brief Parse an 'import' declaration, doing no token skipping on error.
///
/// \verbatim
/// decl-import:
/// 'import' attribute-list import-kind? import-path
/// import-kind:
/// 'typealias'
/// 'struct'
/// 'class'
/// 'enum'
/// 'protocol'
/// 'var'
/// 'func'
/// import-path:
/// any-identifier ('.' any-identifier)*
/// \endverbatim
ParserResult<ImportDecl> Parser::parseDeclImport(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
SourceLoc ImportLoc = consumeToken(tok::kw_import);
bool Exported = Attributes.isExported();
Attributes.clearAttribute(AK_exported);
if (Attributes.hasNonVirtualAttributes())
diagnose(Attributes.AtLoc, diag::import_attributes);
if (!(Flags & PD_AllowTopLevel)) {
diagnose(ImportLoc, diag::decl_inner_scope);
return nullptr;
}
ImportKind Kind = ImportKind::Module;
SourceLoc KindLoc;
if (Tok.isKeyword()) {
switch (Tok.getKind()) {
case tok::kw_typealias:
Kind = ImportKind::Type;
break;
case tok::kw_struct:
Kind = ImportKind::Struct;
break;
case tok::kw_class:
Kind = ImportKind::Class;
break;
case tok::kw_enum:
Kind = ImportKind::Enum;
break;
case tok::kw_protocol:
Kind = ImportKind::Protocol;
break;
case tok::kw_var:
case tok::kw_let:
Kind = ImportKind::Var;
break;
case tok::kw_func:
Kind = ImportKind::Func;
break;
default:
diagnose(Tok, diag::expected_identifier_in_decl, "import");
return nullptr;
}
KindLoc = consumeToken();
}
SmallVector<std::pair<Identifier, SourceLoc>, 8> ImportPath;
do {
ImportPath.push_back(std::make_pair(Identifier(), Tok.getLoc()));
if (parseAnyIdentifier(ImportPath.back().first,
diag::expected_identifier_in_decl, "import"))
return nullptr;
} while (consumeIf(tok::period));
if (Kind != ImportKind::Module && ImportPath.size() == 1) {
diagnose(ImportPath.front().second, diag::decl_expected_module_name);
return nullptr;
}
return makeParserResult(ImportDecl::create(
Context, CurDeclContext, ImportLoc, Kind, KindLoc, Exported, ImportPath));
}
/// \brief Parse an inheritance clause.
///
/// \verbatim
/// inheritance:
/// ':' type-identifier (',' type-identifier)*
/// \endverbatim
ParserStatus Parser::parseInheritance(SmallVectorImpl<TypeLoc> &Inherited) {
consumeToken(tok::colon);
ParserStatus Status;
do {
// Parse the inherited type (which must be a protocol).
ParserResult<TypeRepr> Ty = parseTypeIdentifier();
Status |= Ty;
// Record the type.
if (Ty.isNonNull())
Inherited.push_back(Ty.get());
// Check for a ',', which indicates that there are more protocols coming.
} while (consumeIf(tok::comma));
return Status;
}
enum class TokenProperty {
None,
StartsWithLess,
};
static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result,
SourceLoc &Loc, tok ResyncT1,
tok ResyncT2, tok ResyncT3,
tok ResyncT4,
TokenProperty ResyncP1,
const Diagnostic &D) {
switch (P.Tok.getKind()) {
case tok::identifier:
Result = P.Context.getIdentifier(P.Tok.getText());
Loc = P.Tok.getLoc();
P.consumeToken();
return makeParserSuccess();
default:
P.checkForInputIncomplete();
if (!D.is(diag::invalid_diagnostic))
P.diagnose(P.Tok, D);
if (P.Tok.isKeyword() &&
(P.peekToken().is(ResyncT1) || P.peekToken().is(ResyncT2) ||
P.peekToken().is(ResyncT3) || P.peekToken().is(ResyncT4) ||
(ResyncP1 != TokenProperty::None &&
P.startsWithLess(P.peekToken())))) {
llvm::SmallString<32> Name(P.Tok.getText());
// Append an invalid character so that nothing can resolve to this name.
Name += "#";
Result = P.Context.getIdentifier(Name.str());
Loc = P.Tok.getLoc();
P.consumeToken();
// Return success because we recovered.
return makeParserSuccess();
}
return makeParserError();
}
}
template <typename... DiagArgTypes, typename... ArgTypes>
static ParserStatus
parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L,
tok ResyncT1, tok ResyncT2, Diag<DiagArgTypes...> ID,
ArgTypes... Args) {
return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2,
tok::unknown, tok::unknown,
TokenProperty::None,
Diagnostic(ID, Args...));
}
template <typename... DiagArgTypes, typename... ArgTypes>
static ParserStatus
parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L,
tok ResyncT1, tok ResyncT2, tok ResyncT3,
Diag<DiagArgTypes...> ID, ArgTypes... Args) {
return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, ResyncT3,
tok::unknown, TokenProperty::None,
Diagnostic(ID, Args...));
}
template <typename... DiagArgTypes, typename... ArgTypes>
static ParserStatus
parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L,
tok ResyncT1, tok ResyncT2, tok ResyncT3, tok ResyncT4,
Diag<DiagArgTypes...> ID, ArgTypes... Args) {
return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, ResyncT3,
ResyncT4, TokenProperty::None,
Diagnostic(ID, Args...));
}
template <typename... DiagArgTypes, typename... ArgTypes>
static ParserStatus
parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L,
tok ResyncT1, tok ResyncT2, TokenProperty ResyncP1,
Diag<DiagArgTypes...> ID, ArgTypes... Args) {
return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, tok::unknown,
tok::unknown,
ResyncP1, Diagnostic(ID, Args...));
}
/// \brief Parse an 'extension' declaration.
///
/// \verbatim
/// extension:
/// 'extension' attribute-list type-identifier inheritance? '{' decl* '}'
/// \endverbatim
ParserResult<ExtensionDecl>
Parser::parseDeclExtension(ParseDeclOptions Flags, DeclAttributes &Attributes) {
SourceLoc ExtensionLoc = consumeToken(tok::kw_extension);
ParserResult<TypeRepr> Ty = parseTypeIdentifierWithRecovery(
diag::expected_type, diag::expected_ident_type_in_extension);
if (Ty.hasCodeCompletion())
return makeParserCodeCompletionResult<ExtensionDecl>();
if (Ty.isNull() && Tok.isKeyword()) {
// We failed to parse the type, but we could try recovering by parsing a
// keyword if the lookahead token looks promising.
Identifier ExtensionName;
SourceLoc NameLoc;
if (parseIdentifierDeclName(*this, ExtensionName, NameLoc, tok::colon,
tok::l_brace,
diag::invalid_diagnostic).isError())
return nullptr;
Ty = makeParserErrorResult(
new (Context) SimpleIdentTypeRepr(NameLoc, ExtensionName));
}
if (Ty.isNull())
return nullptr;
ParserStatus Status;
// Parse optional inheritance clause.
SmallVector<TypeLoc, 2> Inherited;
if (Tok.is(tok::colon))
Status |= parseInheritance(Inherited);
ExtensionDecl *ED
= new (Context) ExtensionDecl(ExtensionLoc, Ty.get(),
Context.AllocateCopy(Inherited),
CurDeclContext);
if (Attributes.shouldSaveInAST())
ED->getMutableAttrs() = Attributes;
SmallVector<Decl*, 8> MemberDecls;
SourceLoc LBLoc, RBLoc;
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_extension)) {
LBLoc = Tok.getLoc();
RBLoc = LBLoc;
Status.setIsParseError();
} else {
// Parse the body.
ContextChange CC(*this, ED);
Scope S(this, ScopeKind::Extension);
ParserStatus BodyStatus =
parseList(tok::r_brace, LBLoc, RBLoc, tok::semi, /*OptionalSep=*/true,
/*AllowSepAfterLast=*/false, diag::expected_rbrace_extension,
[&]() -> ParserStatus {
ParseDeclOptions Options(PD_HasContainerType |
PD_DisallowStoredInstanceVar |
PD_InExtension);
return parseDecl(MemberDecls, Options);
});
// Don't propagate the code completion bit from members: we can not help
// code completion inside a member decl, and our callers can not do
// anything about it either. But propagate the error bit.
if (BodyStatus.isError())
Status.setIsParseError();
}
if (MemberDecls.empty())
ED->setMembers({}, { LBLoc, RBLoc });
else
ED->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc });
if (!(Flags & PD_AllowTopLevel)) {
diagnose(ExtensionLoc, diag::decl_inner_scope);
Status.setIsParseError();
// Tell the type checker not to touch this extension.
ED->setInvalid();
}
return makeParserResult(Status, ED);
}
ParserResult<IfConfigDecl> Parser::parseDeclIfConfig(
SmallVectorImpl<Decl*> &Entries,
ParseDeclOptions Flags) {
SourceLoc IfLoc = consumeToken(tok::pound_if);
SourceLoc ElseLoc;
SourceLoc EndLoc;
StructureMarkerRAII ParsingDecl(*this, Tok.getLoc(),
StructureMarkerKind::IfConfig);
// Evaluate the condition.
ParserResult<Expr> Configuration = parseExprSequence(diag::expected_expr,
true,
true);
if (Configuration.isNull()) {
return makeParserError();
}
bool ifBlockIsActive = evaluateConfigConditionExpr(Configuration.get());
SmallVector<Decl*, 8> IfDecls;
SmallVector<Decl*, 8> ElseDecls;
ParserStatus Status;
while(Tok.isNot(tok::pound_else) && Tok.isNot(tok::pound_endif)) {
Status = parseDecl(IfDecls, Flags);
if (Status.isError()) {
diagnose(Tok, diag::expected_close_to_config_stmt);
skipUntilConfigBlockClose();
}
}
if (Tok.is(tok::pound_else)) {
ElseLoc = consumeToken(tok::pound_else);
while(Tok.isNot(tok::pound_endif)) {
Status = parseDecl(ElseDecls, Flags);
if (Status.isError()) {
skipUntilConfigBlockClose();
}
}
}
if (Tok.is(tok::pound_endif)) {
EndLoc = consumeToken(tok::pound_endif);
} else {
diagnose(Tok, diag::expected_close_to_config_stmt);
skipUntilConfigBlockClose();
}
IfConfigDecl *ICD = new (Context) IfConfigDecl(CurDeclContext,
IfLoc,
ElseLoc,
EndLoc,
Configuration.getPtrOrNull());
if (ifBlockIsActive) {
ICD->setActiveMembers(Context.AllocateCopy(IfDecls));
} else {
ICD->setInactiveMembers(Context.AllocateCopy(IfDecls));
ICD->setInactiveSourceRange(SourceRange(IfLoc, ElseLoc.isValid() ?
ElseLoc :
EndLoc));
}
if (ElseLoc.isValid()) {
if (ifBlockIsActive) {
ICD->setInactiveMembers(Context.AllocateCopy(ElseDecls));
ICD->setInactiveSourceRange(SourceRange(IfLoc, EndLoc));
} else {
ICD->setActiveMembers(Context.AllocateCopy(ElseDecls));
}
}
// Copy the active members into the entries list.
for (auto activeMember : ICD->getActiveMembers()) {
Entries.push_back(activeMember);
}
return makeParserResult(ICD);
}
/// \brief Parse a typealias decl.
///
/// \verbatim
/// decl-typealias:
/// 'typealias' identifier inheritance? '=' type
/// \endverbatim
ParserResult<TypeDecl> Parser::parseDeclTypeAlias(bool WantDefinition,
bool isAssociatedType,
DeclAttributes &Attributes) {
SourceLoc TypeAliasLoc = consumeToken(tok::kw_typealias);
Identifier Id;
SourceLoc IdLoc;
ParserStatus Status;
if (Attributes.hasNonVirtualAttributes())
diagnose(Attributes.AtLoc, diag::typealias_attributes);
Status |=
parseIdentifierDeclName(*this, Id, IdLoc, tok::colon, tok::equal,
diag::expected_identifier_in_decl, "typealias");
if (Status.isError())
return nullptr;
// Parse optional inheritance clause.
SmallVector<TypeLoc, 2> Inherited;
if (isAssociatedType && Tok.is(tok::colon))
Status |= parseInheritance(Inherited);
ParserResult<TypeRepr> UnderlyingTy;
if (WantDefinition || Tok.is(tok::equal)) {
if (parseToken(tok::equal, diag::expected_equal_in_typealias)) {
Status.setIsParseError();
return Status;
}
UnderlyingTy = parseType(diag::expected_type_in_typealias);
Status |= UnderlyingTy;
if (UnderlyingTy.isNull())
return Status;
}
// If this is an associated type, build the AST for it.
if (isAssociatedType) {
auto assocType = new (Context) AssociatedTypeDecl(
CurDeclContext,
TypeAliasLoc, Id, IdLoc,
UnderlyingTy.getPtrOrNull());
if (Attributes.shouldSaveInAST())
assocType->getMutableAttrs() = Attributes;
if (!Inherited.empty())
assocType->setInherited(Context.AllocateCopy(Inherited));
addToScope(assocType);
return makeParserResult(Status, assocType);
}
// Otherwise, build a typealias.
TypeAliasDecl *TAD =
new (Context) TypeAliasDecl(TypeAliasLoc, Id, IdLoc,
UnderlyingTy.getPtrOrNull(),
CurDeclContext);
if (Attributes.shouldSaveInAST())
TAD->getMutableAttrs() = Attributes;
addToScope(TAD);
return makeParserResult(Status, TAD);
}
/// createGetterFunc - This function creates the getter function (with no body)
/// for a computed property or subscript.
static FuncDecl *createAccessorFunc(SourceLoc DeclLoc,
TypedPattern *NamePattern,
TypeLoc ElementTy,
Pattern *Indices, SourceLoc StaticLoc,
Parser::ParseDeclOptions Flags,
AccessorKind Kind, Parser *P) {
// First task, set up the value argument pattern. This is the NamePattern
// (for setters) followed by the index list (for subscripts). For
// non-subscript getters, this degenerates down to "()".
//
// We put the 'value' argument before the subscript index list as a
// micro-optimization for Objective-C thunk generation.
Pattern *ValueArg;
{
SmallVector<TuplePatternElt, 2> ValueArgElements;
SourceLoc StartLoc, EndLoc;
if (NamePattern) {
ValueArgElements.push_back(TuplePatternElt(NamePattern));
StartLoc = NamePattern->getStartLoc();
EndLoc = NamePattern->getEndLoc();
}
if (Indices) {
Indices = Indices->clone(P->Context, /*Implicit=*/true);
if (auto *PP = dyn_cast<ParenPattern>(Indices)) {
ValueArgElements.push_back(TuplePatternElt(PP->getSubPattern()));
} else {
auto *TP = cast<TuplePattern>(Indices);
ValueArgElements.append(TP->getFields().begin(), TP->getFields().end());
}
StartLoc = Indices->getStartLoc();
EndLoc = Indices->getEndLoc();
}
if (NamePattern && Indices) {
StartLoc = Indices->getStartLoc();
EndLoc = NamePattern->getEndLoc();
}
ValueArg = TuplePattern::create(P->Context, StartLoc,
ValueArgElements, EndLoc);
if (NamePattern && !NamePattern->isImplicit())
ValueArg->setImplicit();
}
// Create the parameter list(s) for the getter.
SmallVector<Pattern *, 4> Params;
// Add the implicit 'self' to Params, if needed.
if (Flags & Parser::PD_HasContainerType)
Params.push_back(buildImplicitSelfParameter(DeclLoc, P->CurDeclContext));
// Add the "(value)" and subscript indices parameter clause.
Params.push_back(ValueArg);
TypeLoc ReturnType;
if (Kind == AccessorKind::IsGetter) // Getters return something
ReturnType = ElementTy.clone(P->Context);
else // Nothing else does.
ReturnType = TypeLoc::withoutLoc(TupleType::getEmpty(P->Context));
// Start the function.
auto *D = FuncDecl::create(P->Context, StaticLoc, StaticSpellingKind::None,
/* FIXME*/DeclLoc, Identifier(),
DeclLoc, /*GenericParams=*/nullptr, Type(), Params,
Params, ReturnType, P->CurDeclContext);
// non-static set/willSet/didSet default to @mutating.
if (!D->isStatic() && Kind != AccessorKind::IsGetter)
D->setMutating();
return D;
}
/// Parse a "(value)" specifier for "set" or "willSet" if present. Create a
/// pattern to represent the spelled argument or the implicit one if it is
/// missing.
static TypedPattern *
parseOptionalAccessorArgument(SourceLoc SpecifierLoc, TypeLoc ElementTy,
Parser &P, AccessorKind Kind) {
// Only 'set' and 'willSet' have a (value) parameter. 'get' and 'didSet'
// always take a () parameter.
if (Kind != AccessorKind::IsSetter && Kind != AccessorKind::IsWillSet)
return nullptr;
SourceLoc StartLoc, NameLoc, EndLoc;
Identifier Name;
ASTContext &Context = P.Context;
// If the SpecifierLoc is invalid, then the caller just wants us to synthesize
// the default, not actually try to parse something.
if (SpecifierLoc.isValid() && P.Tok.is(tok::l_paren)) {
StartLoc = P.consumeToken(tok::l_paren);
if (P.Tok.isNot(tok::identifier)) {
P.diagnose(P.Tok, diag::expected_accessor_name,
Kind != AccessorKind::IsSetter);
P.skipUntil(tok::r_paren, tok::l_brace);
if (P.Tok.is(tok::r_paren))
P.consumeToken();
} else {
// We have a name.
Name = P.Context.getIdentifier(P.Tok.getText());
NameLoc = P.consumeToken();
// Look for the closing ')'.
P.parseMatchingToken(tok::r_paren, EndLoc,
Kind == AccessorKind::IsSetter
? diag::expected_rparen_set_name
: diag::expected_rparen_willSet_name, StartLoc);
}
}
bool IsNameImplicit = EndLoc.isInvalid();
// Add the parameter. If no name was specified, the name defaults to
// 'value'.
if (IsNameImplicit) {
Name = P.Context.getIdentifier("value");
NameLoc = SpecifierLoc;
StartLoc = SourceLoc();
}
VarDecl *Value = new (Context) VarDecl(/*static*/false, /*IsLet*/true,
NameLoc, Name,
Type(), P.CurDeclContext);
if (IsNameImplicit)
Value->setImplicit();
auto *namedPat = new (Context) NamedPattern(Value, IsNameImplicit);
return new (Context) TypedPattern(namedPat, ElementTy.clone(Context),
/*Implicit*/true);
}
static unsigned skipUntilMatchingRBrace(Parser &P) {
unsigned OpenBraces = 1;
while (OpenBraces != 0 && P.Tok.isNot(tok::eof)) {
if (P.consumeIf(tok::l_brace)) {
OpenBraces++;
continue;
}
if (OpenBraces == 1 && P.Tok.is(tok::r_brace))
break;
if (P.consumeIf(tok::r_brace)) {
OpenBraces--;
continue;
}
P.consumeToken();
}
return OpenBraces;
}
static unsigned skipBracedBlock(Parser &P) {
P.consumeToken(tok::l_brace);
unsigned OpenBraces = skipUntilMatchingRBrace(P);
if (P.consumeIf(tok::r_brace))
OpenBraces--;
return OpenBraces;
}
void Parser::consumeGetSetBody(AbstractFunctionDecl *AFD,
SourceLoc LBLoc) {
SourceLoc SavedPreviousLoc = PreviousLoc;
SourceRange BodyRange;
BodyRange.Start = Tok.getLoc();
// Skip until the next '}' at the correct nesting level.
unsigned OpenBraces = skipUntilMatchingRBrace(*this);
if (OpenBraces != 1) {
// FIXME: implement some error recovery?
}
BodyRange.End = PreviousLoc;
if (DelayedParseCB->shouldDelayFunctionBodyParsing(
*this, AFD, AFD->getAttrs(), BodyRange)) {
State->delayAccessorBodyParsing(AFD, BodyRange, SavedPreviousLoc, LBLoc);
AFD->setBodyDelayed(BodyRange);
} else {
AFD->setBodySkipped(BodyRange);
}
}
/// \brief Parse a get-set clause, optionally containing a getter, setter,
/// willSet, and/or didSet clauses. 'Indices' is a paren or tuple pattern,
/// specifying the index list for a subscript.
bool Parser::parseGetSetImpl(ParseDeclOptions Flags, Pattern *Indices,
TypeLoc ElementTy, FuncDecl *&Get, FuncDecl *&Set,
FuncDecl *&WillSet, FuncDecl *&DidSet,
SourceLoc &LastValidLoc, SourceLoc StaticLoc,
SmallVectorImpl<Decl *> &Decls) {
Get = Set = WillSet = DidSet = nullptr;
// Properties in protocols use sufficiently limited syntax that we have a
// special parsing loop for them. SIL mode uses the same syntax.
if (Flags.contains(PD_InProtocol) || isInSILMode()) {
while (Tok.isNot(tok::r_brace)) {
if (Tok.is(tok::eof))
return true;
// Parse any leading attributes.
DeclAttributes Attributes;
parseDeclAttributeList(Attributes);
AccessorKind Kind;
FuncDecl **TheDeclPtr;
if (Tok.isContextualKeyword("get")) {
Kind = AccessorKind::IsGetter;
TheDeclPtr = &Get;
} else if (Tok.isContextualKeyword("set")) {
Kind = AccessorKind::IsSetter;
TheDeclPtr = &Set;
} else {
diagnose(Tok, diag::expected_getset_in_protocol);
return true;
}
FuncDecl *&TheDecl = *TheDeclPtr;
SourceLoc Loc = consumeToken();
// Have we already parsed this kind of clause?
if (TheDecl) {
diagnose(Loc, diag::duplicate_property_accessor, (unsigned)Kind);
diagnose(TheDecl->getLoc(), diag::previous_accessor, (unsigned)Kind);
TheDecl = nullptr; // Forget the previous decl.
}
// "set" could have a name associated with it. This isn't valid in a
// protocol, but we parse and then reject it, for better QoI.
if (Tok.is(tok::l_paren))
diagnose(Loc, diag::protocol_setter_name);
auto *ValueNamePattern
= parseOptionalAccessorArgument(Loc, ElementTy, *this, Kind);
// Set up a function declaration.
TheDecl = createAccessorFunc(Loc, ValueNamePattern, ElementTy, Indices,
StaticLoc, Flags, Kind, this);
if (Attributes.shouldSaveInAST())
TheDecl->getMutableAttrs() = Attributes;
Decls.push_back(TheDecl);
}
return false;
}
// Otherwise, we have a normal var or subscript declaration, parse the full
// complement of specifiers, along with their bodies.
// If the body is completely empty, reject it. This is at best a getter with
// an implicit fallthrough off the end.
if (Tok.is(tok::r_brace)) {
diagnose(Tok, diag::computed_property_no_accessors);
return true;
}
bool IsFirstAccessor = true;
while (Tok.isNot(tok::r_brace)) {
if (Tok.is(tok::eof))
return true;
// If there are any attributes, we are going to parse them. Because these
// attributes might not be appertaining to the accessor, but to the first
// declaration inside the implicit getter, we need to save the parser
// position and restore it later.
ParserPosition BeginParserPosition;
if (Tok.is(tok::at_sign))
BeginParserPosition = getParserPosition();
// Parse any leading attributes.
DeclAttributes Attributes;
parseDeclAttributeList(Attributes);
bool isImplicitGet = false;
AccessorKind Kind;
FuncDecl **TheDeclPtr;
if (Tok.isContextualKeyword("get")) {
Kind = AccessorKind::IsGetter;
TheDeclPtr = &Get;
} else if (Tok.isContextualKeyword("set")) {
Kind = AccessorKind::IsSetter;
TheDeclPtr = &Set;
} else if (Tok.isContextualKeyword("willSet")) {
Kind = AccessorKind::IsWillSet;
TheDeclPtr = &WillSet;
} else if (Tok.isContextualKeyword("didSet")) {
Kind = AccessorKind::IsDidSet;
TheDeclPtr = &DidSet;
} else {
// This is an implicit getter. Might be not valid in this position,
// though. Anyway, go back to the beginning of the getter code to ensure
// that the diagnostics point to correct tokens.
if (BeginParserPosition.isValid()) {
backtrackToPosition(BeginParserPosition);
Attributes = DeclAttributes();
}
if (!IsFirstAccessor) {
// Can not have an implicit getter after other accessor.
diagnose(Tok, diag::expected_accessor_kw);
skipUntil(tok::r_brace);
// Don't signal an error since we recovered.
return false;
}
Kind = AccessorKind::IsGetter;
TheDeclPtr = &Get;
isImplicitGet = true;
}
IsFirstAccessor = false;
// Consume the contextual keyword, if present.
SourceLoc Loc = isImplicitGet ? Tok.getLoc() : consumeToken();
FuncDecl *&TheDecl = *TheDeclPtr;
// Have we already parsed this kind of clause?
if (TheDecl) {
diagnose(Loc, diag::duplicate_property_accessor, (unsigned)Kind);
diagnose(TheDecl->getLoc(), diag::previous_accessor, (unsigned)Kind);
// Forget the previous decl.
Decls.erase(std::find(Decls.begin(), Decls.end(), TheDecl));
TheDecl = nullptr;
}
// 'set' and 'willSet' can have an optional name.
//
// set-name ::= '(' identifier ')'
auto *ValueNamePattern =
parseOptionalAccessorArgument(Loc, ElementTy, *this, Kind);
SourceLoc LBLoc = Tok.getLoc();
// FIXME: Use outer '{' loc if isImplicitGet.
if (!isImplicitGet && !consumeIf(tok::l_brace)) {
diagnose(Tok, diag::expected_lbrace_accessor, (unsigned)Kind);
return true;
}
// Set up a function declaration.
TheDecl = createAccessorFunc(Loc, ValueNamePattern, ElementTy, Indices,
StaticLoc, Flags, Kind, this);
if (Attributes.shouldSaveInAST())
TheDecl->getMutableAttrs() = Attributes;
// Parse the body.
Scope S(this, ScopeKind::FunctionBody);
addPatternVariablesToScope(TheDecl->getBodyParamPatterns());
// Establish the new context.
ParseFunctionBody CC(*this, TheDecl);
// Parse the body.
SmallVector<ASTNode, 16> Entries;
if (!isDelayedParsingEnabled())
parseBraceItems(Entries);
else
consumeGetSetBody(TheDecl, LBLoc);
SourceLoc RBLoc = Tok.getLoc();
if (!isImplicitGet &&
parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset,
LBLoc))
RBLoc = PreviousLoc;
if (!isDelayedParsingEnabled()) {
BraceStmt *Body = BraceStmt::create(Context, LBLoc, Entries, RBLoc);
TheDecl->setBody(Body);
}
Decls.push_back(TheDecl);
LastValidLoc = RBLoc;
}
return false;
}
bool Parser::parseGetSet(ParseDeclOptions Flags, Pattern *Indices,
TypeLoc ElementTy, FuncDecl *&Get, FuncDecl *&Set,
FuncDecl *&WillSet, FuncDecl *&DidSet,
SourceLoc &LBLoc, SourceLoc &RBLoc,
SourceLoc StaticLoc,
SmallVectorImpl<Decl *> &Decls) {
LBLoc = consumeToken(tok::l_brace);
SourceLoc LastValidLoc = LBLoc;
bool Invalid = parseGetSetImpl(Flags, Indices, ElementTy, Get, Set, WillSet,
DidSet, LastValidLoc, StaticLoc, Decls);
// Parse the final '}'.
if (Invalid)
skipUntil(tok::r_brace);
if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset,
LBLoc)) {
Invalid = true;
RBLoc = LastValidLoc;
}
return Invalid;
}
void Parser::parseAccessorBodyDelayed(AbstractFunctionDecl *AFD) {
assert(!AFD->getBody() && "function should not have a parsed body");
assert(AFD->getBodyKind() == AbstractFunctionDecl::BodyKind::Unparsed &&
"function body should be delayed");
auto AccessorParserState = State->takeAccessorBodyState(AFD);
assert(AccessorParserState.get() && "should have a valid state");
auto BeginParserPosition = getParserPosition(AccessorParserState->BodyPos);
auto EndLexerState = L->getStateForEndOfTokenLoc(AFD->getEndLoc());
// ParserPositionRAII needs a primed parser to restore to.
if (Tok.is(tok::NUM_TOKENS))
consumeToken();
// Ensure that we restore the parser state at exit.
ParserPositionRAII PPR(*this);
// Create a lexer that can not go past the end state.
Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState);
// Temporarily swap out the parser's current lexer with our new one.
llvm::SaveAndRestore<Lexer *> T(L, &LocalLex);
// Rewind to the first token of the accessor body.
restoreParserPosition(BeginParserPosition);
// Re-enter the lexical scope.
Scope S(this, AccessorParserState->takeScope());
ParseFunctionBody CC(*this, AFD);
SmallVector<ASTNode, 16> Entries;
parseBraceItems(Entries);
BraceStmt *Body =
BraceStmt::create(Context, AccessorParserState->LBLoc, Entries,
Tok.getLoc());
AFD->setBody(Body);
}
/// \brief Parse the brace-enclosed getter and setter for a variable.
VarDecl *Parser::parseDeclVarGetSet(Pattern *pattern, ParseDeclOptions Flags,
SourceLoc StaticLoc,
SmallVectorImpl<Decl *> &Decls) {
bool Invalid = false;
// The grammar syntactically requires a simple identifier for the variable
// name. Complain if that isn't what we got.
VarDecl *PrimaryVar = nullptr;
{
Pattern *PrimaryPattern = pattern;
if (TypedPattern *Typed = dyn_cast<TypedPattern>(PrimaryPattern))
PrimaryPattern = Typed->getSubPattern();
if (NamedPattern *Named = dyn_cast<NamedPattern>(PrimaryPattern)) {
PrimaryVar = Named->getDecl();
}
}
if (!PrimaryVar) {
diagnose(pattern->getLoc(), diag::getset_nontrivial_pattern);
Invalid = true;
} else {
setLocalDiscriminator(PrimaryVar);
// Reject getters and setters for 'val's, but keep parsing them, for better
// recovery.
if (PrimaryVar->isLet()) {
diagnose(Tok, diag::let_cannot_be_computed_property);
Invalid = true;
}
}
// The grammar syntactically requires a type annotation. Complain if
// our pattern does not have one.
TypeLoc TyLoc;
if (TypedPattern *TP = dyn_cast<TypedPattern>(pattern)) {
TyLoc = TP->getTypeLoc();
} else {
if (PrimaryVar)
diagnose(pattern->getLoc(), diag::getset_missing_type);
TyLoc = TypeLoc::withoutLoc(ErrorType::get(Context));
}
// Parse getter and setter.
FuncDecl *Get = nullptr, *Set = nullptr;
FuncDecl *WillSet = nullptr, *DidSet = nullptr;
SourceLoc LBLoc;
SourceLoc RBLoc;
if (parseGetSet(Flags, /*Indices=*/0, TyLoc, Get, Set, WillSet, DidSet,
LBLoc, RBLoc, StaticLoc, Decls))
Invalid = true;
// If we have an invalid case, bail out now.
if (!PrimaryVar)
return nullptr;
// If this is a willSet/didSet observing property, record this and we're done.
if (WillSet || DidSet) {
if (Get || Set) {
diagnose(Get ? Get->getLoc() : Set->getLoc(),
diag::observingproperty_with_getset, bool(DidSet), bool(Set));
if (Get) {
Get->setType(ErrorType::get(Context));
Get->setInvalid(); Get = nullptr;
}
if (Set) {
Set->setType(ErrorType::get(Context));
Set->setInvalid(); Set = nullptr;
}
}
PrimaryVar->makeObserving(LBLoc, WillSet, DidSet, RBLoc);
// Observing properties will have getters and setters synthesized by sema.
// Create their prototypes now.
Get = createAccessorFunc(SourceLoc(), /*ArgPattern*/nullptr, TyLoc, nullptr,
StaticLoc, Flags, AccessorKind::IsGetter, this);
Get->setImplicit();
Decls.push_back(Get);
auto ArgPattern = parseOptionalAccessorArgument(SourceLoc(), TyLoc, *this,
AccessorKind::IsSetter);
Set = createAccessorFunc(SourceLoc(), ArgPattern, TyLoc, nullptr,
StaticLoc, Flags, AccessorKind::IsSetter, this);
Set->setImplicit();
Decls.push_back(Set);
PrimaryVar->setObservingAccessors(Get, Set);
return PrimaryVar;
}
// If this decl is invalid, mark any parsed accessors as invalid to avoid
// tripping up later invariants.
if (Invalid) {
if (Get) {
Get->setType(ErrorType::get(Context));
Get->setInvalid();
}
if (Set) {
Set->setType(ErrorType::get(Context));
Set->setInvalid();
}
}
// Otherwise, this must be a get/set property. The set is optional, but get
// is not.
if (!Invalid && Set && !Get) {
diagnose(Set->getLoc(), diag::var_set_without_get);
}
// Turn this into a computed variable.
if (Set || Get) {
PrimaryVar->makeComputed(LBLoc, Get, Set, RBLoc);
return PrimaryVar;
}
return nullptr;
}
/// \brief Parse a 'var' or 'val' declaration, doing no token skipping on error.
ParserStatus Parser::parseDeclVar(ParseDeclOptions Flags,
DeclAttributes &Attributes,
SmallVectorImpl<Decl *> &Decls,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling) {
assert(StaticLoc.isInvalid() || StaticSpelling != StaticSpellingKind::None);
if (StaticLoc.isValid()) {
if (!Flags.contains(PD_HasContainerType)) {
diagnose(Tok, diag::static_var_decl_global_scope, StaticSpelling)
.fixItRemoveChars(StaticLoc, Tok.getLoc());
StaticLoc = SourceLoc();
} else if (Flags.contains(PD_InProtocol) || Flags.contains(PD_InClass)) {
if (StaticSpelling == StaticSpellingKind::KeywordStatic)
diagnose(Tok, diag::static_var_in_class)
.fixItReplace(StaticLoc, "class");
} else if (!Flags.contains(PD_InExtension)) {
if (StaticSpelling == StaticSpellingKind::KeywordClass)
diagnose(Tok, diag::class_var_in_struct)
.fixItReplace(StaticLoc, "static");
}
}
bool isLet = Tok.is(tok::kw_let);
assert(Tok.getKind() == tok::kw_let || Tok.getKind() == tok::kw_var);
SourceLoc VarLoc = consumeToken();
struct AllBindings {
Parser &P;
struct BindingInfo {
PatternBindingDecl *Binding;
TopLevelCodeDecl *TopLevelCode;
};
SmallVector<BindingInfo, 4> All;
AllBindings(Parser &P) : P(P) {}
~AllBindings() {
for (auto &info : All) {
if (!info.TopLevelCode) continue;
auto binding = info.Binding;
auto range = binding->getSourceRange();
info.TopLevelCode->setBody(BraceStmt::create(P.Context, range.Start,
ASTNode(binding), range.End));
}
}
} Bindings(*this);
bool HasGetSet = false;
bool hasStorage = true;
ParserStatus Status;
do {
ParserResult<Pattern> pattern;
{ // In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InVarOrLetPattern)>
T(InVarOrLetPattern, isLet ? IVOLP_InLet : IVOLP_InVar);
pattern = parsePattern(isLet);
}
if (pattern.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (pattern.isNull())
return makeParserError();
// If this is a var in the top-level of script/repl source file, wrap the
// PatternBindingDecl in a TopLevelCodeDecl, since it represents executable
// code. The VarDecl and any accessor decls (for computed properties) go in
// CurDeclContext.
//
// Note that, once we've built the TopLevelCodeDecl, we have to be
// really cautious not to escape this scope in a way that doesn't
// add it as a binding.
TopLevelCodeDecl *topLevelDecl = nullptr;
Optional<ContextChange> topLevelParser;
if (allowTopLevelCode() && CurDeclContext->isModuleScopeContext()) {
// The body of topLevelDecl will get set later.
topLevelDecl = new (Context) TopLevelCodeDecl(CurDeclContext);
topLevelParser.emplace(*this, topLevelDecl,
&State->getTopLevelContext());
}
// In the normal case, just add PatternBindingDecls to our DeclContext.
auto PBD = new (Context) PatternBindingDecl(
StaticLoc, StaticSpelling, VarLoc, pattern.get(), nullptr, hasStorage,
/*conditional*/ false, CurDeclContext);
Bindings.All.push_back({PBD, topLevelDecl});
// Parse an initializer if present.
if (Tok.is(tok::equal)) {
// Record the variables that we're trying to initialize.
SmallVector<VarDecl *, 4> Vars;
Vars.append(CurVars.second.begin(), CurVars.second.end());
pattern.get()->collectVariables(Vars);
using RestoreVarsRAII = llvm::SaveAndRestore<decltype(CurVars)>;
RestoreVarsRAII RestoreCurVars(CurVars, {CurDeclContext, Vars});
// Enter an initializer context if we're not in a local context.
PatternBindingInitializer *initContext = nullptr;
Optional<ParseFunctionBody> initParser;
if (!CurDeclContext->isLocalContext()) {
initContext = Context.createPatternBindingContext(PBD);
initParser.emplace(*this, initContext);
}
SourceLoc EqualLoc = consumeToken(tok::equal);
ParserResult<Expr> init = parseExpr(diag::expected_init_value);
// Leave the initializer context.
if (initContext) {
if (!initParser->hasClosures())
Context.destroyPatternBindingContext(initContext);
initParser.reset();
}
assert(!initParser.hasValue());
if (init.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (init.isNull())
return makeParserError();
if (Flags & PD_DisallowInit) {
diagnose(EqualLoc, diag::disallowed_init);
Status.setIsParseError();
init = nullptr;
}
PBD->setInit(init.getPtrOrNull(), false);
}
if (topLevelDecl) {
Decls.push_back(topLevelDecl);
} else {
Decls.push_back(PBD);
}
// We need to revert CurDeclContext before parsing accessors.
if (topLevelDecl)
topLevelParser.getValue().pop();
// If we syntactically match the second decl-var production, with a
// var-get-set clause, parse the var-get-set clause.
if (Tok.is(tok::l_brace)) {
if (auto *boundVar =
parseDeclVarGetSet(pattern.get(), Flags, StaticLoc, Decls)) {
hasStorage = boundVar->hasStorage();
if (PBD->getInit() && !boundVar->hasStorage()) {
diagnose(pattern.get()->getLoc(), diag::getset_init)
.highlight(PBD->getInit()->getSourceRange());
PBD->setInit(nullptr, false);
}
}
if (isLet)
return makeParserError();
HasGetSet = true;
}
PBD->setHasStorage(hasStorage);
// Add all parsed vardecls to this scope.
addPatternVariablesToScope(pattern.get());
// Configure them properly with attributes and 'static'.
pattern.get()->forEachVariable([&](VarDecl *VD) {
VD->setStatic(StaticLoc.isValid());
VD->setParentPattern(PBD);
if (Attributes.shouldSaveInAST())
VD->getMutableAttrs() = Attributes;
Decls.push_back(VD);
});
// Propagate back types for simple patterns, like "var A, B : T".
if (TypedPattern *TP = dyn_cast<TypedPattern>(PBD->getPattern())) {
if (isa<NamedPattern>(TP->getSubPattern()) && !PBD->hasInit()) {
for (unsigned i = Bindings.All.size() - 1; i != 0; --i) {
PatternBindingDecl *PrevPBD = Bindings.All[i-1].Binding;
Pattern *PrevPat = PrevPBD->getPattern();
if (!isa<NamedPattern>(PrevPat) || PrevPBD->hasInit())
break;
if (HasGetSet) {
// FIXME -- offer a fixit to explicitly specify the type
diagnose(PrevPat->getLoc(), diag::getset_cannot_be_implied);
Status.setIsParseError();
}
TypedPattern *NewTP = new (Context) TypedPattern(PrevPat,
TP->getTypeLoc());
PrevPBD->setPattern(NewTP);
}
}
}
} while (consumeIf(tok::comma));
if (HasGetSet) {
if (Bindings.All.size() > 1) {
diagnose(VarLoc, diag::disallowed_var_multiple_getset);
Status.setIsParseError();
}
} else if (!StaticLoc.isValid() && (Flags & PD_DisallowStoredInstanceVar)) {
diagnose(VarLoc, diag::disallowed_stored_var_decl);
Status.setIsParseError();
return Status;
}
return Status;
}
void Parser::consumeAbstractFunctionBody(AbstractFunctionDecl *AFD,
const DeclAttributes &Attrs) {
auto BeginParserPosition = getParserPosition();
SourceRange BodyRange;
BodyRange.Start = Tok.getLoc();
// Consume the '{', and find the matching '}'.
unsigned OpenBraces = skipBracedBlock(*this);
if (OpenBraces != 0 && Tok.isNot(tok::code_complete)) {
assert(Tok.is(tok::eof));
// We hit EOF, and not every brace has a pair. Recover by searching
// for the next decl except variable decls and cutting off before
// that point.
backtrackToPosition(BeginParserPosition);
consumeToken(tok::l_brace);
while (Tok.is(tok::kw_var) || Tok.is(tok::kw_let) ||
(Tok.isNot(tok::eof) && !isStartOfDecl(Tok, peekToken()))) {
consumeToken();
}
}
BodyRange.End = PreviousLoc;
if (DelayedParseCB->shouldDelayFunctionBodyParsing(*this, AFD, Attrs,
BodyRange)) {
State->delayFunctionBodyParsing(AFD, BodyRange,
BeginParserPosition.PreviousLoc);
AFD->setBodyDelayed(BodyRange);
} else {
AFD->setBodySkipped(BodyRange);
}
}
/// \brief Parse a 'func' declaration, returning null on error. The caller
/// handles this case and does recovery as appropriate.
///
/// \verbatim
/// decl-func:
/// ('static' | 'class')? 'mutating'? 'func' attribute-list
/// any-identifier generic-params? func-signature stmt-brace?
/// \endverbatim
///
/// \note The caller of this method must ensure that the next token is 'func'.
ParserResult<FuncDecl>
Parser::parseDeclFunc(SourceLoc StaticLoc, StaticSpellingKind StaticSpelling,
SourceLoc MutatingLoc,
ParseDeclOptions Flags, DeclAttributes &Attributes) {
assert((StaticLoc.isInvalid() || MutatingLoc.isInvalid()) &&
"Parser should only parse one of 'mutating' or 'class'/'static'");
assert(StaticLoc.isInvalid() || StaticSpelling != StaticSpellingKind::None);
bool HasContainerType = Flags.contains(PD_HasContainerType);
if (StaticLoc.isValid()) {
if (!HasContainerType) {
// Reject static functions at global scope.
diagnose(Tok, diag::static_func_decl_global_scope, StaticSpelling)
.fixItRemoveChars(StaticLoc, Tok.getLoc());
StaticLoc = SourceLoc();
} else if (Flags.contains(PD_InProtocol) || Flags.contains(PD_InClass)) {
if (StaticSpelling == StaticSpellingKind::KeywordStatic)
diagnose(Tok, diag::static_func_in_class)
.fixItReplace(StaticLoc, "class");
} else if (!Flags.contains(PD_InExtension)) {
if (StaticSpelling == StaticSpellingKind::KeywordClass)
diagnose(Tok, diag::class_func_in_struct)
.fixItReplace(StaticLoc, "static");
}
}
// If the 'mutating' modifier was applied to the func, model it as if the
// @mutating attribute were specified.
if (MutatingLoc.isValid()) {
if (!Attributes.AtLoc.isValid())
Attributes.AtLoc = MutatingLoc;
Attributes.setAttr(AK_mutating, MutatingLoc);
}
if (StaticLoc.isValid() && Attributes.hasMutating()) {
diagnose(Tok, diag::static_functions_not_mutating);
Attributes.clearAttribute(AK_mutating);
}
SourceLoc FuncLoc = consumeToken(tok::kw_func);
// Forgive the lexer
if (Tok.is(tok::amp_prefix)) {
Tok.setKind(tok::oper_prefix);
}
Identifier Name;
SourceLoc NameLoc = Tok.getLoc();
if (!(Flags & PD_AllowTopLevel) &&
!(Flags & PD_InProtocol) &&
Tok.isAnyOperator()) {
// FIXME: Recovery here is awful.
diagnose(Tok, diag::func_decl_nonglobal_operator);
return nullptr;
}
if (parseAnyIdentifier(Name, diag::expected_identifier_in_decl, "function")) {
ParserStatus NameStatus =
parseIdentifierDeclName(*this, Name, NameLoc, tok::l_paren, tok::arrow,
tok::l_brace, diag::invalid_diagnostic);
if (NameStatus.isError())
return nullptr;
}
// Parse the generic-params, if present.
Optional<Scope> GenericsScope;
GenericsScope.emplace(this, ScopeKind::Generics);
GenericParamList *GenericParams;
// If the name is an operator token that ends in '<' and the following token
// is an identifier, split the '<' off as a separate token. This allows things
// like 'func ==<T>(x:T, y:T) {}' to parse as '==' with generic type variable
// '<T>' as expected.
if (Name.str().size() > 1 && Name.str().back() == '<'
&& Tok.is(tok::identifier)) {
Name = Context.getIdentifier(Name.str().slice(0, Name.str().size() - 1));
SourceLoc LAngleLoc = NameLoc.getAdvancedLoc(Name.str().size());
GenericParams = parseGenericParameters(LAngleLoc);
} else {
GenericParams = maybeParseGenericParams();
}
SmallVector<Pattern*, 8> ArgParams;
SmallVector<Pattern*, 8> BodyParams;
// If we're within a container, add an implicit first pattern to match the
// container type as an element named 'self'.
//
// This turns an instance function "(int)->int" on FooTy into
// "(inout self: FooTy)->(int)->int", and a static function
// "(int)->int" on FooTy into "(inout self: FooTy.Type)->(int)->int".
// Note that we can't actually compute the type here until Sema.
if (HasContainerType) {
Pattern *SelfPattern = buildImplicitSelfParameter(NameLoc, CurDeclContext);
ArgParams.push_back(SelfPattern);
BodyParams.push_back(SelfPattern);
}
DefaultArgumentInfo DefaultArgs;
TypeRepr *FuncRetTy = nullptr;
bool HasSelectorStyleSignature;
ParserStatus SignatureStatus =
parseFunctionSignature(Name, ArgParams, BodyParams, DefaultArgs,
FuncRetTy, HasSelectorStyleSignature);
if (SignatureStatus.hasCodeCompletion() && !CodeCompletion) {
// Trigger delayed parsing, no need to continue.
return SignatureStatus;
}
// Enter the arguments for the function into a new function-body scope. We
// need this even if there is no function body to detect argument name
// duplication.
FuncDecl *FD;
{
Scope S(this, ScopeKind::FunctionBody);
// Create the decl for the func and add it to the parent scope.
FD = FuncDecl::create(Context, StaticLoc, StaticSpelling,
FuncLoc, Name, NameLoc, GenericParams,
Type(), ArgParams, BodyParams, FuncRetTy,
CurDeclContext);
if (HasSelectorStyleSignature)
FD->setHasSelectorStyleSignature();
// Pass the function signature to code completion.
if (SignatureStatus.hasCodeCompletion())
CodeCompletion->setDelayedParsedDecl(FD);
DefaultArgs.setFunctionContext(FD);
addPatternVariablesToScope(FD->getBodyParamPatterns());
setLocalDiscriminator(FD);
// Establish the new context.
ParseFunctionBody CC(*this, FD);
// Check to see if we have a "{" to start a brace statement.
if (Tok.is(tok::l_brace)) {
if (!isDelayedParsingEnabled()) {
ParserResult<BraceStmt> Body =
parseBraceItemList(diag::func_decl_without_brace);
if (Body.isNull()) {
// FIXME: Should do some sort of error recovery here?
} else if (SignatureStatus.hasCodeCompletion()) {
// Code completion was inside the signature, don't attach the body.
FD->setBodySkipped(Body.get()->getSourceRange());
} else {
FD->setBody(Body.get());
}
} else {
consumeAbstractFunctionBody(FD, Attributes);
}
} else {
checkForInputIncomplete();
}
}
// Exit the scope introduced for the generic parameters.
GenericsScope.reset();
if (Attributes.shouldSaveInAST())
FD->getMutableAttrs() = Attributes;
addToScope(FD);
return makeParserResult(FD);
}
bool Parser::parseAbstractFunctionBodyDelayed(AbstractFunctionDecl *AFD) {
assert(!AFD->getBody() && "function should not have a parsed body");
assert(AFD->getBodyKind() == AbstractFunctionDecl::BodyKind::Unparsed &&
"function body should be delayed");
auto FunctionParserState = State->takeFunctionBodyState(AFD);
assert(FunctionParserState.get() && "should have a valid state");
auto BeginParserPosition = getParserPosition(FunctionParserState->BodyPos);
auto EndLexerState = L->getStateForEndOfTokenLoc(AFD->getEndLoc());
// ParserPositionRAII needs a primed parser to restore to.
if (Tok.is(tok::NUM_TOKENS))
consumeToken();
// Ensure that we restore the parser state at exit.
ParserPositionRAII PPR(*this);
// Create a lexer that can not go past the end state.
Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState);
// Temporarily swap out the parser's current lexer with our new one.
llvm::SaveAndRestore<Lexer *> T(L, &LocalLex);
// Rewind to '{' of the function body.
restoreParserPosition(BeginParserPosition);
// Re-enter the lexical scope.
Scope S(this, FunctionParserState->takeScope());
ParseFunctionBody CC(*this, AFD);
ParserResult<BraceStmt> Body =
parseBraceItemList(diag::func_decl_without_brace);
if (Body.isNull()) {
// FIXME: Should do some sort of error recovery here?
return true;
} else {
AFD->setBody(Body.get());
}
return false;
}
/// \brief Parse a 'enum' declaration, returning true (and doing no token
/// skipping) on error.
///
/// \verbatim
/// decl-enum:
/// 'enum' attribute-list identifier generic-params? inheritance?
/// '{' decl-enum-body '}'
/// decl-enum-body:
/// decl*
/// \endverbatim
ParserResult<EnumDecl> Parser::parseDeclEnum(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
SourceLoc EnumLoc = consumeToken(tok::kw_enum);
Identifier EnumName;
SourceLoc EnumNameLoc;
ParserStatus Status;
Status |=
parseIdentifierDeclName(*this, EnumName, EnumNameLoc, tok::colon,
tok::l_brace, TokenProperty::StartsWithLess,
diag::expected_identifier_in_decl, "enum");
if (Status.isError())
return nullptr;
// Parse the generic-params, if present.
GenericParamList *GenericParams = nullptr;
{
Scope S(this, ScopeKind::Generics);
GenericParams = maybeParseGenericParams();
}
EnumDecl *UD = new (Context) EnumDecl(EnumLoc, EnumName, EnumNameLoc,
{ }, GenericParams, CurDeclContext);
setLocalDiscriminator(UD);
if (Attributes.shouldSaveInAST())
UD->getMutableAttrs() = Attributes;
// Parse optional inheritance clause within the context of the enum.
if (Tok.is(tok::colon)) {
ContextChange CC(*this, UD);
SmallVector<TypeLoc, 2> Inherited;
Status |= parseInheritance(Inherited);
UD->setInherited(Context.AllocateCopy(Inherited));
}
SmallVector<Decl*, 8> MemberDecls;
SourceLoc LBLoc, RBLoc;
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_enum)) {
LBLoc = Tok.getLoc();
RBLoc = LBLoc;
Status.setIsParseError();
} else {
ContextChange CC(*this, UD);
Scope S(this, ScopeKind::ClassBody);
ParseDeclOptions Options(PD_HasContainerType | PD_AllowEnumElement |
PD_DisallowStoredInstanceVar);
if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc,
diag::expected_rbrace_enum,
Options))
Status.setIsParseError();
}
if (MemberDecls.empty())
UD->setMembers({}, { LBLoc, RBLoc });
else
UD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc });
addToScope(UD);
if (Flags & PD_DisallowNominalTypes) {
diagnose(EnumLoc, diag::disallowed_type);
Status.setIsParseError();
}
return makeParserResult(Status, UD);
}
/// \brief Parse a 'case' of an enum.
///
/// \verbatim
/// enum-case:
/// identifier type-tuple?
/// decl-enum-element:
/// 'case' attribute-list enum-case (',' enum-case)*
/// \endverbatim
ParserStatus Parser::parseDeclEnumCase(ParseDeclOptions Flags,
DeclAttributes &Attributes,
llvm::SmallVectorImpl<Decl *> &Decls) {
ParserStatus Status;
SourceLoc CaseLoc = consumeToken(tok::kw_case);
// Parse comma-separated enum elements.
SmallVector<EnumElementDecl*, 4> Elements;
SourceLoc CommaLoc;
for (;;) {
Identifier Name;
SourceLoc NameLoc;
const bool NameIsNotIdentifier = Tok.isNot(tok::identifier);
if (parseIdentifierDeclName(*this, Name, NameLoc, tok::l_paren,
tok::kw_case, tok::colon, tok::r_brace,
diag::invalid_diagnostic).isError()) {
NameLoc = CaseLoc;
// Handle the likely case someone typed 'case X, case Y'.
if (Tok.is(tok::kw_case) && CommaLoc.isValid()) {
diagnose(Tok, diag::expected_identifier_after_case_comma);
return Status;
}
// For recovery, see if the user typed something resembling a switch
// "case" label.
parseMatchingPattern();
}
if (NameIsNotIdentifier) {
if (consumeIf(tok::colon)) {
diagnose(CaseLoc, diag::case_outside_of_switch, "case");
Status.setIsParseError();
return Status;
}
if (CommaLoc.isValid()) {
diagnose(Tok, diag::expected_identifier_after_case_comma);
return Status;
}
diagnose(CaseLoc, diag::expected_identifier_in_decl, "enum case");
}
// See if there's a following argument type.
ParserResult<TypeRepr> ArgType;
if (Tok.isFollowingLParen()) {
ArgType = parseTypeTupleBody();
if (ArgType.hasCodeCompletion()) {
Status.setHasCodeCompletion();
return Status;
}
if (ArgType.isNull()) {
Status.setIsParseError();
return Status;
}
}
// See if there's a raw value expression.
SourceLoc EqualsLoc;
ParserResult<Expr> RawValueExpr;
LiteralExpr *LiteralRawValueExpr = nullptr;
if (Tok.is(tok::equal)) {
EqualsLoc = consumeToken();
{
CodeCompletionCallbacks::InEnumElementRawValueRAII
InEnumElementRawValue(CodeCompletion);
RawValueExpr = parseExpr(diag::expected_expr_enum_case_raw_value);
}
if (RawValueExpr.hasCodeCompletion()) {
Status.setHasCodeCompletion();
return Status;
}
if (RawValueExpr.isNull()) {
Status.setIsParseError();
return Status;
}
// The raw value must be syntactically a simple literal.
LiteralRawValueExpr = dyn_cast<LiteralExpr>(RawValueExpr.getPtrOrNull());
if (!LiteralRawValueExpr
|| isa<InterpolatedStringLiteralExpr>(LiteralRawValueExpr)) {
diagnose(RawValueExpr.getPtrOrNull()->getLoc(),
diag::nonliteral_enum_case_raw_value);
LiteralRawValueExpr = nullptr;
}
}
// For recovery, again make sure the the user didn't try to spell a switch
// case label:
// 'case Identifier:' or
// 'case Identifier where ...:'
if (Tok.is(tok::colon) || Tok.is(tok::kw_where)) {
diagnose(CaseLoc, diag::case_outside_of_switch, "case");
skipUntilDeclRBrace();
Status.setIsParseError();
return Status;
}
// Create the element.
auto *result = new (Context) EnumElementDecl(NameLoc, Name,
ArgType.getPtrOrNull(),
EqualsLoc,
LiteralRawValueExpr,
CurDeclContext);
result->getMutableAttrs() = Attributes;
Elements.push_back(result);
// Continue through the comma-separated list.
if (!Tok.is(tok::comma))
break;
CommaLoc = consumeToken(tok::comma);
}
if (!(Flags & PD_AllowEnumElement)) {
diagnose(CaseLoc, diag::disallowed_enum_element);
// Don't add the EnumElementDecls unless the current context
// is allowed to have EnumElementDecls.
Status.setIsParseError();
return Status;
}
// Create and insert the EnumCaseDecl containing all the elements.
auto TheCase = EnumCaseDecl::create(CaseLoc, Elements, CurDeclContext);
Decls.push_back(TheCase);
// Insert the element decls.
std::copy(Elements.begin(), Elements.end(), std::back_inserter(Decls));
return Status;
}
/// \brief Parse the members in a struct/class/protocol definition.
///
/// \verbatim
/// decl*
/// \endverbatim
bool Parser::parseNominalDeclMembers(SmallVectorImpl<Decl *> &memberDecls,
SourceLoc LBLoc, SourceLoc &RBLoc,
Diag<> ErrorDiag, ParseDeclOptions flags) {
bool previousHadSemi = true;
parseList(tok::r_brace, LBLoc, RBLoc, tok::semi, /*OptionalSep=*/true,
/*AllowSepAfterLast=*/false, ErrorDiag, [&]() -> ParserStatus {
// If the previous declaration didn't have a semicolon and this new
// declaration doesn't start a line, complain.
if (!previousHadSemi && !Tok.isAtStartOfLine()) {
SourceLoc endOfPrevious = getEndOfPreviousLoc();
diagnose(endOfPrevious, diag::declaration_same_line_without_semi)
.fixItInsert(endOfPrevious, ";");
// FIXME: Add semicolon to the AST?
}
previousHadSemi = false;
if (parseDecl(memberDecls, flags).isError())
return makeParserError();
// Check whether the previous declaration had a semicolon after it.
if (!memberDecls.empty() && memberDecls.back()->TrailingSemiLoc.isValid())
previousHadSemi = true;
return makeParserSuccess();
});
// If we found the closing brace, then the caller should not care if there
// were errors while parsing inner decls, because we recovered.
return !RBLoc.isValid();
}
/// \brief Parse a 'struct' declaration, returning true (and doing no token
/// skipping) on error.
///
/// \verbatim
/// decl-struct:
/// 'struct' attribute-list identifier generic-params? inheritance?
/// '{' decl-struct-body '}
/// decl-struct-body:
/// decl*
/// \endverbatim
ParserResult<StructDecl> Parser::parseDeclStruct(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
SourceLoc StructLoc = consumeToken(tok::kw_struct);
Identifier StructName;
SourceLoc StructNameLoc;
ParserStatus Status;
Status |=
parseIdentifierDeclName(*this, StructName, StructNameLoc, tok::colon,
tok::l_brace, TokenProperty::StartsWithLess,
diag::expected_identifier_in_decl, "struct");
if (Status.isError())
return nullptr;
// Parse the generic-params, if present.
GenericParamList *GenericParams = nullptr;
{
Scope S(this, ScopeKind::Generics);
GenericParams = maybeParseGenericParams();
}
StructDecl *SD = new (Context) StructDecl(StructLoc, StructName,
StructNameLoc,
{ },
GenericParams,
CurDeclContext);
setLocalDiscriminator(SD);
if (Attributes.shouldSaveInAST())
SD->getMutableAttrs() = Attributes;
// Parse optional inheritance clause within the context of the struct.
if (Tok.is(tok::colon)) {
ContextChange CC(*this, SD);
SmallVector<TypeLoc, 2> Inherited;
Status |= parseInheritance(Inherited);
SD->setInherited(Context.AllocateCopy(Inherited));
}
SmallVector<Decl*, 8> MemberDecls;
SourceLoc LBLoc, RBLoc;
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_struct)) {
LBLoc = Tok.getLoc();
RBLoc = LBLoc;
Status.setIsParseError();
} else {
// Parse the body.
ContextChange CC(*this, SD);
Scope S(this, ScopeKind::StructBody);
if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc,
diag::expected_rbrace_struct,
PD_HasContainerType))
Status.setIsParseError();
}
if (MemberDecls.empty())
SD->setMembers({}, { LBLoc, RBLoc });
else
SD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc });
addToScope(SD);
if (Flags & PD_DisallowNominalTypes) {
diagnose(StructLoc, diag::disallowed_type);
Status.setIsParseError();
}
return makeParserResult(Status, SD);
}
/// \brief Parse a 'class' declaration, doing no token skipping on error.
///
/// \verbatim
/// decl-class:
/// 'class' attribute-list identifier generic-params? inheritance?
/// '{' decl-class-body '}
/// decl-class-body:
/// decl*
/// \endverbatim
ParserResult<ClassDecl> Parser::parseDeclClass(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
SourceLoc ClassLoc = consumeToken(tok::kw_class);
Identifier ClassName;
SourceLoc ClassNameLoc;
ParserStatus Status;
Status |=
parseIdentifierDeclName(*this, ClassName, ClassNameLoc, tok::colon,
tok::l_brace, TokenProperty::StartsWithLess,
diag::expected_identifier_in_decl, "class");
if (Status.isError())
return nullptr;
// Parse the generic-params, if present.
GenericParamList *GenericParams = nullptr;
{
Scope S(this, ScopeKind::Generics);
GenericParams = maybeParseGenericParams();
}
// Create the class.
ClassDecl *CD = new (Context) ClassDecl(ClassLoc, ClassName, ClassNameLoc,
{ }, GenericParams, CurDeclContext);
setLocalDiscriminator(CD);
// Attach attributes.
if (Attributes.shouldSaveInAST())
CD->getMutableAttrs() = Attributes;
// Parse optional inheritance clause within the context of the class.
if (Tok.is(tok::colon)) {
ContextChange CC(*this, CD);
SmallVector<TypeLoc, 2> Inherited;
Status |= parseInheritance(Inherited);
CD->setInherited(Context.AllocateCopy(Inherited));
}
SmallVector<Decl*, 8> MemberDecls;
SourceLoc LBLoc, RBLoc;
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_class)) {
LBLoc = Tok.getLoc();
RBLoc = LBLoc;
Status.setIsParseError();
} else {
// Parse the body.
ContextChange CC(*this, CD);
Scope S(this, ScopeKind::ClassBody);
ParseDeclOptions Options(PD_HasContainerType | PD_AllowDestructor |
PD_InClass);
if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc,
diag::expected_rbrace_class,
Options))
Status.setIsParseError();
}
CD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc });
addToScope(CD);
if (Flags & PD_DisallowNominalTypes) {
diagnose(ClassLoc, diag::disallowed_type);
Status.setIsParseError();
}
return makeParserResult(Status, CD);
}
/// \brief Parse a 'protocol' declaration, doing no token skipping on error.
///
/// \verbatim
/// decl-protocol:
/// protocol-head '{' protocol-member* '}'
///
/// protocol-head:
/// 'protocol' attribute-list identifier inheritance?
///
/// protocol-member:
/// decl-func
/// decl-var-simple
/// decl-typealias
/// \endverbatim
ParserResult<ProtocolDecl> Parser::
parseDeclProtocol(ParseDeclOptions Flags, DeclAttributes &Attributes) {
SourceLoc ProtocolLoc = consumeToken(tok::kw_protocol);
SourceLoc NameLoc;
Identifier ProtocolName;
ParserStatus Status;
Status |=
parseIdentifierDeclName(*this, ProtocolName, NameLoc, tok::colon,
tok::l_brace, diag::expected_identifier_in_decl,
"protocol");
if (Status.isError())
return nullptr;
// Parse optional inheritance clause.
SmallVector<TypeLoc, 4> InheritedProtocols;
if (Tok.is(tok::colon))
Status |= parseInheritance(InheritedProtocols);
ProtocolDecl *Proto
= new (Context) ProtocolDecl(CurDeclContext, ProtocolLoc, NameLoc,
ProtocolName,
Context.AllocateCopy(InheritedProtocols));
// No need to setLocalDiscriminator: protocols can't appear in local contexts.
if (Attributes.shouldSaveInAST())
Proto->getMutableAttrs() = Attributes;
ContextChange CC(*this, Proto);
Scope ProtocolBodyScope(this, ScopeKind::ProtocolBody);
// Parse the body.
{
// The list of protocol elements.
SmallVector<Decl*, 8> Members;
SourceLoc LBraceLoc;
SourceLoc RBraceLoc;
if (parseToken(tok::l_brace, LBraceLoc, diag::expected_lbrace_protocol)) {
LBraceLoc = Tok.getLoc();
RBraceLoc = LBraceLoc;
Status.setIsParseError();
} else {
// Parse the members.
ParseDeclOptions Options(PD_HasContainerType |
PD_DisallowNominalTypes |
PD_DisallowInit | PD_DisallowTypeAliasDef |
PD_InProtocol);
if (parseNominalDeclMembers(Members, LBraceLoc, RBraceLoc,
diag::expected_rbrace_protocol,
Options))
Status.setIsParseError();
}
// Install the protocol elements.
Proto->setMembers(Context.AllocateCopy(Members), { LBraceLoc, RBraceLoc });
}
if (Flags & PD_DisallowNominalTypes) {
diagnose(ProtocolLoc, diag::disallowed_type);
Status.setIsParseError();
} else if (!(Flags & PD_AllowTopLevel)) {
diagnose(ProtocolLoc, diag::decl_inner_scope);
Status.setIsParseError();
}
return makeParserResult(Status, Proto);
}
/// \brief Parse a 'subscript' declaration.
///
/// \verbatim
/// decl-subscript:
/// subscript-head get-set
/// subscript-head
/// 'subscript' attribute-list pattern-tuple '->' type
/// \endverbatim
ParserStatus Parser::parseDeclSubscript(ParseDeclOptions Flags,
DeclAttributes &Attributes,
SmallVectorImpl<Decl *> &Decls) {
ParserStatus Status;
SourceLoc SubscriptLoc = consumeToken(tok::kw_subscript);
// pattern-tuple
if (Tok.isNot(tok::l_paren)) {
diagnose(Tok, diag::expected_lparen_subscript);
return makeParserError();
}
ParserResult<Pattern> Indices =
parsePatternTuple(/*IsLet*/true, /*IsArgList*/true,/*DefaultArgs=*/nullptr);
if (Indices.isNull() || Indices.hasCodeCompletion())
return Indices;
// '->'
if (!Tok.is(tok::arrow)) {
diagnose(Tok, diag::expected_arrow_subscript);
return makeParserError();
}
SourceLoc ArrowLoc = consumeToken();
// type
ParserResult<TypeRepr> ElementTy =
parseTypeAnnotation(diag::expected_type_subscript);
if (ElementTy.isNull() || ElementTy.hasCodeCompletion())
return ElementTy;
// Build an AST for the subscript declaration.
auto *Subscript = new (Context) SubscriptDecl(Context.Id_subscript,
SubscriptLoc, Indices.get(),
ArrowLoc, ElementTy.get(),
CurDeclContext);
if (Attributes.shouldSaveInAST())
Subscript->getMutableAttrs() = Attributes;
Decls.push_back(Subscript);
// '{'
// Parse getter and setter.
SourceRange DefRange = SourceRange();
FuncDecl *Get = nullptr;
FuncDecl *Set = nullptr;
if (Tok.isNot(tok::l_brace)) {
// Subscript declarations must always have at least a getter, so they need
// to be followed by a {.
diagnose(Tok, diag::expected_lbrace_subscript);
Status.setIsParseError();
} else {
FuncDecl *WillSet = nullptr, *DidSet = nullptr;
SourceLoc LBLoc;
SourceLoc RBLoc;
if (parseGetSet(Flags, Indices.get(), ElementTy.get(),
Get, Set, WillSet, DidSet, LBLoc, RBLoc,
/*StaticLoc=*/SourceLoc(), Decls))
Status.setIsParseError();
if (Status.isSuccess()) {
if (!Get)
diagnose(SubscriptLoc, diag::subscript_without_get);
if (WillSet || DidSet)
diagnose(DidSet ? DidSet->getLoc() : WillSet->getLoc(),
diag::observingproperty_in_subscript, bool(DidSet));
}
DefRange = SourceRange(LBLoc, RBLoc);
}
bool Invalid = false;
// Reject 'subscript' functions outside of type decls
if (!(Flags & PD_HasContainerType)) {
diagnose(SubscriptLoc, diag::subscript_decl_wrong_scope);
Invalid = true;
}
// If we had no getter (e.g., because we're in SIL mode or because the
// program isn't valid) create a stub here.
if (!Get) {
Get = createAccessorFunc(SubscriptLoc, /*ArgPattern*/ nullptr,
ElementTy.get(), Indices.get(),
/*StaticLoc*/ SourceLoc(), Flags,
AccessorKind::IsGetter, this);
Get->setInvalid();
Get->setType(ErrorType::get(Context));
Decls.push_back(Get);
}
Subscript->setAccessors(DefRange, Get, Set);
if (Invalid) {
Subscript->setType(ErrorType::get(Context));
Subscript->setInvalid();
}
// No need to setLocalDiscriminator because subscripts cannot
// validly appear outside of type decls.
return Status;
}
ParserResult<ConstructorDecl>
Parser::parseDeclConstructor(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
assert(Tok.is(tok::kw_init));
SourceLoc ConstructorLoc = consumeToken();
const bool ConstructorsNotAllowed = !(Flags & PD_HasContainerType);
// Reject constructors outside of types.
if (ConstructorsNotAllowed) {
diagnose(Tok, diag::initializer_decl_wrong_scope);
}
// Parse the generic-params, if present.
Scope S(this, ScopeKind::Generics);
GenericParamList *GenericParams = maybeParseGenericParams();
// Parse the parameters.
// FIXME: handle code completion in Arguments.
DefaultArgumentInfo DefaultArgs;
Pattern *ArgPattern;
Pattern *BodyPattern;
bool HasSelectorStyleSignature;
ParserStatus SignatureStatus =
parseConstructorArguments(ArgPattern, BodyPattern, DefaultArgs,
HasSelectorStyleSignature);
if (SignatureStatus.hasCodeCompletion() && !CodeCompletion) {
// Trigger delayed parsing, no need to continue.
return SignatureStatus;
}
VarDecl *SelfDecl;
auto *SelfPattern = buildImplicitSelfParameter(ConstructorLoc,
CurDeclContext, &SelfDecl);
Scope S2(this, ScopeKind::ConstructorBody);
auto *CD = new (Context) ConstructorDecl(Context.Id_init, ConstructorLoc,
SelfPattern, ArgPattern,
SelfPattern, BodyPattern,
GenericParams, CurDeclContext);
// No need to setLocalDiscriminator.
if (HasSelectorStyleSignature)
CD->setHasSelectorStyleSignature();
DefaultArgs.setFunctionContext(CD);
// Pass the function signature to code completion.
if (SignatureStatus.hasCodeCompletion())
CodeCompletion->setDelayedParsedDecl(CD);
if (ConstructorsNotAllowed || SignatureStatus.isError()) {
// Tell the type checker not to touch this constructor.
CD->setInvalid();
}
addPatternVariablesToScope(ArrayRef<Pattern*>{SelfPattern, BodyPattern} );
// '{'
if (Tok.is(tok::l_brace)) {
// Parse the body.
ParseFunctionBody CC(*this, CD);
if (!isDelayedParsingEnabled()) {
ParserResult<BraceStmt> Body = parseBraceItemList(diag::invalid_diagnostic);
if (!Body.isNull())
CD->setBody(Body.get());
} else {
consumeAbstractFunctionBody(CD, Attributes);
}
}
if (Attributes.shouldSaveInAST())
CD->getMutableAttrs() = Attributes;
return makeParserResult(CD);
}
ParserResult<DestructorDecl> Parser::
parseDeclDestructor(ParseDeclOptions Flags, DeclAttributes &Attributes) {
assert(Tok.is(tok::kw_deinit) || Tok.is(tok::kw_destructor));
bool hasDestructorKeyword = Tok.is(tok::kw_destructor);
SourceLoc DestructorLoc = consumeToken();
// Parse extraneous parentheses.
SourceRange ParenRange;
if (Tok.is(tok::l_paren)) {
SourceLoc LParenLoc = consumeToken();
SourceLoc RParenLoc;
skipUntil(tok::r_paren);
if (Tok.is(tok::r_paren)) {
SourceLoc RParenLoc = consumeToken();
ParenRange = SourceRange(LParenLoc, RParenLoc);
} else {
diagnose(Tok, diag::opened_destructor_expected_rparen);
diagnose(LParenLoc, diag::opening_paren);
}
}
// If we have 'destructor', replace it (and any extraneous parentheses) with
// 'deinit'.
if (hasDestructorKeyword) {
SourceLoc StartLoc = DestructorLoc;
SourceLoc EndLoc = ParenRange.isValid()? ParenRange.End : DestructorLoc;
EndLoc = Lexer::getLocForEndOfToken(Context.SourceMgr, EndLoc);
diagnose(Tok, diag::destructor_is_deinit)
.fixItReplaceChars(StartLoc, EndLoc, "deinit");
} else if (ParenRange.isValid()) {
diagnose(ParenRange.Start, diag::destructor_params)
.fixItRemoveChars(Lexer::getLocForEndOfToken(Context.SourceMgr,
DestructorLoc),
Lexer::getLocForEndOfToken(Context.SourceMgr,
ParenRange.End));
}
// '{'
if (!Tok.is(tok::l_brace)) {
if (!Tok.is(tok::l_brace) && !isInSILMode()) {
diagnose(Tok, diag::expected_lbrace_destructor);
return nullptr;
}
}
VarDecl *SelfDecl;
auto *SelfPattern = buildImplicitSelfParameter(DestructorLoc,
CurDeclContext, &SelfDecl);
Scope S(this, ScopeKind::DestructorBody);
auto *DD = new (Context) DestructorDecl(Context.Id_deinit, DestructorLoc,
SelfPattern, CurDeclContext);
// No need to setLocalDiscriminator.
addToScope(SelfDecl);
// Parse the body.
if (Tok.is(tok::l_brace)) {
ParseFunctionBody CC(*this, DD);
if (!isDelayedParsingEnabled()) {
ParserResult<BraceStmt> Body = parseBraceItemList(diag::invalid_diagnostic);
if (!Body.isNull())
DD->setBody(Body.get());
} else {
consumeAbstractFunctionBody(DD, Attributes);
}
}
if (Attributes.shouldSaveInAST())
DD->getMutableAttrs() = Attributes;
// Reject 'destructor' functions outside of classes
if (!(Flags & PD_AllowDestructor)) {
diagnose(DestructorLoc, diag::destructor_decl_outside_class);
// Tell the type checker not to touch this destructor.
DD->setInvalid();
}
return makeParserResult(DD);
}
ParserResult<OperatorDecl> Parser::parseDeclOperator(bool AllowTopLevel,
DeclAttributes &Attributes) {
assert(Tok.isContextualKeyword("operator") &&
"no 'operator' at start of operator decl?!");
SourceLoc OperatorLoc = consumeToken(tok::identifier);
if (Attributes.hasNonVirtualAttributes())
diagnose(Attributes.AtLoc, diag::operator_attributes);
auto kind = llvm::StringSwitch<Optional<DeclKind>>(Tok.getText())
.Case("prefix", DeclKind::PrefixOperator)
.Case("postfix", DeclKind::PostfixOperator)
.Case("infix", DeclKind::InfixOperator)
.Default(Nothing);
assert(kind && "no fixity after 'operator'?!");
SourceLoc KindLoc = consumeToken(tok::identifier);
if (!Tok.isAnyOperator() && !Tok.is(tok::exclaim_postfix)) {
diagnose(Tok, diag::expected_operator_name_after_operator);
return nullptr;
}
Identifier Name = Context.getIdentifier(Tok.getText());
SourceLoc NameLoc = consumeToken();
// Postfix operator '!' is reserved.
if (*kind == DeclKind::PostfixOperator &&Name.str().equals("!")) {
diagnose(NameLoc, diag::custom_operator_postfix_exclaim);
}
if (!Tok.is(tok::l_brace)) {
diagnose(Tok, diag::expected_lbrace_after_operator);
return nullptr;
}
ParserResult<OperatorDecl> Result;
switch (*kind) {
case DeclKind::PrefixOperator:
Result = parseDeclPrefixOperator(OperatorLoc, KindLoc, Name, NameLoc);
break;
case DeclKind::PostfixOperator:
Result = parseDeclPostfixOperator(OperatorLoc, KindLoc, Name, NameLoc);
break;
case DeclKind::InfixOperator:
Result = parseDeclInfixOperator(OperatorLoc, KindLoc, Name, NameLoc);
break;
default:
llvm_unreachable("impossible");
}
if (Tok.is(tok::r_brace))
consumeToken();
if (!AllowTopLevel) {
diagnose(OperatorLoc, diag::operator_decl_inner_scope);
return nullptr;
}
return Result;
}
ParserResult<OperatorDecl>
Parser::parseDeclPrefixOperator(SourceLoc OperatorLoc, SourceLoc PrefixLoc,
Identifier Name, SourceLoc NameLoc) {
SourceLoc LBraceLoc = consumeToken(tok::l_brace);
while (!Tok.is(tok::r_brace)) {
// Currently there are no operator attributes for prefix operators.
if (Tok.is(tok::identifier))
diagnose(Tok, diag::unknown_prefix_operator_attribute, Tok.getText());
else
diagnose(Tok, diag::expected_operator_attribute);
skipUntilDeclRBrace();
return nullptr;
}
SourceLoc RBraceLoc = Tok.getLoc();
return makeParserResult(
new (Context) PrefixOperatorDecl(CurDeclContext, OperatorLoc, PrefixLoc,
Name, NameLoc, LBraceLoc, RBraceLoc));
}
ParserResult<OperatorDecl>
Parser::parseDeclPostfixOperator(SourceLoc OperatorLoc, SourceLoc PostfixLoc,
Identifier Name, SourceLoc NameLoc) {
SourceLoc LBraceLoc = consumeToken(tok::l_brace);
while (!Tok.is(tok::r_brace)) {
// Currently there are no operator attributes for postfix operators.
if (Tok.is(tok::identifier))
diagnose(Tok, diag::unknown_postfix_operator_attribute, Tok.getText());
else
diagnose(Tok, diag::expected_operator_attribute);
skipUntilDeclRBrace();
return nullptr;
}
SourceLoc RBraceLoc = Tok.getLoc();
return makeParserResult(
new (Context) PostfixOperatorDecl(CurDeclContext, OperatorLoc,
PostfixLoc, Name, NameLoc, LBraceLoc,
RBraceLoc));
}
ParserResult<OperatorDecl>
Parser::parseDeclInfixOperator(SourceLoc OperatorLoc, SourceLoc InfixLoc,
Identifier Name, SourceLoc NameLoc) {
SourceLoc LBraceLoc = consumeToken(tok::l_brace);
// Initialize InfixData with default attributes:
// precedence 100, associativity none
unsigned char precedence = 100;
Associativity associativity = Associativity::None;
SourceLoc AssociativityLoc, AssociativityValueLoc,
PrecedenceLoc, PrecedenceValueLoc;
while (!Tok.is(tok::r_brace)) {
if (!Tok.is(tok::identifier)) {
diagnose(Tok, diag::expected_operator_attribute);
skipUntilDeclRBrace();
return nullptr;
}
if (Tok.getText().equals("associativity")) {
if (AssociativityLoc.isValid()) {
diagnose(Tok, diag::operator_associativity_redeclared);
skipUntilDeclRBrace();
return nullptr;
}
AssociativityLoc = consumeToken();
if (!Tok.is(tok::identifier)) {
diagnose(Tok, diag::expected_infix_operator_associativity);
skipUntilDeclRBrace();
return nullptr;
}
auto parsedAssociativity
= llvm::StringSwitch<Optional<Associativity>>(Tok.getText())
.Case("none", Associativity::None)
.Case("left", Associativity::Left)
.Case("right", Associativity::Right)
.Default(Nothing);
if (!parsedAssociativity) {
diagnose(Tok, diag::unknown_infix_operator_associativity, Tok.getText());
skipUntilDeclRBrace();
return nullptr;
}
associativity = *parsedAssociativity;
AssociativityValueLoc = consumeToken();
continue;
}
if (Tok.getText().equals("precedence")) {
if (PrecedenceLoc.isValid()) {
diagnose(Tok, diag::operator_precedence_redeclared);
skipUntilDeclRBrace();
return nullptr;
}
PrecedenceLoc = consumeToken();
if (!Tok.is(tok::integer_literal)) {
diagnose(Tok, diag::expected_infix_operator_precedence);
skipUntilDeclRBrace();
return nullptr;
}
if (Tok.getText().getAsInteger(0, precedence)) {
diagnose(Tok, diag::invalid_infix_operator_precedence);
precedence = 255;
}
PrecedenceValueLoc = consumeToken();
continue;
}
diagnose(Tok, diag::unknown_infix_operator_attribute, Tok.getText());
skipUntilDeclRBrace();
return nullptr;
}
SourceLoc RBraceLoc = Tok.getLoc();
return makeParserResult(new (Context) InfixOperatorDecl(
CurDeclContext, OperatorLoc, InfixLoc, Name, NameLoc, LBraceLoc,
AssociativityLoc, AssociativityValueLoc, PrecedenceLoc,
PrecedenceValueLoc, RBraceLoc, InfixData(precedence, associativity)));
}