mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
JoeP helped tweak things to ensure that pointer conversions are still considered, but we no longer need the disjunction on InOutExprs to accommodate user-defined inout conversions. This causes some regressions in error reporting: <rdar://problem/17489983> inout type mismatches complain about '@lvalue inout T' <rdar://problem/17489894> inout not rejected as operand to assignment operator Swift SVN r19306
1374 lines
54 KiB
C++
1374 lines
54 KiB
C++
//===--- CSGen.cpp - Constraint Generator ---------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements constraint generation for the type checker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "ConstraintGraph.h"
|
|
#include "ConstraintSystem.h"
|
|
#include "swift/AST/ASTVisitor.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/AST/Attr.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
|
|
using namespace swift;
|
|
using namespace swift::constraints;
|
|
|
|
/// \brief Skip any implicit conversions applied to this expression.
|
|
static Expr *skipImplicitConversions(Expr *expr) {
|
|
while (auto ice = dyn_cast<ImplicitConversionExpr>(expr))
|
|
expr = ice->getSubExpr();
|
|
return expr;
|
|
}
|
|
|
|
/// \brief Find the declaration directly referenced by this expression.
|
|
static ValueDecl *findReferencedDecl(Expr *expr, SourceLoc &loc) {
|
|
do {
|
|
expr = expr->getSemanticsProvidingExpr();
|
|
|
|
if (auto ice = dyn_cast<ImplicitConversionExpr>(expr)) {
|
|
expr = ice->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (auto dre = dyn_cast<DeclRefExpr>(expr)) {
|
|
loc = dre->getLoc();
|
|
return dre->getDecl();
|
|
}
|
|
|
|
return nullptr;
|
|
} while (true);
|
|
}
|
|
|
|
/// \brief Return 'true' if the decl in question refers to an operator that
|
|
/// could be added to the global scope via a delayed protcol conformance.
|
|
/// Currently, this is only true for '==', which is added via an Equatable
|
|
/// conformance.
|
|
static bool isDelayedOperatorDecl(ValueDecl *vd) {
|
|
return vd && (vd->getName().str() == "==");
|
|
}
|
|
|
|
namespace {
|
|
class ConstraintGenerator : public ExprVisitor<ConstraintGenerator, Type> {
|
|
ConstraintSystem &CS;
|
|
|
|
/// \brief Add constraints for a reference to a named member of the given
|
|
/// base type, and return the type of such a reference.
|
|
Type addMemberRefConstraints(Expr *expr, Expr *base, DeclName name) {
|
|
// The base must have a member of the given name, such that accessing
|
|
// that member through the base returns a value convertible to the type
|
|
// of this expression.
|
|
auto baseTy = base->getType();
|
|
auto tv = CS.createTypeVariable(
|
|
CS.getConstraintLocator(expr, ConstraintLocator::Member),
|
|
TVO_CanBindToLValue);
|
|
// FIXME: Constraint below should be a ::Member constraint?
|
|
CS.addValueMemberConstraint(baseTy, name, tv,
|
|
CS.getConstraintLocator(expr, ConstraintLocator::MemberRefBase));
|
|
return tv;
|
|
}
|
|
|
|
/// \brief Add constraints for a reference to a specific member of the given
|
|
/// base type, and return the type of such a reference.
|
|
Type addMemberRefConstraints(Expr *expr, Expr *base, ValueDecl *decl) {
|
|
// If we're referring to an invalid declaration, fail.
|
|
if (!decl)
|
|
return nullptr;
|
|
|
|
CS.getTypeChecker().validateDecl(decl, true);
|
|
if (decl->isInvalid())
|
|
return nullptr;
|
|
|
|
auto memberLocator =
|
|
CS.getConstraintLocator(expr, ConstraintLocator::Member);
|
|
auto tv = CS.createTypeVariable(memberLocator, TVO_CanBindToLValue);
|
|
OverloadChoice choice(base->getType(), decl, /*isSpecialized=*/false);
|
|
auto locator = CS.getConstraintLocator(expr, ConstraintLocator::Member);
|
|
CS.addBindOverloadConstraint(tv, choice, locator);
|
|
return tv;
|
|
}
|
|
|
|
/// \brief Add constraints for a subscript operation.
|
|
Type addSubscriptConstraints(Expr *expr, Expr *base, Expr *index) {
|
|
ASTContext &Context = CS.getASTContext();
|
|
|
|
// Locators used in this expression.
|
|
auto indexLocator
|
|
= CS.getConstraintLocator(expr, ConstraintLocator::SubscriptIndex);
|
|
auto resultLocator
|
|
= CS.getConstraintLocator(expr, ConstraintLocator::SubscriptResult);
|
|
|
|
// The base type must have a subscript declaration with type
|
|
// I -> inout? O, where I and O are fresh type variables. The index
|
|
// expression must be convertible to I and the subscript expression
|
|
// itself has type inout? O, where O may or may not be an lvalue.
|
|
auto inputTv = CS.createTypeVariable(indexLocator, /*options=*/0);
|
|
auto outputTv = CS.createTypeVariable(resultLocator,
|
|
TVO_CanBindToLValue);
|
|
|
|
auto subscriptMemberLocator
|
|
= CS.getConstraintLocator(expr, ConstraintLocator::SubscriptMember);
|
|
|
|
// Add the member constraint for a subscript declaration.
|
|
// FIXME: lame name!
|
|
auto baseTy = base->getType();
|
|
auto fnTy = FunctionType::get(inputTv, outputTv);
|
|
CS.addValueMemberConstraint(baseTy, Context.Id_subscript,
|
|
fnTy, subscriptMemberLocator);
|
|
|
|
// Add the constraint that the index expression's type be convertible
|
|
// to the input type of the subscript operator.
|
|
CS.addConstraint(ConstraintKind::ArgumentTupleConversion,
|
|
index->getType(), inputTv, indexLocator);
|
|
return outputTv;
|
|
}
|
|
|
|
public:
|
|
ConstraintGenerator(ConstraintSystem &CS) : CS(CS) { }
|
|
|
|
ConstraintSystem &getConstraintSystem() const { return CS; }
|
|
|
|
Type visitErrorExpr(ErrorExpr *E) {
|
|
// FIXME: Can we do anything with error expressions at this point?
|
|
return nullptr;
|
|
}
|
|
|
|
Type visitLiteralExpr(LiteralExpr *expr) {
|
|
auto protocol = CS.getTypeChecker().getLiteralProtocol(expr);
|
|
if (!protocol) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
TVO_PrefersSubtypeBinding);
|
|
CS.addConstraint(ConstraintKind::ConformsTo, tv,
|
|
protocol->getDeclaredType(),
|
|
CS.getConstraintLocator(CS.rootExpr));
|
|
return tv;
|
|
}
|
|
|
|
Type
|
|
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *expr) {
|
|
// Dig out the StringInterpolationConvertible protocol.
|
|
auto &tc = CS.getTypeChecker();
|
|
auto &C = CS.getASTContext();
|
|
auto interpolationProto
|
|
= tc.getProtocol(expr->getLoc(),
|
|
KnownProtocolKind::StringInterpolationConvertible);
|
|
if (!interpolationProto) {
|
|
tc.diagnose(expr->getStartLoc(), diag::interpolation_missing_proto);
|
|
return nullptr;
|
|
}
|
|
|
|
// The type of the expression must conform to the
|
|
// StringInterpolationConvertible protocol.
|
|
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
TVO_PrefersSubtypeBinding);
|
|
CS.addConstraint(ConstraintKind::ConformsTo, tv,
|
|
interpolationProto->getDeclaredType(),
|
|
CS.getConstraintLocator(CS.rootExpr));
|
|
|
|
// Each of the segments is passed as an argument to
|
|
// convertFromStringInterpolationSegment().
|
|
unsigned index = 0;
|
|
auto tvMeta = MetatypeType::get(tv);
|
|
for (auto segment : expr->getSegments()) {
|
|
auto locator = CS.getConstraintLocator(
|
|
expr,
|
|
LocatorPathElt::getInterpolationArgument(index++));
|
|
auto segmentTyV = CS.createTypeVariable(locator, /*options=*/0);
|
|
auto returnTyV = CS.createTypeVariable(locator, /*options=*/0);
|
|
auto methodTy = FunctionType::get(segmentTyV, returnTyV);
|
|
|
|
CS.addConstraint(Constraint::create(CS, ConstraintKind::Conversion,
|
|
segment->getType(),
|
|
segmentTyV,
|
|
Identifier(),
|
|
locator));
|
|
|
|
CS.addConstraint(Constraint::create(CS, ConstraintKind::ValueMember,
|
|
tvMeta,
|
|
methodTy,
|
|
C.Id_ConvertFromStringInterpolationSegment,
|
|
locator));
|
|
|
|
}
|
|
|
|
return tv;
|
|
}
|
|
|
|
Type visitDeclRefExpr(DeclRefExpr *E) {
|
|
// If we're referring to an invalid declaration, don't type-check.
|
|
//
|
|
// FIXME: If the decl is in error, we get no information from this.
|
|
// We may, alternatively, want to use a type variable in that case,
|
|
// and possibly infer the type of the variable that way.
|
|
CS.getTypeChecker().validateDecl(E->getDecl(), true);
|
|
if (E->getDecl()->isInvalid())
|
|
return nullptr;
|
|
|
|
auto locator = CS.getConstraintLocator(E);
|
|
|
|
// Create an overload choice referencing this declaration and immediately
|
|
// resolve it. This records the overload for use later.
|
|
auto tv = CS.createTypeVariable(locator, TVO_CanBindToLValue);
|
|
CS.resolveOverload(locator, tv,
|
|
OverloadChoice(Type(), E->getDecl(),
|
|
E->isSpecialized()));
|
|
|
|
return tv;
|
|
}
|
|
|
|
Type visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E) {
|
|
return E->getType();
|
|
}
|
|
|
|
Type visitSuperRefExpr(SuperRefExpr *E) {
|
|
if (E->getType())
|
|
return E->getType();
|
|
|
|
// Resolve the super type of 'self'.
|
|
return getSuperType(E->getSelf(), E->getLoc(),
|
|
diag::super_not_in_class_method,
|
|
diag::super_with_no_base_class);
|
|
}
|
|
|
|
Type visitTypeExpr(TypeExpr *E) {
|
|
Type type;
|
|
// If this is an implicit TypeExpr, don't validate its contents.
|
|
if (auto *rep = E->getTypeRepr())
|
|
type = CS.TC.resolveType(rep, CS.DC, TR_AllowUnboundGenerics);
|
|
else
|
|
type = E->getTypeLoc().getType();
|
|
if (!type) return Type();
|
|
|
|
type = CS.openType(type);
|
|
E->getTypeLoc().setType(type, /*validated=*/true);
|
|
return MetatypeType::get(CS.openType(type));
|
|
}
|
|
|
|
Type visitUnresolvedConstructorExpr(UnresolvedConstructorExpr *expr) {
|
|
ASTContext &C = CS.getASTContext();
|
|
|
|
// Open a member constraint for constructors on the subexpr type.
|
|
// FIXME: the getRValueInstanceType() here is a hack to make the
|
|
// T.init withFoo(foo)
|
|
// syntax type-check. We shouldn't rely on any kinds of adjustments to
|
|
// the subexpression's type here, but dealing with this requires us to
|
|
// clarify when we can refer to constructors with ".init".
|
|
auto baseTy = expr->getSubExpr()->getType()
|
|
->getLValueOrInOutObjectType()->getRValueInstanceType();
|
|
auto argsTy = CS.createTypeVariable(
|
|
CS.getConstraintLocator(expr),
|
|
TVO_CanBindToLValue|TVO_PrefersSubtypeBinding);
|
|
auto methodTy = FunctionType::get(argsTy, baseTy);
|
|
CS.addValueMemberConstraint(baseTy,
|
|
C.Id_init,
|
|
methodTy,
|
|
CS.getConstraintLocator(expr, ConstraintLocator::ConstructorMember));
|
|
|
|
// The result of the expression is the partial application of the
|
|
// constructor to the subexpression.
|
|
return methodTy;
|
|
}
|
|
|
|
Type visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *expr) {
|
|
llvm_unreachable("Already type-checked");
|
|
}
|
|
|
|
Type visitOverloadedDeclRefExpr(OverloadedDeclRefExpr *expr) {
|
|
// For a reference to an overloaded declaration, we create a type variable
|
|
// that will be equal to different types depending on which overload
|
|
// is selected.
|
|
auto locator = CS.getConstraintLocator(expr);
|
|
auto tv = CS.createTypeVariable(locator, TVO_CanBindToLValue);
|
|
ArrayRef<ValueDecl*> decls = expr->getDecls();
|
|
SmallVector<OverloadChoice, 4> choices;
|
|
|
|
if (decls.size()) {
|
|
if (isDelayedOperatorDecl(decls[0])) {
|
|
expr->setIsPotentiallyDelayedGlobalOperator();
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, n = decls.size(); i != n; ++i) {
|
|
// If the result is invalid, skip it.
|
|
// FIXME: Note this as invalid, in case we don't find a solution,
|
|
// so we don't let errors cascade further.
|
|
CS.getTypeChecker().validateDecl(decls[i], true);
|
|
if (decls[i]->isInvalid())
|
|
continue;
|
|
|
|
choices.push_back(OverloadChoice(Type(), decls[i],
|
|
expr->isSpecialized()));
|
|
}
|
|
|
|
// If there are no valid overloads, give up.
|
|
if (choices.empty())
|
|
return nullptr;
|
|
|
|
// Record this overload set.
|
|
CS.addOverloadSet(tv, choices, locator);
|
|
return tv;
|
|
}
|
|
|
|
Type visitOverloadedMemberRefExpr(OverloadedMemberRefExpr *expr) {
|
|
// For a reference to an overloaded declaration, we create a type variable
|
|
// that will be bound to different types depending on which overload
|
|
// is selected.
|
|
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
TVO_CanBindToLValue);
|
|
ArrayRef<ValueDecl*> decls = expr->getDecls();
|
|
SmallVector<OverloadChoice, 4> choices;
|
|
auto baseTy = expr->getBase()->getType();
|
|
for (unsigned i = 0, n = decls.size(); i != n; ++i) {
|
|
// If the result is invalid, skip it.
|
|
// FIXME: Note this as invalid, in case we don't find a solution,
|
|
// so we don't let errors cascade further.
|
|
CS.getTypeChecker().validateDecl(decls[i], true);
|
|
if (decls[i]->isInvalid())
|
|
continue;
|
|
|
|
choices.push_back(OverloadChoice(baseTy, decls[i],
|
|
/*isSpecialized=*/false));
|
|
}
|
|
|
|
// If there are no valid overloads, give up.
|
|
if (choices.empty())
|
|
return nullptr;
|
|
|
|
// Record this overload set.
|
|
auto locator = CS.getConstraintLocator(expr, ConstraintLocator::Member);
|
|
CS.addOverloadSet(tv, choices, locator);
|
|
return tv;
|
|
}
|
|
|
|
Type visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *expr) {
|
|
// This is an error case, where we're trying to use type inference
|
|
// to help us determine which declaration the user meant to refer to.
|
|
// FIXME: Do we need to note that we're doing some kind of recovery?
|
|
return CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
TVO_CanBindToLValue);
|
|
}
|
|
|
|
Type visitMemberRefExpr(MemberRefExpr *expr) {
|
|
return addMemberRefConstraints(expr, expr->getBase(),
|
|
expr->getMember().getDecl());
|
|
}
|
|
|
|
Type visitDynamicMemberRefExpr(DynamicMemberRefExpr *expr) {
|
|
return addMemberRefConstraints(expr, expr->getBase(),
|
|
expr->getMember().getDecl());
|
|
}
|
|
|
|
Type visitUnresolvedMemberExpr(UnresolvedMemberExpr *expr) {
|
|
auto baseLocator = CS.getConstraintLocator(
|
|
expr,
|
|
ConstraintLocator::MemberRefBase);
|
|
auto memberLocator
|
|
= CS.getConstraintLocator(expr, ConstraintLocator::UnresolvedMember);
|
|
auto baseTy = CS.createTypeVariable(baseLocator, /*options=*/0);
|
|
auto memberTy = CS.createTypeVariable(memberLocator, TVO_CanBindToLValue);
|
|
|
|
// An unresolved member expression '.member' is modeled as a value member
|
|
// constraint
|
|
//
|
|
// T0.Type[.member] == T1
|
|
//
|
|
// for fresh type variables T0 and T1, which pulls out a static
|
|
// member, i.e., an enum case or a static variable.
|
|
auto baseMetaTy = MetatypeType::get(baseTy);
|
|
CS.addValueMemberConstraint(baseMetaTy, expr->getName(), memberTy,
|
|
memberLocator);
|
|
|
|
// If there is an argument, apply it.
|
|
if (auto arg = expr->getArgument()) {
|
|
// The result type of the function must be convertible to the base type.
|
|
// TODO: we definitely want this to include ImplicitlyUnwrappedOptional; does it
|
|
// need to include everything else in the world?
|
|
auto outputTy
|
|
= CS.createTypeVariable(
|
|
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction),
|
|
/*options=*/0);
|
|
CS.addConstraint(ConstraintKind::Conversion, outputTy, baseTy,
|
|
CS.getConstraintLocator(expr, ConstraintLocator::RvalueAdjustment));
|
|
|
|
// The function/enum case must be callable with the given argument.
|
|
auto funcTy = FunctionType::get(arg->getType(), outputTy);
|
|
CS.addConstraint(ConstraintKind::ApplicableFunction, funcTy,
|
|
memberTy,
|
|
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction));
|
|
|
|
return baseTy;
|
|
}
|
|
|
|
// Otherwise, the member needs to be convertible to the base type.
|
|
CS.addConstraint(ConstraintKind::Conversion, memberTy, baseTy,
|
|
CS.getConstraintLocator(expr, ConstraintLocator::RvalueAdjustment));
|
|
|
|
return memberTy;
|
|
}
|
|
|
|
Type visitUnresolvedDotExpr(UnresolvedDotExpr *expr) {
|
|
return addMemberRefConstraints(expr, expr->getBase(), expr->getName());
|
|
}
|
|
|
|
Type visitUnresolvedSelectorExpr(UnresolvedSelectorExpr *expr) {
|
|
return addMemberRefConstraints(expr, expr->getBase(), expr->getName());
|
|
}
|
|
|
|
Type visitUnresolvedSpecializeExpr(UnresolvedSpecializeExpr *expr) {
|
|
auto baseTy = expr->getSubExpr()->getType();
|
|
|
|
// We currently only support explicit specialization of generic types.
|
|
// FIXME: We could support explicit function specialization.
|
|
auto &tc = CS.getTypeChecker();
|
|
if (baseTy->is<AnyFunctionType>()) {
|
|
tc.diagnose(expr->getSubExpr()->getLoc(),
|
|
diag::cannot_explicitly_specialize_generic_function);
|
|
tc.diagnose(expr->getLAngleLoc(),
|
|
diag::while_parsing_as_left_angle_bracket);
|
|
return Type();
|
|
}
|
|
|
|
if (AnyMetatypeType *meta = baseTy->getAs<AnyMetatypeType>()) {
|
|
if (BoundGenericType *bgt
|
|
= meta->getInstanceType()->getAs<BoundGenericType>()) {
|
|
ArrayRef<Type> typeVars = bgt->getGenericArgs();
|
|
ArrayRef<TypeLoc> specializations = expr->getUnresolvedParams();
|
|
|
|
// If we have too many generic arguments, complain.
|
|
if (specializations.size() > typeVars.size()) {
|
|
tc.diagnose(expr->getSubExpr()->getLoc(),
|
|
diag::type_parameter_count_mismatch,
|
|
bgt->getDecl()->getName(),
|
|
typeVars.size(), specializations.size(),
|
|
false)
|
|
.highlight(SourceRange(expr->getLAngleLoc(),
|
|
expr->getRAngleLoc()));
|
|
tc.diagnose(bgt->getDecl(), diag::generic_type_declared_here,
|
|
bgt->getDecl()->getName());
|
|
return Type();
|
|
}
|
|
|
|
// Bind the specified generic arguments to the type variables in the
|
|
// open type.
|
|
for (size_t i = 0, size = specializations.size(); i < size; ++i) {
|
|
CS.addConstraint(ConstraintKind::Equal,
|
|
typeVars[i], specializations[i].getType(),
|
|
CS.getConstraintLocator(CS.rootExpr));
|
|
}
|
|
|
|
return baseTy;
|
|
} else {
|
|
tc.diagnose(expr->getSubExpr()->getLoc(), diag::not_a_generic_type,
|
|
meta->getInstanceType());
|
|
tc.diagnose(expr->getLAngleLoc(),
|
|
diag::while_parsing_as_left_angle_bracket);
|
|
return Type();
|
|
}
|
|
}
|
|
|
|
// FIXME: If the base type is a type variable, constrain it to a metatype
|
|
// of a bound generic type.
|
|
|
|
tc.diagnose(expr->getSubExpr()->getLoc(),
|
|
diag::not_a_generic_definition);
|
|
tc.diagnose(expr->getLAngleLoc(),
|
|
diag::while_parsing_as_left_angle_bracket);
|
|
return Type();
|
|
}
|
|
|
|
Type visitSequenceExpr(SequenceExpr *expr) {
|
|
llvm_unreachable("Didn't even parse?");
|
|
}
|
|
|
|
Type visitIdentityExpr(IdentityExpr *expr) {
|
|
expr->setType(expr->getSubExpr()->getType());
|
|
return expr->getType();
|
|
}
|
|
|
|
Type visitParenExpr(ParenExpr *expr) {
|
|
auto &ctx = CS.getASTContext();
|
|
if (ctx.LangOpts.StrictKeywordArguments) {
|
|
expr->setType(ParenType::get(ctx, expr->getSubExpr()->getType()));
|
|
} else {
|
|
expr->setType(expr->getSubExpr()->getType());
|
|
}
|
|
return expr->getType();
|
|
}
|
|
|
|
Type visitTupleExpr(TupleExpr *expr) {
|
|
// The type of a tuple expression is simply a tuple of the types of
|
|
// its subexpressions.
|
|
SmallVector<TupleTypeElt, 4> elements;
|
|
elements.reserve(expr->getNumElements());
|
|
for (unsigned i = 0, n = expr->getNumElements(); i != n; ++i) {
|
|
elements.push_back(TupleTypeElt(expr->getElement(i)->getType(),
|
|
expr->getElementName(i)));
|
|
}
|
|
|
|
return TupleType::get(elements, CS.getASTContext());
|
|
}
|
|
|
|
Type visitSubscriptExpr(SubscriptExpr *expr) {
|
|
return addSubscriptConstraints(expr, expr->getBase(), expr->getIndex());
|
|
}
|
|
|
|
Type visitArrayExpr(ArrayExpr *expr) {
|
|
ASTContext &C = CS.getASTContext();
|
|
|
|
// An array expression can be of a type T that conforms to the
|
|
// ArrayLiteralConvertible protocol.
|
|
auto &tc = CS.getTypeChecker();
|
|
ProtocolDecl *arrayProto
|
|
= tc.getProtocol(expr->getLoc(),
|
|
KnownProtocolKind::ArrayLiteralConvertible);
|
|
if (!arrayProto) {
|
|
return Type();
|
|
}
|
|
|
|
// FIXME: Protect against broken standard library.
|
|
auto elementAssocTy = cast<AssociatedTypeDecl>(
|
|
arrayProto->lookupDirect(
|
|
C.getIdentifier("Element")).front());
|
|
|
|
auto locator = CS.getConstraintLocator(expr);
|
|
auto contextualType = CS.getContextualType(expr);
|
|
Type *contextualArrayType = nullptr;
|
|
Type contextualArrayElementType = nullptr;
|
|
|
|
// If a contextual type exists for this expression, apply it directly.
|
|
if (contextualType && CS.isArrayType(*contextualType)) {
|
|
// Is the array type a contextual type
|
|
contextualArrayType = contextualType;
|
|
contextualArrayElementType =
|
|
CS.getBaseTypeForArrayType(contextualType->getPointer());
|
|
|
|
CS.addConstraint(ConstraintKind::ConformsTo, *contextualType,
|
|
arrayProto->getDeclaredType(),
|
|
locator);
|
|
|
|
unsigned index = 0;
|
|
for (auto element : expr->getElements()) {
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
element->getType(),
|
|
contextualArrayElementType,
|
|
CS.getConstraintLocator(expr,
|
|
LocatorPathElt::
|
|
getTupleElement(index++)));
|
|
}
|
|
|
|
return *contextualArrayType;
|
|
}
|
|
|
|
auto arrayTy = CS.createTypeVariable(locator, TVO_PrefersSubtypeBinding);
|
|
|
|
// The array must be an array literal type.
|
|
CS.addConstraint(ConstraintKind::ConformsTo, arrayTy,
|
|
arrayProto->getDeclaredType(),
|
|
locator);
|
|
|
|
// Its subexpression should be convertible to a tuple (T.Element...).
|
|
// FIXME: We should really go through the conformance above to extract
|
|
// the element type, rather than just looking for the element type.
|
|
// FIXME: Member constraint is still weird here.
|
|
ConstraintLocatorBuilder builder(locator);
|
|
auto arrayElementTy = CS.getMemberType(arrayTy, elementAssocTy,
|
|
builder.withPathElement(
|
|
ConstraintLocator::Member),
|
|
/*options=*/0);
|
|
|
|
// Introduce conversions from each element to the element type of the
|
|
// array.
|
|
unsigned index = 0;
|
|
for (auto element : expr->getElements()) {
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
element->getType(),
|
|
arrayElementTy,
|
|
CS.getConstraintLocator(
|
|
expr,
|
|
LocatorPathElt::getTupleElement(index++)));
|
|
}
|
|
|
|
return arrayTy;
|
|
}
|
|
|
|
Type visitDictionaryExpr(DictionaryExpr *expr) {
|
|
ASTContext &C = CS.getASTContext();
|
|
// A dictionary expression can be of a type T that conforms to the
|
|
// DictionaryLiteralConvertible protocol.
|
|
// FIXME: This isn't actually used for anything at the moment.
|
|
auto &tc = CS.getTypeChecker();
|
|
ProtocolDecl *dictionaryProto
|
|
= tc.getProtocol(expr->getLoc(),
|
|
KnownProtocolKind::DictionaryLiteralConvertible);
|
|
if (!dictionaryProto) {
|
|
return Type();
|
|
}
|
|
|
|
// FIXME: Protect against broken standard library.
|
|
auto keyAssocTy = cast<AssociatedTypeDecl>(
|
|
dictionaryProto->lookupDirect(
|
|
C.getIdentifier("Key")).front());
|
|
auto valueAssocTy = cast<AssociatedTypeDecl>(
|
|
dictionaryProto->lookupDirect(
|
|
C.getIdentifier("Value")).front());
|
|
|
|
auto locator = CS.getConstraintLocator(expr);
|
|
auto dictionaryTy = CS.createTypeVariable(locator,
|
|
TVO_PrefersSubtypeBinding);
|
|
|
|
// The array must be a dictionary literal type.
|
|
CS.addConstraint(ConstraintKind::ConformsTo, dictionaryTy,
|
|
dictionaryProto->getDeclaredType(),
|
|
locator);
|
|
|
|
|
|
// Its subexpression should be convertible to a tuple ((T.Key,T.Value)...).
|
|
ConstraintLocatorBuilder locatorBuilder(locator);
|
|
auto dictionaryKeyTy = CS.getMemberType(dictionaryTy,
|
|
keyAssocTy,
|
|
locatorBuilder.withPathElement(
|
|
ConstraintLocator::Member),
|
|
/*options=*/0);
|
|
auto dictionaryValueTy = CS.getMemberType(dictionaryTy,
|
|
valueAssocTy,
|
|
locatorBuilder.withPathElement(
|
|
ConstraintLocator::Member),
|
|
/*options=*/0);
|
|
|
|
TupleTypeElt tupleElts[2] = { TupleTypeElt(dictionaryKeyTy),
|
|
TupleTypeElt(dictionaryValueTy) };
|
|
Type elementTy = TupleType::get(tupleElts, C);
|
|
|
|
// Introduce conversions from each element to the element type of the
|
|
// dictionary.
|
|
unsigned index = 0;
|
|
for (auto element : expr->getElements()) {
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
element->getType(),
|
|
elementTy,
|
|
CS.getConstraintLocator(
|
|
expr,
|
|
LocatorPathElt::getTupleElement(index++)));
|
|
}
|
|
|
|
return dictionaryTy;
|
|
}
|
|
|
|
Type visitDynamicSubscriptExpr(DynamicSubscriptExpr *expr) {
|
|
return addSubscriptConstraints(expr, expr->getBase(), expr->getIndex());
|
|
}
|
|
|
|
Type visitTupleElementExpr(TupleElementExpr *expr) {
|
|
ASTContext &context = CS.getASTContext();
|
|
Identifier name
|
|
= context.getIdentifier(llvm::utostr(expr->getFieldNumber()));
|
|
return addMemberRefConstraints(expr, expr->getBase(), name);
|
|
}
|
|
|
|
/// \brief Produces a type for the given pattern, filling in any missing
|
|
/// type information with fresh type variables.
|
|
///
|
|
/// \param pattern The pattern.
|
|
Type getTypeForPattern(Pattern *pattern, bool forFunctionParam,
|
|
ConstraintLocatorBuilder locator) {
|
|
switch (pattern->getKind()) {
|
|
case PatternKind::Paren:
|
|
// Parentheses don't affect the type.
|
|
return getTypeForPattern(cast<ParenPattern>(pattern)->getSubPattern(),
|
|
forFunctionParam, locator);
|
|
case PatternKind::Var:
|
|
// Var doesn't affect the type.
|
|
return getTypeForPattern(cast<VarPattern>(pattern)->getSubPattern(),
|
|
forFunctionParam, locator);
|
|
case PatternKind::Any:
|
|
// For a pattern of unknown type, create a new type variable.
|
|
return CS.createTypeVariable(CS.getConstraintLocator(locator),
|
|
forFunctionParam? TVO_CanBindToLValue : 0);
|
|
|
|
case PatternKind::Named: {
|
|
auto var = cast<NamedPattern>(pattern)->getDecl();
|
|
|
|
// For a named pattern without a type, create a new type variable
|
|
// and use it as the type of the variable.
|
|
Type ty = CS.createTypeVariable(CS.getConstraintLocator(locator),
|
|
forFunctionParam? TVO_CanBindToLValue
|
|
: 0);
|
|
|
|
// For weak variables, use Optional<T>.
|
|
if (!forFunctionParam && var->getAttrs().isWeak()) {
|
|
ty = CS.getTypeChecker().getOptionalType(var->getLoc(), ty);
|
|
if (!ty) return Type();
|
|
} else if (var->getAttrs().hasAttribute<IBOutletAttr>()) {
|
|
// For @IBOutlet variables, use an optional type T!.
|
|
ty = CS.getTypeChecker().
|
|
getImplicitlyUnwrappedOptionalType(var->getLoc(), ty);
|
|
if (!ty) return Type();
|
|
}
|
|
|
|
// We want to set the variable's type here when type-checking
|
|
// a function's parameter clauses because we're going to
|
|
// type-check the entire function body within the context of
|
|
// the constraint system. In contrast, when type-checking a
|
|
// variable binding, we really don't want to set the
|
|
// variable's type because it can easily escape the constraint
|
|
// system and become a dangling type reference.
|
|
if (forFunctionParam)
|
|
var->setType(ty);
|
|
return ty;
|
|
}
|
|
|
|
case PatternKind::Typed: {
|
|
auto typedPattern = cast<TypedPattern>(pattern);
|
|
|
|
Type openedType = CS.openType(typedPattern->getType());
|
|
if (auto weakTy = openedType->getAs<WeakStorageType>())
|
|
openedType = weakTy->getReferentType();
|
|
|
|
// For a typed pattern, simply return the opened type of the pattern.
|
|
// FIXME: Error recovery if the type is an error type?
|
|
return openedType;
|
|
}
|
|
|
|
case PatternKind::Tuple: {
|
|
auto tuplePat = cast<TuplePattern>(pattern);
|
|
SmallVector<TupleTypeElt, 4> tupleTypeElts;
|
|
tupleTypeElts.reserve(tuplePat->getNumFields());
|
|
for (unsigned i = 0, e = tuplePat->getFields().size(); i != e; ++i) {
|
|
auto tupleElt = tuplePat->getFields()[i];
|
|
bool isVararg = tuplePat->hasVararg() && i == e-1;
|
|
Type eltTy = getTypeForPattern(tupleElt.getPattern(),forFunctionParam,
|
|
locator.withPathElement(
|
|
LocatorPathElt::getTupleElement(i)));
|
|
|
|
Type varArgBaseTy;
|
|
tupleTypeElts.push_back(TupleTypeElt(eltTy, Identifier(),
|
|
tupleElt.getDefaultArgKind(),
|
|
isVararg));
|
|
}
|
|
return TupleType::get(tupleTypeElts, CS.getASTContext());
|
|
}
|
|
|
|
// TODO
|
|
#define PATTERN(Id, Parent)
|
|
#define REFUTABLE_PATTERN(Id, Parent) case PatternKind::Id:
|
|
#include "swift/AST/PatternNodes.def"
|
|
llvm_unreachable("not implemented");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled pattern kind");
|
|
}
|
|
|
|
Type visitClosureExpr(ClosureExpr *expr) {
|
|
// Closure expressions always have function type. In cases where a
|
|
// parameter or return type is omitted, a fresh type variable is used to
|
|
// stand in for that parameter or return type, allowing it to be inferred
|
|
// from context.
|
|
Type funcTy;
|
|
if (expr->hasExplicitResultType()) {
|
|
funcTy = expr->getExplicitResultTypeLoc().getType();
|
|
} else {
|
|
// If no return type was specified, create a fresh type
|
|
// variable for it.
|
|
funcTy = CS.createTypeVariable(
|
|
CS.getConstraintLocator(expr,
|
|
ConstraintLocator::ClosureResult),
|
|
/*options=*/0);
|
|
}
|
|
|
|
// Walk through the patterns in the func expression, backwards,
|
|
// computing the type of each pattern (which may involve fresh type
|
|
// variables where parameter types where no provided) and building the
|
|
// eventual function type.
|
|
auto paramTy = getTypeForPattern(
|
|
expr->getParams(), /*forFunctionParam*/ true,
|
|
CS.getConstraintLocator(
|
|
expr,
|
|
LocatorPathElt::getTupleElement(0)));
|
|
|
|
// FIXME: If we want keyword arguments for closures, add them here.
|
|
funcTy = FunctionType::get(paramTy, funcTy);
|
|
|
|
return funcTy;
|
|
}
|
|
|
|
Type visitAutoClosureExpr(AutoClosureExpr *expr) {
|
|
llvm_unreachable("Already type-checked");
|
|
}
|
|
|
|
Type visitModuleExpr(ModuleExpr *expr) {
|
|
// Module expressions always have a fixed type.
|
|
return expr->getType();
|
|
}
|
|
|
|
Type visitInOutExpr(InOutExpr *expr) {
|
|
// The address-of operator produces an explicit inout T from an lvalue T.
|
|
// We model this with the constraint
|
|
//
|
|
// S < lvalue T
|
|
//
|
|
// where T is a fresh type variable.
|
|
auto lvalue = CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
/*options=*/0);
|
|
auto bound = LValueType::get(lvalue);
|
|
auto result = InOutType::get(lvalue);
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
expr->getSubExpr()->getType(), bound,
|
|
CS.getConstraintLocator(expr,
|
|
ConstraintLocator::AddressOf));
|
|
return result;
|
|
}
|
|
|
|
Type visitDynamicTypeExpr(DynamicTypeExpr *expr) {
|
|
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
/*options=*/0);
|
|
CS.addConstraint(ConstraintKind::DynamicTypeOf, tv,
|
|
expr->getBase()->getType(),
|
|
CS.getConstraintLocator(expr, ConstraintLocator::RvalueAdjustment));
|
|
return tv;
|
|
}
|
|
|
|
Type visitOpaqueValueExpr(OpaqueValueExpr *expr) {
|
|
return expr->getType();
|
|
}
|
|
|
|
Type visitDefaultValueExpr(DefaultValueExpr *expr) {
|
|
expr->setType(expr->getSubExpr()->getType());
|
|
return expr->getType();
|
|
}
|
|
|
|
Type visitApplyExpr(ApplyExpr *expr) {
|
|
// The function subexpression has some rvalue type T1 -> T2 for fresh
|
|
// variables T1 and T2.
|
|
auto outputTy
|
|
= CS.createTypeVariable(
|
|
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction),
|
|
/*options=*/0);
|
|
|
|
auto funcTy = FunctionType::get(expr->getArg()->getType(), outputTy);
|
|
|
|
// Check to see if the type checker has any newly created functions with
|
|
// this name - if it does, they were created before the list of overloads
|
|
// was created, so we'll need to add a new disjunction constraint for the
|
|
// new set of overloads.
|
|
if (expr->IsGlobalDelayedOperatorApply) {
|
|
if (CS.TC.HasForcedExternalDecl &&
|
|
CS.TC.implicitlyDefinedFunctions.size()) {
|
|
|
|
// This will only occur if the new bindings were added while solving
|
|
// the system, so disable the flag to prevent further unnecessary
|
|
// checks.
|
|
CS.TC.HasForcedExternalDecl = false;
|
|
|
|
auto declRef = dyn_cast<OverloadedDeclRefExpr>(expr->getFn());
|
|
auto declName = declRef->getDecls()[0]->getName();
|
|
SmallVector<OverloadChoice, 4> choices;
|
|
|
|
for (auto implicitFn : CS.TC.implicitlyDefinedFunctions) {
|
|
if (implicitFn->getName() == declName) {
|
|
CS.TC.validateDecl(implicitFn, true);
|
|
choices.push_back(OverloadChoice(Type(),
|
|
implicitFn,
|
|
declRef->isSpecialized()));
|
|
}
|
|
}
|
|
|
|
if (!choices.empty()) {
|
|
SmallVector<Constraint *, 4> constraints;
|
|
|
|
auto fnType = expr->getFn()->getType().getPointer();
|
|
auto tyvarType = cast<TypeVariableType>(fnType);
|
|
auto &CG = CS.getConstraintGraph();
|
|
|
|
// This type variable is only currently associated with the function
|
|
// being applied, and the only constraint attached to it should
|
|
// be the disjunction constraint for the overload group.
|
|
CG.gatherConstraints(tyvarType, constraints);
|
|
|
|
if (constraints.size()) {
|
|
for (auto constraint : constraints) {
|
|
if (constraint->getKind() == ConstraintKind::Disjunction) {
|
|
SmallVector<Constraint *, 4> newConstraints;
|
|
|
|
auto oldConstraints = constraint->getNestedConstraints();
|
|
auto csLoc = CS.getConstraintLocator(expr->getFn());
|
|
|
|
// Only replace the disjunctive overload constraint.
|
|
if (oldConstraints[0]->getKind() !=
|
|
ConstraintKind::BindOverload) {
|
|
continue;
|
|
}
|
|
|
|
// Copy over the existing bindings.
|
|
for (auto oldConstraint : oldConstraints) {
|
|
newConstraints.push_back(oldConstraint);
|
|
}
|
|
|
|
// Now add the new bindings as overloads.
|
|
for (auto choice : choices) {
|
|
auto overload = Constraint::createBindOverload(CS,
|
|
tyvarType,
|
|
choice,
|
|
csLoc);
|
|
newConstraints.push_back(overload);
|
|
}
|
|
|
|
// Remove the original constraint from the inactive constraint
|
|
// list and add the new one.
|
|
CS.removeInactiveConstraint(constraint);
|
|
CS.addConstraint(Constraint::createDisjunction(CS,
|
|
newConstraints,
|
|
csLoc));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CS.addConstraint(ConstraintKind::ApplicableFunction, funcTy,
|
|
expr->getFn()->getType(),
|
|
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction));
|
|
|
|
return outputTy;
|
|
}
|
|
|
|
Type getSuperType(ValueDecl *selfDecl,
|
|
SourceLoc diagLoc,
|
|
Diag<> diag_not_in_class,
|
|
Diag<> diag_no_base_class) {
|
|
DeclContext *typeContext = selfDecl->getDeclContext()->getParent();
|
|
assert(typeContext && "constructor without parent context?!");
|
|
auto &tc = CS.getTypeChecker();
|
|
ClassDecl *classDecl = typeContext->getDeclaredTypeInContext()
|
|
->getClassOrBoundGenericClass();
|
|
if (!classDecl) {
|
|
tc.diagnose(diagLoc, diag_not_in_class);
|
|
return Type();
|
|
}
|
|
if (!classDecl->hasSuperclass()) {
|
|
tc.diagnose(diagLoc, diag_no_base_class);
|
|
return Type();
|
|
}
|
|
|
|
Type superclassTy = typeContext->getDeclaredTypeInContext()
|
|
->getSuperclass(&tc);
|
|
if (selfDecl->getType()->is<AnyMetatypeType>())
|
|
superclassTy = MetatypeType::get(superclassTy);
|
|
return superclassTy;
|
|
}
|
|
|
|
Type visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *expr) {
|
|
// The result is void.
|
|
return TupleType::getEmpty(CS.getASTContext());
|
|
}
|
|
|
|
Type visitIfExpr(IfExpr *expr) {
|
|
// The conditional expression must conform to LogicValue.
|
|
Expr *condExpr = expr->getCondExpr();
|
|
auto logicValue
|
|
= CS.getTypeChecker().getProtocol(expr->getQuestionLoc(),
|
|
KnownProtocolKind::LogicValue);
|
|
if (!logicValue)
|
|
return Type();
|
|
|
|
CS.addConstraint(ConstraintKind::ConformsTo, condExpr->getType(),
|
|
logicValue->getDeclaredType(),
|
|
CS.getConstraintLocator(expr));
|
|
|
|
// The branches must be convertible to a common type.
|
|
auto resultTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
TVO_PrefersSubtypeBinding);
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
expr->getThenExpr()->getType(), resultTy,
|
|
CS.getConstraintLocator(expr,
|
|
ConstraintLocator::IfThen));
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
expr->getElseExpr()->getType(), resultTy,
|
|
CS.getConstraintLocator(expr,
|
|
ConstraintLocator::IfElse));
|
|
return resultTy;
|
|
}
|
|
|
|
Type visitImplicitConversionExpr(ImplicitConversionExpr *expr) {
|
|
llvm_unreachable("Already type-checked");
|
|
}
|
|
|
|
Type visitUnresolvedCheckedCastExpr(UnresolvedCheckedCastExpr *expr) {
|
|
auto &tc = CS.getTypeChecker();
|
|
|
|
// Validate the resulting type.
|
|
if (tc.validateType(expr->getCastTypeLoc(), CS.DC,
|
|
TR_AllowUnboundGenerics))
|
|
return nullptr;
|
|
|
|
// Open the type we're casting to.
|
|
auto toType = CS.openType(expr->getCastTypeLoc().getType());
|
|
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
|
|
|
|
auto locator = CS.getConstraintLocator(expr,
|
|
ConstraintLocator::CheckedCastOperand);
|
|
|
|
// Form the disjunction of the two possible type checks.
|
|
auto fromType = expr->getSubExpr()->getType();
|
|
Constraint *constraints[2] = {
|
|
// The source type can be coerced to the destination type.
|
|
Constraint::create(CS, ConstraintKind::Conversion, fromType, toType,
|
|
Identifier(), locator),
|
|
// The source type can be downcast to the destination type.
|
|
Constraint::create(CS, ConstraintKind::CheckedCast, fromType, toType,
|
|
Identifier(), locator),
|
|
};
|
|
CS.addConstraint(Constraint::createDisjunction(CS, constraints, locator,
|
|
RememberChoice));
|
|
|
|
return toType;
|
|
}
|
|
|
|
Type visitForcedCheckedCastExpr(ForcedCheckedCastExpr *expr) {
|
|
llvm_unreachable("Already type checked");
|
|
}
|
|
|
|
Type visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *expr) {
|
|
auto &tc = CS.getTypeChecker();
|
|
|
|
// Validate the resulting type.
|
|
if (tc.validateType(expr->getCastTypeLoc(), CS.DC,
|
|
TR_AllowUnboundGenerics))
|
|
return nullptr;
|
|
|
|
// Open the type we're casting to.
|
|
auto toType = CS.openType(expr->getCastTypeLoc().getType());
|
|
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
|
|
|
|
auto fromType = expr->getSubExpr()->getType();
|
|
auto locator = CS.getConstraintLocator(
|
|
expr, ConstraintLocator::CheckedCastOperand);
|
|
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType, locator);
|
|
return OptionalType::get(toType);
|
|
}
|
|
|
|
Type visitIsaExpr(IsaExpr *expr) {
|
|
// Validate the type.
|
|
auto &tc = CS.getTypeChecker();
|
|
if (tc.validateType(expr->getCastTypeLoc(), CS.DC,
|
|
TR_AllowUnboundGenerics))
|
|
return nullptr;
|
|
|
|
// Open up the type we're checking.
|
|
auto toType = CS.openType(expr->getCastTypeLoc().getType());
|
|
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
|
|
|
|
// Add a checked cast constraint.
|
|
auto fromType = expr->getSubExpr()->getType();
|
|
|
|
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType,
|
|
CS.getConstraintLocator(expr));
|
|
|
|
// The result is Bool.
|
|
return CS.getTypeChecker().lookupBoolType(CS.DC);
|
|
}
|
|
|
|
Type visitCoerceExpr(CoerceExpr *expr) {
|
|
llvm_unreachable("Already type-checked");
|
|
}
|
|
|
|
Type visitDiscardAssignmentExpr(DiscardAssignmentExpr *expr) {
|
|
// '_' is only allowed in assignments, so give it an AssignDest locator.
|
|
auto locator = CS.getConstraintLocator(expr,
|
|
ConstraintLocator::AssignDest);
|
|
auto typeVar = CS.createTypeVariable(locator, /*options=*/0);
|
|
return LValueType::get(typeVar);
|
|
}
|
|
|
|
Type visitAssignExpr(AssignExpr *expr) {
|
|
// Compute the type to which the source must be converted to allow
|
|
// assignment to the destination.
|
|
auto destTy = CS.computeAssignDestType(expr->getDest(), expr->getLoc());
|
|
if (!destTy)
|
|
return Type();
|
|
|
|
// The source must be convertible to the destination.
|
|
auto assignLocator = CS.getConstraintLocator(expr,
|
|
ConstraintLocator::AssignSource);
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
expr->getSrc()->getType(), destTy,
|
|
assignLocator);
|
|
|
|
expr->setType(TupleType::getEmpty(CS.getASTContext()));
|
|
return expr->getType();
|
|
}
|
|
|
|
Type visitUnresolvedPatternExpr(UnresolvedPatternExpr *expr) {
|
|
// If there are UnresolvedPatterns floating around after name binding,
|
|
// they are pattern productions in invalid positions.
|
|
CS.TC.diagnose(expr->getLoc(), diag::pattern_in_expr,
|
|
expr->getSubPattern()->getKind());
|
|
return Type();
|
|
}
|
|
|
|
/// Get the type T?
|
|
///
|
|
/// This is not the ideal source location, but it's only used for
|
|
/// diagnosing ill-formed standard libraries, so it really isn't
|
|
/// worth QoI efforts.
|
|
Type getOptionalType(SourceLoc optLoc, Type valueTy) {
|
|
auto optTy = CS.getTypeChecker().getOptionalType(optLoc, valueTy);
|
|
if (!optTy || CS.getTypeChecker().requireOptionalIntrinsics(optLoc))
|
|
return Type();
|
|
|
|
return optTy;
|
|
}
|
|
|
|
Type visitBindOptionalExpr(BindOptionalExpr *expr) {
|
|
// The operand must be coercible to T?, and we will have type T.
|
|
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
/*options*/ 0);
|
|
|
|
Type optTy = getOptionalType(expr->getQuestionLoc(), valueTy);
|
|
if (!optTy)
|
|
return Type();
|
|
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
expr->getSubExpr()->getType(), optTy,
|
|
CS.getConstraintLocator(expr));
|
|
return valueTy;
|
|
}
|
|
|
|
Type visitOptionalEvaluationExpr(OptionalEvaluationExpr *expr) {
|
|
// The operand must be coercible to T? for some type T. We'd
|
|
// like this to be the smallest possible nesting level of
|
|
// optional types, e.g. T? over T??; otherwise we don't really
|
|
// have a preference.
|
|
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
TVO_PrefersSubtypeBinding);
|
|
|
|
Type optTy = getOptionalType(expr->getSubExpr()->getLoc(), valueTy);
|
|
if (!optTy)
|
|
return Type();
|
|
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
expr->getSubExpr()->getType(), optTy,
|
|
CS.getConstraintLocator(expr));
|
|
return optTy;
|
|
}
|
|
|
|
Type visitForceValueExpr(ForceValueExpr *expr) {
|
|
// Force-unwrap an optional of type T? to produce a T.
|
|
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
|
|
TVO_PrefersSubtypeBinding);
|
|
|
|
Type optTy = getOptionalType(expr->getSubExpr()->getLoc(), valueTy);
|
|
if (!optTy)
|
|
return Type();
|
|
|
|
auto locator = CS.getConstraintLocator(expr);
|
|
|
|
// The subexpression is convertible to T?.
|
|
CS.addConstraint(ConstraintKind::Conversion,
|
|
expr->getSubExpr()->getType(), optTy,
|
|
locator);
|
|
|
|
// The result is of type T.
|
|
return valueTy;
|
|
}
|
|
|
|
Type visitOpenExistentialExpr(OpenExistentialExpr *expr) {
|
|
llvm_unreachable("Already type-checked");
|
|
}
|
|
};
|
|
|
|
/// \brief AST walker that "sanitizes" an expression for the
|
|
/// constraint-based type checker.
|
|
///
|
|
/// This is only necessary because Sema fills in too much type information
|
|
/// before the type-checker runs, causing redundant work.
|
|
class SanitizeExpr : public ASTWalker {
|
|
TypeChecker &TC;
|
|
public:
|
|
SanitizeExpr(TypeChecker &tc) : TC(tc) { }
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
|
|
// Don't recurse into default-value expressions.
|
|
return { !isa<DefaultValueExpr>(expr), expr };
|
|
}
|
|
|
|
Expr *walkToExprPost(Expr *expr) override {
|
|
if (auto implicit = dyn_cast<ImplicitConversionExpr>(expr)) {
|
|
// Skip implicit conversions completely.
|
|
return implicit->getSubExpr();
|
|
}
|
|
|
|
if (auto dotCall = dyn_cast<DotSyntaxCallExpr>(expr)) {
|
|
// A DotSyntaxCallExpr is a member reference that has already been
|
|
// type-checked down to a call; turn it back into an overloaded
|
|
// member reference expression.
|
|
SourceLoc memberLoc;
|
|
if (auto member = findReferencedDecl(dotCall->getFn(), memberLoc)) {
|
|
auto base = skipImplicitConversions(dotCall->getArg());
|
|
auto members
|
|
= TC.Context.AllocateCopy(ArrayRef<ValueDecl *>(&member, 1));
|
|
return new (TC.Context) OverloadedMemberRefExpr(base,
|
|
dotCall->getDotLoc(), members, memberLoc,
|
|
expr->isImplicit());
|
|
}
|
|
}
|
|
|
|
if (auto dotIgnored = dyn_cast<DotSyntaxBaseIgnoredExpr>(expr)) {
|
|
// A DotSyntaxBaseIgnoredExpr is a static member reference that has
|
|
// already been type-checked down to a call where the argument doesn't
|
|
// actually matter; turn it back into an overloaded member reference
|
|
// expression.
|
|
SourceLoc memberLoc;
|
|
if (auto member = findReferencedDecl(dotIgnored->getRHS(), memberLoc)) {
|
|
auto base = skipImplicitConversions(dotIgnored->getLHS());
|
|
auto members
|
|
= TC.Context.AllocateCopy(ArrayRef<ValueDecl *>(&member, 1));
|
|
return new (TC.Context) OverloadedMemberRefExpr(base,
|
|
dotIgnored->getDotLoc(), members,
|
|
memberLoc, expr->isImplicit());
|
|
}
|
|
}
|
|
|
|
if (auto forced = dyn_cast<ForcedCheckedCastExpr>(expr)) {
|
|
expr = new (TC.Context) UnresolvedCheckedCastExpr(
|
|
forced->getSubExpr(),
|
|
forced->getLoc(),
|
|
forced->getCastTypeLoc());
|
|
if (forced->isImplicit())
|
|
expr->setImplicit();
|
|
return expr;
|
|
}
|
|
|
|
return expr;
|
|
}
|
|
|
|
/// \brief Ignore declarations.
|
|
bool walkToDeclPre(Decl *decl) override { return false; }
|
|
};
|
|
|
|
class ConstraintWalker : public ASTWalker {
|
|
ConstraintGenerator &CG;
|
|
|
|
public:
|
|
ConstraintWalker(ConstraintGenerator &CG) : CG(CG) { }
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
|
|
// For closures containing only a single expression, the body participates
|
|
// in type checking.
|
|
if (auto closure = dyn_cast<ClosureExpr>(expr)) {
|
|
if (closure->hasSingleExpressionBody()) {
|
|
// Visit the closure itself, which produces a function type.
|
|
auto funcTy = CG.visit(expr)->castTo<FunctionType>();
|
|
expr->setType(funcTy);
|
|
}
|
|
|
|
return { true, expr };
|
|
}
|
|
|
|
// We don't visit default value expressions; they've already been
|
|
// type-checked.
|
|
if (isa<DefaultValueExpr>(expr)) {
|
|
return { false, expr };
|
|
}
|
|
|
|
// FIXME: This is a bit of a hack, recording the CallExpr that consumes
|
|
// an UnresolvedDotExpr so that we can do dynamic lookups more
|
|
// efficiently. Really we should just have the arguments be part of the
|
|
// UnresolvedDotExpr from the start.
|
|
if (auto call = dyn_cast<CallExpr>(expr)) {
|
|
if (Expr *fn = call->getFn()) {
|
|
if (auto optionalWrapper = dyn_cast<BindOptionalExpr>(fn))
|
|
fn = optionalWrapper->getSubExpr();
|
|
else if (auto forceWrapper = dyn_cast<ForceValueExpr>(fn))
|
|
fn = forceWrapper->getSubExpr();
|
|
|
|
if (auto UDE = dyn_cast<UnresolvedDotExpr>(fn))
|
|
CG.getConstraintSystem().recordPossibleDynamicCall(UDE, call);
|
|
}
|
|
}
|
|
|
|
return { true, expr };
|
|
}
|
|
|
|
/// \brief Once we've visited the children of the given expression,
|
|
/// generate constraints from the expression.
|
|
Expr *walkToExprPost(Expr *expr) override {
|
|
if (auto closure = dyn_cast<ClosureExpr>(expr)) {
|
|
if (closure->hasSingleExpressionBody()) {
|
|
// Visit the body. It's type needs to be convertible to the function's
|
|
// return type.
|
|
auto resultTy = closure->getResultType();
|
|
auto bodyTy = closure->getSingleExpressionBody()->getType();
|
|
CG.getConstraintSystem()
|
|
.addConstraint(ConstraintKind::Conversion, bodyTy,
|
|
resultTy,
|
|
CG.getConstraintSystem()
|
|
.getConstraintLocator(
|
|
expr,
|
|
ConstraintLocator::ClosureResult));
|
|
return expr;
|
|
}
|
|
}
|
|
|
|
if (auto type = CG.visit(expr)) {
|
|
expr->setType(CG.getConstraintSystem().simplifyType(type));
|
|
return expr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Ignore statements.
|
|
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
|
|
return { false, stmt };
|
|
}
|
|
|
|
/// \brief Ignore declarations.
|
|
bool walkToDeclPre(Decl *decl) override { return false; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
Expr *ConstraintSystem::generateConstraints(Expr *expr) {
|
|
// Remove implicit conversions from the expression.
|
|
expr = expr->walk(SanitizeExpr(getTypeChecker()));
|
|
|
|
// Walk the expression, generating constraints.
|
|
ConstraintGenerator cg(*this);
|
|
ConstraintWalker cw(cg);
|
|
return expr->walk(cw);
|
|
}
|
|
|
|
Expr *ConstraintSystem::generateConstraintsShallow(Expr *expr) {
|
|
// Sanitize the expression.
|
|
expr = SanitizeExpr(getTypeChecker()).walkToExprPost(expr);
|
|
|
|
// Visit the top-level expression generating constraints.
|
|
ConstraintGenerator cg(*this);
|
|
auto type = cg.visit(expr);
|
|
if (!type)
|
|
return nullptr;
|
|
expr->setType(type);
|
|
return expr;
|
|
}
|
|
|
|
Type ConstraintSystem::generateConstraints(Pattern *pattern,
|
|
ConstraintLocatorBuilder locator) {
|
|
ConstraintGenerator cg(*this);
|
|
return cg.getTypeForPattern(pattern, /*forFunctionParam*/ false, locator);
|
|
}
|