Files
swift-mirror/lib/SILAnalysis/CallGraphAnalysis.cpp
2015-04-05 19:27:40 +00:00

557 lines
17 KiB
C++

//===----- CallGraphAnalysis.cpp - Call graph construction ----*- C++ -*---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILAnalysis/CallGraphAnalysis.h"
#include "swift/Basic/Fallthrough.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <utility>
using namespace swift;
#define DEBUG_TYPE "call-graph"
STATISTIC(NumCallGraphNodes, "# of call graph nodes created");
STATISTIC(NumAppliesWithEdges, "# of call sites with edges");
STATISTIC(NumAppliesWithoutEdges,
"# of call sites without edges");
STATISTIC(NumAppliesOfBuiltins, "# of call sites calling builtins");
STATISTIC(NumCallGraphsBuilt, "# of times the call graph is built");
llvm::cl::opt<bool> DumpCallGraph("sil-dump-call-graph",
llvm::cl::init(false), llvm::cl::Hidden);
CallGraph::CallGraph(SILModule *Mod, bool completeModule)
: M(*Mod), NodeOrdinal(0), EdgeOrdinal(0) {
++NumCallGraphsBuilt;
for (auto &F : M)
addCallGraphNode(&F);
for (auto &F : M)
if (F.isDefinition())
addEdges(&F);
if (DumpCallGraph)
dump();
}
CallGraph::~CallGraph() {
// Clean up all call graph nodes.
for (auto &P : FunctionToNodeMap) {
P.second->~CallGraphNode();
}
// Clean up all call graph edges.
for (auto &P : ApplyToEdgeMap) {
P.second->~CallGraphEdge();
}
// Clean up all SCCs.
for (CallGraphSCC *SCC : BottomUpSCCOrder) {
SCC->~CallGraphSCC();
}
}
void CallGraph::addCallGraphNode(SILFunction *F) {
// TODO: Compute this from the call graph itself after stripping
// unreachable nodes from graph.
++NumCallGraphNodes;
auto *Node = new (Allocator) CallGraphNode(F, ++NodeOrdinal);
assert(!FunctionToNodeMap.count(F) &&
"Added function already has a call graph node!");
FunctionToNodeMap[F] = Node;
// TODO: Only add functions clearly visible from outside our
// compilation scope as roots.
if (F->isDefinition())
CallGraphRoots.push_back(Node);
}
bool CallGraph::tryGetCalleeSet(SILValue Callee,
CallGraphEdge::CalleeSetType &CalleeSet,
bool &Complete) {
assert(CalleeSet.empty() && "Expected empty callee set!");
switch (Callee->getKind()) {
case ValueKind::ThinToThickFunctionInst:
Callee = cast<ThinToThickFunctionInst>(Callee)->getOperand();
SWIFT_FALLTHROUGH;
case ValueKind::FunctionRefInst: {
auto *CalleeFn = cast<FunctionRefInst>(Callee)->getReferencedFunction();
auto *CalleeNode = getCallGraphNode(CalleeFn);
assert(CalleeNode &&
"Expected to have a call graph node for all functions!");
CalleeSet.insert(CalleeNode);
Complete = true;
return true;
}
case ValueKind::PartialApplyInst:
return tryGetCalleeSet(cast<PartialApplyInst>(Callee)->getCallee(),
CalleeSet, Complete);
case ValueKind::DynamicMethodInst:
// TODO: Decide how to handle these in graph construction and
// analysis passes. We might just leave them out of the
// graph.
return false;
case ValueKind::SILArgument:
// First-pass call-graph construction will not do anything with
// these, but a second pass can potentially statically determine
// the called function in some cases.
return false;
case ValueKind::ApplyInst:
// TODO: Probably not worth iterating invocation- then
// reverse-invocation order to catch this.
return false;
case ValueKind::TupleExtractInst:
// TODO: It would be good to tunnel through extracts so that we
// can build a more accurate call graph prior to any
// optimizations.
return false;
case ValueKind::StructExtractInst:
// TODO: It would be good to tunnel through extracts so that we
// can build a more accurate call graph prior to any
// optimizations.
return false;
case ValueKind::BuiltinInst:
++NumAppliesOfBuiltins;
return false;
case ValueKind::WitnessMethodInst: {
auto *WMI = cast<WitnessMethodInst>(Callee);
SILFunction *CalleeFn;
ArrayRef<Substitution> Subs;
SILWitnessTable *WT;
std::tie(CalleeFn, WT, Subs) =
WMI->getModule().lookUpFunctionInWitnessTable(WMI->getConformance(),
WMI->getMember());
if (!CalleeFn)
return false;
auto *CalleeNode = getCallGraphNode(CalleeFn);
// FIXME: Consider whether we should create nodes for these
// initially.
if (!CalleeNode) {
addCallGraphNode(CalleeFn);
CalleeNode = getCallGraphNode(CalleeFn);
}
assert(CalleeNode &&
"Expected to have a call graph node for all functions!");
CalleeSet.insert(CalleeNode);
Complete = true;
return true;
}
case ValueKind::ClassMethodInst:
case ValueKind::SuperMethodInst:
// TODO: Each of these requires specific handling.
return false;
default:
assert(!isa<MethodInst>(Callee)
&& "Unhandled method instruction in call graph construction!");
// There are cases where we will be very hard pressed to determine
// what we are calling.
return false;
}
}
static void orderEdges(const llvm::SmallPtrSetImpl<CallGraphEdge *> &Edges,
llvm::SmallVectorImpl<CallGraphEdge *> &OrderedEdges) {
for (auto *Edge : Edges)
OrderedEdges.push_back(Edge);
std::sort(OrderedEdges.begin(), OrderedEdges.end(),
[](CallGraphEdge *left, CallGraphEdge *right) {
return left->getOrdinal() < right->getOrdinal();
});
}
static void orderCallees(const CallGraphEdge::CalleeSetType &Callees,
llvm::SmallVectorImpl<CallGraphNode *> &OrderedNodes) {
for (auto *Node : Callees)
OrderedNodes.push_back(Node);
std::sort(OrderedNodes.begin(), OrderedNodes.end(),
[](CallGraphNode *left, CallGraphNode *right) {
return left->getOrdinal() < right->getOrdinal();
});
}
void CallGraph::addEdgesForApply(FullApplySite AI, CallGraphNode *CallerNode) {
CallGraphEdge::CalleeSetType CalleeSet;
bool Complete = false;
if (tryGetCalleeSet(AI.getCallee(), CalleeSet, Complete)) {
auto *Edge = new (Allocator) CallGraphEdge(AI, CalleeSet, Complete,
EdgeOrdinal++);
assert(!ApplyToEdgeMap.count(AI) &&
"Added apply that already has an edge node!\n");
ApplyToEdgeMap[AI] = Edge;
CallerNode->addCalleeEdge(Edge);
llvm::SmallVector<CallGraphNode *, 4> OrderedNodes;
orderCallees(CalleeSet, OrderedNodes);
for (auto *CalleeNode : OrderedNodes)
CalleeNode->addCallerEdge(Edge);
// TODO: Compute this from the call graph itself after stripping
// unreachable nodes from graph.
++NumAppliesWithEdges;
return;
}
++NumAppliesWithoutEdges;
}
void CallGraph::removeEdge(CallGraphEdge *Edge) {
// Remove the edge from all the potential callee call graph nodes.
auto &CalleeSet = Edge->getPartialCalleeSet();
for (auto *CalleeNode : CalleeSet)
CalleeNode->removeCallerEdge(Edge);
// Remove the edge from the caller's call graph node.
auto Apply = Edge->getApply();
auto *CallerNode = getCallGraphNode(Apply.getFunction());
CallerNode->removeCalleeEdge(Edge);
// Remove the mapping from the apply to this edge.
ApplyToEdgeMap.erase(Apply);
// Call the destructor for the edge. The memory will be reclaimed
// when the call graph is deleted by virtue of the bump pointer
// allocator.
Edge->~CallGraphEdge();
}
// Remove the call graph edges associated with an apply, where the
// apply is known to the call graph.
void CallGraph::removeEdgesForApply(FullApplySite AI) {
assert(ApplyToEdgeMap.count(AI) && "Expected apply to be in edge map!");
removeEdge(ApplyToEdgeMap[AI]);
}
void CallGraph::markCallerEdgesOfCalleesIncomplete(FullApplySite AI) {
auto *Edge = getCallGraphEdge(AI);
// We are not guaranteed to have an edge for every apply.
if (!Edge)
return;
for (auto *Node : Edge->getPartialCalleeSet())
Node->markCallerEdgesIncomplete();
}
void CallGraph::addEdges(SILFunction *F) {
auto *CallerNode = getCallGraphNode(F);
assert(CallerNode && "Expected call graph node for function!");
for (auto &BB : *F) {
for (auto &I : BB) {
if (auto *AI = dyn_cast<ApplyInst>(&I)) {
addEdgesForApply(AI, CallerNode);
}
if (auto *FRI = dyn_cast<FunctionRefInst>(&I)) {
auto *CalleeFn = FRI->getReferencedFunction();
if (!CalleeFn->isPossiblyUsedExternally()) {
bool hasAllApplyUsers = std::none_of(FRI->use_begin(), FRI->use_end(),
[](const Operand *Op) {
return !isa<ApplyInst>(Op->getUser());
});
// If we have a non-apply user of this function, mark its caller set
// as being incomplete.
if (!hasAllApplyUsers) {
auto *CalleeNode = getCallGraphNode(CalleeFn);
CalleeNode->markCallerEdgesIncomplete();
}
}
}
}
}
}
void CallGraphEdge::dump() {
#ifndef NDEBUG
auto &CalleeSet = getPartialCalleeSet();
llvm::SmallVector<CallGraphNode *, 4> OrderedNodes;
for (auto *Node : CalleeSet)
OrderedNodes.push_back(Node);
std::sort(OrderedNodes.begin(), OrderedNodes.end(),
[](CallGraphNode *left, CallGraphNode *right) {
return left->getOrdinal() < right->getOrdinal();
});
llvm::errs() << Ordinal;
llvm::errs() << (!CalleeSet.empty() && isCalleeSetComplete() ?
" (all callees known): " : ": ");
getApply().getInstruction()->dump();
if (hasSingleCallee()) {
llvm::errs() << "Callee: " << OrderedNodes[0]->getFunction()->getName();
llvm::errs() << "\n";
} else {
llvm::errs() << "Callees:\n";
for (auto *Callee : OrderedNodes)
llvm::errs() << Callee->getFunction()->getName() << "\n";
}
#endif
}
void CallGraphNode::dump() {
#ifndef NDEBUG
auto &Edges = getCalleeEdges();
llvm::SmallVector<CallGraphEdge *, 8> OrderedEdges;
for (auto *Edge : Edges)
OrderedEdges.push_back(Edge);
std::sort(OrderedEdges.begin(), OrderedEdges.end(),
[](CallGraphEdge *left, CallGraphEdge *right) {
return left->getOrdinal() < right->getOrdinal();
});
llvm::errs() << Ordinal;
if (isDead())
llvm::errs() << " [dead]: ";
else if (isCallerEdgesComplete())
llvm::errs() << " (all callers known): ";
else
llvm::errs() << ": ";
llvm::errs() << getFunction()->getName() << "\n";
if (Edges.empty())
return;
llvm::errs() << "Applies:\n";
for (auto *Edge : OrderedEdges)
Edge->dump();
llvm::errs() << "\n";
#endif
}
void CallGraph::dump() {
#ifndef NDEBUG
llvm::errs() << "*** Call Graph ***\n";
auto const &Funcs = getBottomUpFunctionOrder();
for (auto *F : Funcs) {
auto *Node = getCallGraphNode(F);
if (Node)
Node->dump();
else
llvm::errs() << "!!! Missing node for " << F->getName() << "!!!";
llvm::errs() << "\n";
}
#endif
}
/// Finds SCCs in the call graph. Our call graph has an unconventional
/// form where each edge of the graph is really a multi-edge that can
/// point to multiple call graph nodes in the case where we can call
/// one of several different functions.
class CallGraphSCCFinder {
unsigned NextDFSNum;
llvm::SmallVectorImpl<CallGraphSCC *> &TheSCCs;
llvm::DenseMap<CallGraphNode *, unsigned> DFSNum;
llvm::DenseMap<CallGraphNode *, unsigned> MinDFSNum;
llvm::SetVector<CallGraphNode *> DFSStack;
/// The CallGraphSCCFinder does not own this bump ptr allocator, so does not
/// call the destructor of objects allocated from it.
llvm::BumpPtrAllocator &BPA;
public:
CallGraphSCCFinder(llvm::SmallVectorImpl<CallGraphSCC *> &TheSCCs,
llvm::BumpPtrAllocator &BPA)
: NextDFSNum(0), TheSCCs(TheSCCs), BPA(BPA) {}
void DFS(CallGraphNode *Node) {
// Set the DFSNum for this node if we haven't already, and if we
// have, which indicates it's already been visited, return.
if (!DFSNum.insert(std::make_pair(Node, NextDFSNum)).second)
return;
assert(MinDFSNum.find(Node) == MinDFSNum.end() &&
"Node should not already have a minimum DFS number!");
MinDFSNum[Node] = NextDFSNum;
++NextDFSNum;
DFSStack.insert(Node);
llvm::SmallVector<CallGraphEdge *, 4> OrderedEdges;
orderEdges(Node->getCalleeEdges(), OrderedEdges);
for (auto *ApplyEdge : OrderedEdges) {
llvm::SmallVector<CallGraphNode *, 4> OrderedNodes;
orderCallees(ApplyEdge->getPartialCalleeSet(), OrderedNodes);
for (auto *CalleeNode : OrderedNodes) {
if (DFSNum.find(CalleeNode) == DFSNum.end()) {
DFS(CalleeNode);
MinDFSNum[Node] = std::min(MinDFSNum[Node], MinDFSNum[CalleeNode]);
} else if (DFSStack.count(CalleeNode)) {
MinDFSNum[Node] = std::min(MinDFSNum[Node], DFSNum[CalleeNode]);
}
}
}
// If this node is the root of an SCC (including SCCs with a
// single node), pop the SCC and push it on our SCC stack.
if (DFSNum[Node] == MinDFSNum[Node]) {
auto *SCC = new (BPA) CallGraphSCC();
CallGraphNode *Popped;
do {
Popped = DFSStack.pop_back_val();
SCC->SCCNodes.push_back(Popped);
} while (Popped != Node);
TheSCCs.push_back(SCC);
}
}
};
void CallGraph::computeBottomUpSCCOrder() {
if (!BottomUpSCCOrder.empty()) {
for (auto *SCC : BottomUpSCCOrder)
SCC->~CallGraphSCC();
BottomUpSCCOrder.clear();
}
CallGraphSCCFinder SCCFinder(BottomUpSCCOrder, Allocator);
for (auto *Node : getCallGraphRoots())
SCCFinder.DFS(Node);
}
void CallGraph::computeBottomUpFunctionOrder() {
// We do not need to call any destructors here.
BottomUpFunctionOrder.clear();
computeBottomUpSCCOrder();
for (auto *SCC : BottomUpSCCOrder)
for (auto *Node : SCC->SCCNodes)
BottomUpFunctionOrder.push_back(Node->getFunction());
}
//===----------------------------------------------------------------------===//
// CallGraph Verification
//===----------------------------------------------------------------------===//
void CallGraph::verify() const {
#ifndef NDEBUG
// For every function in the module, add it to our SILFunction set.
llvm::DenseSet<SILFunction *> Functions;
for (auto &F : M)
Functions.insert(&F);
// For every pair (SILFunction, CallGraphNode) in the
// function-to-node map, verify:
//
// a. The function is in the current module.
// b. The call graph node is for that same function.
// c. All the callee edges of the node have an apply that lives
// in that function.
//
for (auto &P : FunctionToNodeMap) {
assert(Functions.count(P.first) &&
"Function in call graph but not in module!?");
assert(P.second->getFunction() == P.first &&
"Func mapped to node, but node has different Function inside?!");
for (CallGraphEdge *Edge : P.second->getCalleeEdges()) {
assert(Edge->getApply().getFunction() == P.first &&
"Apply in callee set that is not in the callee function?!");
}
}
// For every pair (FullApplySite, CallGraphEdge) in the apply-to-edge
// map, verify:
//
// a. The edge's apply is identical to the map key that maps
// to the edge.
// b. The apply is in a function in the module.
// c. That function has a call graph node.
// d. The edge is one of the callee edges of that call graph node.
//
for (auto &P : ApplyToEdgeMap) {
assert(P.second->getApply() == P.first &&
"Apply mapped to CallSiteEdge but not vis-a-versa?!");
assert(Functions.count(P.first.getFunction()) &&
"Apply in func not in module?!");
CallGraphNode *Node = getCallGraphNode(P.first.getFunction());
assert(Node && "Apply without call graph node");
bool FoundEdge = false;
for (CallGraphEdge *Edge : Node->getCalleeEdges()) {
if (Edge == P.second) {
FoundEdge = true;
break;
}
}
assert(FoundEdge && "Failed to find Apply CallGraphEdge in Apply inst "
"parent function's caller");
}
#endif
}
void CallGraphEditor::replaceApplyWithNew(FullApplySite Old,
FullApplySite New) {
if (auto *Edge = CG.getCallGraphEdge(Old))
CG.removeEdge(Edge);
CG.addEdgesForApply(New);
}
void CallGraphEditor::replaceApplyWithNew(FullApplySite Old,
llvm::SmallVectorImpl<FullApplySite> &NewApplies) {
if (auto *Edge = CG.getCallGraphEdge(Old))
CG.removeEdge(Edge);
for (auto NewApply : NewApplies)
CG.addEdgesForApply(NewApply);
}
void CallGraphAnalysis::verify() const {
#ifndef NDEBUG
// If we don't have a callgraph, return.
if (!CG)
return;
CG->verify();
#endif
}