A substitution map contains conformances, and a conformance can contain
a substitution map. This will always be a DAG, but not a tree, and to
avoid exponential blowup in certain edge cases, let's cache the work to
avoid visiting the same substitution map repeatedly, if multiple
conformances refer to the same substitution map.
Tracking seen declarations and substitution maps only detects the
situation where the opaque type's underlying type contains itself
with the same substitution map. However, it is also possible to
recurse with a different substitution map.
In general termination is undecidable with a problem like this,
so instead of trying to catch cycles, just impose a termination
limit.
This converts a stack overflow into an assertion, which is still
not ideal; we should really diagnose something instead. But this
is a first step.
Use these queries to replace some duplicated code. Also, move the
`attr_inlinable_available.swift` test to the `Availability` sub-directory since
the test has more to do with availability checking than it has to do
specifically with the `@inlinable` attr.
Previously this flag was only used to pass explicit dependencies to compilation tasks. This change adds support for the dependency scanner to also consider these inputs when resolving dependencies.
Resolves https://github.com/swiftlang/swift-driver/issues/1951
We sometimes don't have the information in the modulemaps whether a
module requires ObjC or not. This info is useful for reverse interop.
This PR introduces a frontend flag to have a comma separated list of
modules that we should import as if they had "requires ObjC" in their
modulemaps.
Allow subclasses to override the behavior of readRemoteAddress. LLDB in
particular needs this to correctly set the address space of the result
remote address.
rdar://148361743
Specifically for 6.2, we are making optimize hop to executor more conservative
around caller isolation inheriting functions. This means that we are:
1. No longer treating calls to caller isolation inheriting functions as having a
hop in their prologue. In terms of this pass, it means that when determining
dead hop to executors, we no longer think that a caller isolation inheriting
function means that an earlier hop to executor is not required.
2. Treating returns from caller isolation inheriting callees as requiring a
hop. The reason why we are doing this is that we can no longer assume that our
caller will hop after we return.
Post 6.2, there are three main changes we are going to make:
* Forward Dataflow
Caller isolation inheriting functions will no longer be treated as suspension
points meaning that we will be able to propagate hops over them and can assume
that we know the actor that we are on when we enter the function. Practically
this means that trees of calls that involve just nonisolated(nonsending) async
functions will avoid /all/ hop to executor calls since we will be able to
eliminate all of them since the dataflow will just propagate forward from the
entrance that we are already on the actor.
* Backwards Dataflow
A caller isolation inheriting call site will still cause preceding
hop_to_executor functions to be live. This is because we need to ensure that we
are on the caller isolation inheriting actor before we hit the call site. If we
are already on that actor, the hop will be eliminated by the forward pass. But
if the hop has not been eliminated, then the hop must be needed to return us to
the appropriate actor.
We will also keep the behavior that returns from a caller isolation inheriting
function are considered to keep hop to executors alive. If we were able to
propagate to a hop to executor before the return inst with the forward dataflow,
then we know that we are guaranteed to still be on the relevant actor. If the
hop to executor is still there, then we need it to ensure that our caller can
treat the caller isolation inheriting function as a non-suspension point.
rdar://155905383
In implicit contexts that are universally unavailable, allow writable key paths
to be formed to properties with setters that are also marked as universally
unavailable. This fixes a regression from the previous commit where the code
synthesized for `@Observable` properties in universally unavailable classes was
rejected by the availability checker.
While the intent behind this functor was noble, it has grown in complexity
considerably over the years, and it seems to be nothing but a source of
crashes in practice. I don't want to deal with it anymore, so I've decided
to just subsume all usages with LookUpConformanceInModule instead.
This patch re-enables diagnostics for unannotated C++ functions or
methods returning `SWIFT_SHARED_REFERENCE` types. These warnings now
fire only **once per source location**, even in the presence of multiple
template instantiations. This avoids diagnostic duplication that was a
key source of noise in the compilation of larger codebases.
These warnings were previously disabled starting in **Swift 6.2** via
[PR-#81411](https://github.com/swiftlang/swift/pull/81411) due to
concerns around false positives and excessive duplication in projects
adopting C++ interop. This patch addresses the duplication issue by
adding source-location-based caching, which ensures that a warning is
emitted only once per source location, even across template
instantiations with different types.
However, the false positive issue remains to be investigated and will be
addressed in a follow-up patch. Until that happens, the warnings are
gated behind a new experimental feature flag:
`WarnUnannotatedReturnOfCxxFrt`. This feature will be enabled by default
only after thorough qualification and testing on large C++ codebases.
rdar://154261051
The previous message was just suggesting unchecked Sendable, but instead
we should be suggesting to add final to the class. We also don't
outright suggest using unchecked Sendable -- following
https://github.com/swiftlang/swift/pull/81738 precedent.
Resolves rdar://155790695