Since this is a source breaking change, downgrade the diagnostic to a warning
until the next language version unless library evolution is enabled, in which
case this would have resulted in a broken `.swiftinterface` and it therefore
makes sense to diagnose eagerly.
Resolves rdar://156919010.
This unblocks the CI while we figure out some SILGen issues. We cannot
reuse AddressableParameters because that is already used in some
projects and consuming modules where the AddressableParameters flag was not
propagated to results in deserialization errors.
add `Test`, which is the SIL-equivalent of `FunctionTest`.
It's invocation closure gets a `TestContext` instead of a `FunctionContext`.
^ The commit message #2 will be skipped:
^ - test
This allows to move many SIL APIs and utilities, which require a context, to the SIL module.
The SIL-part of SwiftPassInvocation is extracted into a base class SILContext which now lives in SIL.
Also: simplify the begin/end-pass functions of the SwiftPassInvocation.
Protocol requirement witnesses cannot only be available in a custom
availability domain if the requirement does not have the same availability
constraint.
Resolves rdar://156462516.
Given an explicitly-nonisolated type such as
nonisolated struct S { }
all extensions of S were also being treated as nonisolated. This meant
that being implicitly nonisolated (i.e., when you're using nonisolated
default isolation) was different from explicitly-writing nonisolated,
which is unfortunate and confusing. Align the rules, such that an
extension of S will get default isolation:
extension S {
func f() { } // @MainActor if we're in main actor default isolation
}
[Concurrency][Embedded] Make sure Embedded Swift links Impl functions.
Teach the Embedded Swift compiler to include the Impl functions for the functions that provide Concurrency hooks.
Also enable `MainActor` when building Embedded Swift stdlib for WASI.
Since this is a C++ stdlib type we need make sure that any overloads
that use it are preferred over custom types that also conform to
`ExpressibleByStringLiteral` when argument is a string literal.
This is important for operators like `==` which could be heterogenous
and have a custom C++ type that conforms to `ExpressibleByStringLiteral`
on either side together with `std.string` i.e.
`==(std.string, const CustomString &)`, such overloads should only
be selected if argument passed to `CustomString` is non-literal because
literals are convered by a stdlib `==(std.string, std.string)` overload.
Controlled from Swift with '-version-independent-apinotes', which, for the underlying Clang invocation enables '-fswift-version-independent-apinotes', results in PCMs which aggregate all versioned APINotes wrapped in a 'SwiftVersionedAttr', with the intent to have the client pick and apply only those that match its current Swift version, discarding the rest.
This change introduces the configuration flags for this mode as well as the corresponding logic at the beginning of `importDeclImpl` to canonicalize versioned attributes, i.e. select the appropriate attributes for the current target and discard the rest.
This is required in order to always have computed the set of visible Clang modules for each Swift module in the graph. Otherwise when some Clang module gets cached as a transitive dependency from a query and is later looked up as a direct dependency, there will not be any computed visible modules set.
Previously Swift overlay lookup was performed for every directly and transitively-imported Clang module.
https://github.com/llvm/llvm-project/pull/147969 introduced the concept of "visible" Clang modules from a given named Clang dependency scanner query which closely maps to the set of modules for which Swift will attempt to load a Swift overlay. This change switches overlay querying to apply only to the set of such visible modules.
Resolves rdar://144797648
Normally, Swift cannot import an incomplete type. However, when we are
importing a SWIFT_SHARED_REFERENCE type, we're always dealing with
pointers to the type, and there is no need for the underlying type to
be complete. This permits a common pattern in C libraries where the
actual underlying storage is opaque and all APIs traffic in the
pointer, e.g.,
typedef struct MyTypeImpl *MyType;
void MyTypeRetain(MyType ptr);
void MyTypeRelease(MyType ptr);
to use SWIFT_SHARED_REFERENCE to import such types as foreign
references, rather than as OpaquePointer.
Fixes rdar://155970441.
Consolidate some of the closely related protocol requirement check failures and
then turn `RequirementCheck` into a proper wrapper around a union of associated
values for `CheckKind`.
NFC.
Add a new option `-gen-reproducer` that when swift caching is used,
create a standalone reproducer that can be used to reproduce the
`swift-frontend` invocation.