We need this because that global state includes tables like llvm[.compiler].used
which would otherwise be sorely missed.
This fixes an issue of the clang importer that would cause us to fail whenever
we imported a function (say it is marked as static inline) that performs an
objective-c method call and we optimize the code. The optimizer would not see
the objective-c selector global variable (which is marked private) as being
"used by unkown i.e the objc runtime" and would rightly assume it could
propagate the value of the global variable's initializer value as a constant to
loads of the global variable.
Now we call the ClangCodeGenerators translation unit finalization code which
will emit these tables and other module flags. We need to take care that we
merge those datastrutures with datastructures that we emit from swift's IRGen.
rdar://21115194
Swift SVN r29176
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
All llvm::Functions created during IRGen will have target-cpu and target-features
attributes if they are non-null.
Update testing cases to expect the attribute in function definition.
Add testing case function-target-features.swift to verify target-cpu and
target-features.
rdar://20772331
Swift SVN r28186
Instead of putting a function without an associated source-file into the primary module,
it is now put into the module which first references the function.
Swift SVN r28116
and link it properly. This is needed to embed LLVM bitcode sections
in the standard library and overlays. The linker doesn't support
embedded bitcode and reexport flags (among others).
rdar://problem/20750099
Swift SVN r28052
Store the number of payload and no-payload cases, the case names, and a lazy case type accessor function for enums, like we do for stored properties of structs and classes. This will be useful for multi-payload runtime support, and should also be enough info to hack together a reflection implementation for enums.
For dynamic multi-payload enums to not be ridiculously inefficient, we'll need to track the size of the payload area in the enum, like we do the field offsets of generic structs and classes, so hack off a byte in the payload case count to track the offset of that field in metadata records. 16 million payloads ought to be enough for anyone, right? (and 256 words between the enum metadata's address point and the payload size offset)
Swift SVN r27789
These aren't really orthogonal concerns--you'll never have a @thick @cc(objc_method), or an @objc_block @cc(witness_method)--and we have gross decision trees all over the codebase that try to hopscotch between the subset of combinations that make sense. Stop the madness by eliminating AbstractCC and folding its states into SILFunctionTypeRepresentation. This cleans up a ton of code across the compiler.
I couldn't quite eliminate AbstractCC's information from AST function types, since SIL type lowering transiently created AnyFunctionTypes with AbstractCCs set, even though these never occur at the source level. To accommodate type lowering, allow AnyFunctionType::ExtInfo to carry a SILFunctionTypeRepresentation, and arrange for the overlapping representations to share raw values.
In order to avoid disturbing test output, AST and SILFunctionTypes are still printed and parsed using the existing @thin/@thick/@objc_block and @cc() attributes, which is kind of gross, but lets me stage in the real source-breaking change separately.
Swift SVN r27095
As part of this, re-arrange the argument order so that
generic arguments come before the context, which comes
before the error result. Be more consistent about always
adding a context parameter on thick functions, even
when it's unused. Pull out the witness-method Self
argument so that it appears last after the error
argument.
Swift SVN r26667
It can be enabled with the -num-threads <n> option.
Without this option there should be NFC.
When enabled, the LLVM IR is split into multiple modules: one module for each input file.
And for each module an output file is generated. All output files must be specified with -o options:
for each input file in the command line there must be an -o <outputfile> option.
LLVM compilation is performed on each module separately.
This means that the generated code is different than with regular -wmo.
But performance and code size should be approximately the same because important inter-file
optimizations are already done at SIL level (e.g. inlining, specialization).
There is still no support in the driver for this feature.
Swift SVN r25930
SharedExternal is a hack that just signals that the shared function comes from a
different module. Besides that information, SharedExternal should always be
treated exactly the same as Shared.
<rdar://problem/19936108>
Swift SVN r25650
The field type generator may end up producing recursive static references to metadata while we're generating metadata. Fixes rdar://problem/19838839.
Swift SVN r25534
It doesn't really make sense to ask a type whether symbols related to it have unique linkage or not; that's a property of the type's declaration. Fixes rdar://problem/19792174 better.
Swift SVN r25199
We've had a rash of bugs due to inconsistencies between how IRGen and the runtime think types are laid out. Add a '-verify-type-layout' mode to the frontend that causes IRGen to emit a bunch of code that compares its static assumptions against what the runtime value witness does.
Swift SVN r24918
Per the previous commit we are no longer using this. Minor save in
simplicity and maybe a bit of compilation time as well.
In the long run IRGen probably shouldn't be pulling information from the
AST at all; the SILModule should be able to tell it what types it needs
to emit information for. But this is still an improvement for now.
No functionality change (that was the previous commit).
Swift SVN r24840
Instead, just fall through to the normal public/internal/private switch
added in the previous commit. Local declarations are always private.
Make sure we emit all local declarations by using the list in the SourceFile,
rather than walking the AST (which missed a few cases and was less efficient
anyway).
As an exception, declarations without accessibility at all still get private
linkage. These are things like local variables that don't get accessed by
symbol, even when using the debugger.
rdar://problem/19623016
Swift SVN r24839
The underlying problem is that e.g. even if a method is private but its class is public, the method can be referenced from another module - from the vtable of a derived class.
So far we handled this by setting the SILLinkage of such methods according to the visibility of the class. But this prevented dead method elimination.
Now I set the SILLinkage according to the visibility of the method. This enables dead method elimination, but it requires the following:
1) Still set the linkage in llvm so that it can be referenced from outside.
2) If the method is dead and eliminated, create a stub for it (which calls swift_reportMissingMethod).
Swift SVN r23889
This works by loading the protocols from a specially named symbol,
which is generated by the linker through the help of a linker script
that merges all of the protocol conformance blocks into one section
with its size at the start of it and points a global symbol at
the section.
We do all this because unlike MachO, section information does not
survive to be loaded into memory with ELF binaries. Instead,
the mappings that survive are 'segments', which contain one or
more sections. Information about how these relate to their original
sections is difficult, if not impossible, to obtain at runtime.
Swift SVN r23518
This works by loading the protocols from a specially named symbol,
which is generated by the linker through the help of a linker script
that merges all of the protocol conformance blocks into one section
with its size at the start of it and points a global symbol at
the section.
We do all this because unlike MachO, section information does not
survive to be loaded into memory with ELF binaries. Instead,
the mappings that survive are 'segments', which contain one or
more sections. Information about how these relate to their original
sections is difficult, if not impossible, to obtain at runtime.
Swift SVN r23475
Just injecting a new protocol descriptor into an already-running ObjC runtime isn't a good idea, since the runtime might have already canonized the protocol somewhere else, and it won't recognize that classes conform to protocols it doesn't know about.
Swift SVN r23313
We lazily realize classes when we access their metadata now, so there's no need to force the ObjC runtime to do this greedily anymore, except for classes that the runtime statically references. For those cases, add an @objc_non_lazy_realization class attribute that will put that class reference in the nlclslist section.
Swift SVN r23105
Move the uniquing information for ForeignTypeMetadata behind the address point so we can share the layout between foreign classes and the existing layout for struct and enum metadata. Emit metadata records for imported structs and enums as foreign metadata candidates, and dynamically unique references to the metadata by calling swift_getForeignTypeMetadata.
Swift SVN r23081
With runtime conformance lookup, it isn't possible without more complex analysis to determine whether a witness table is needed at runtime. In particular, in whole-module mode, it looked like no protocol conformances in the test/Interpreter/protocol_lookup.swift test were used, causing all of the tests to fail in -i mode. Erik's been working on SIL-level dead witness elimination which will hopefully offset the compile time hit here.
Swift SVN r23067
When we emit a witness table, build a protocol conformance record for it, and emit the list of all conformance records into a "__swift1_proto" section of the data segment.
Swift SVN r22939
We used to make fragile PrivateExternal and HiddenExternal symbols
'hidden' in LLVM. While this seems to work on Mach-O, ELF linkers can
not satisfy a hidden not defined symbol with a default symbol from a
shared library.
Swift SVN r22696