When an associated type declaration “overrides” (restates) an associated
type from a protocol it inherits, note that it overrides that declaration.
SourceKit now reports overrides of associated types.
In almost all other places, 'resolver' means the ASTContext's LazyResolver,
which is just an abstract base class for the TypeChecker instance to break
circularity.
But here it is something totally different, used to lazily populate
imported and deserialized conformances, not parsed conformances.
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
Rename AccessibilityAttr to AccessControlAttr and
SetterAccessibilityAttr to SetterAccessAttr, then track down the last
few uses of "accessibility" that don't have to do with
NSAccessibility. (I left the SourceKit XPC API alone because that's
supposed to be more stable.)
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
just for pointer identity.
The current technique for deciding whether that's the case is *extremely*
hacky and need to be replaced with an attribute, but I'm reluctant to
take that on so late in the schedule. The hack is terrible but not too
hard to back out in the future. Anyone who names a method like this just
to get the magic behavior knows well that they are not on the side of
righteousness.
rdar://33265254
ground work for the syntactic bridging peephole.
- Pass source and dest formal types to the bridging routines in addition
to the dest lowered type. The dest lowered type is still necessary
in order to handle non-standard abstraction patterns for the dest type.
- Change bridging abstraction patterns to store bridged formal types
instead of the formal type.
- Improve how SIL type lowering deals with import-as-member patterns.
- Fix some AST bugs where inadequate information was being stored in
various expressions.
- Introduce the idea of a converting SGFContext and use it to regularize
the existing id-as-Any conversion peephole.
- Improve various places in SILGen to emit directly into contexts.
Rather than pretend that the requirement signature of a protocol is a
full, well-formed generic signature that one can meaningfully query,
treat it as a flat set of requirements. Nearly all clients already did
this, but make it official. NFC
* Simplify TupleTypeRepr parsing
This patch introduces a TupleTypeReprElement struct that holds the
locations for all relevant bits of tuple elements. It removes the
NameLoc and UnderscoreLoc arrays from TupleTypeReprElement in favor of
holding each of these on TupleTypeReprElement. These extra bits of info
are required for full-fidelity representation in the Syntax library.
* Remove TupleTypeReprBitfields and move EllipsisLoc out of TrailingObjects
* Update users of TupleTypeRepr
* Don't resize the elts if we're going to push_back
* getType -> getElementType
* Move ellipsis back into TrailingObjects.
* Move NumElements into TupleTypeReprBitfields
Printing a declaration's name using `<<` and `getBaseName()` is be
independent of the return type of `getBaseName()` which will change in
the future from `Identifier` to `DeclBaseName`
Dispatch requests the ability to add a new case, but to treat missing
instances of that case in patterns as warnings instead of errors. It is
still an error to make reference to the annotated case in at least one
pattern then not cover the rest of the space, but it is not an error
to omit the space of patterns referencing the case entirely.
This attribute is private and uglified to intentionally discourage
its use outside just this one use case.
It's particularly likely someone will try to type `\(foo)`, which looks like a string interpolation segment, outside of a string literal, so give that case a special diagnostic. Fixes rdar://problem/32315365.
Resolves: https://bugs.swift.org/browse/SR-4426
* Make IfConfigDecl be able to hold ASTNodes
* Parse #if as IfConfigDecl
* Stop enclosing toplevel #if into TopLevelCodeDecl.
* Eliminate IfConfigStmt
As such, we no longer insert two placeholders for initializers that
need two vtable slots; instead we record that in the
MissingMemberDecl. I can see MissingMemberDecl growing to be something
we'd actually show to users, that can be used for other kinds of
declarations that don't have vtable entries, but for now I'm not going
to worry about any of that.
This can trigger recursive conformance checking, which can change
how associated type inference behaves due to ordering issues, as
well as cause crashes.
Dumping should be idempotent.
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
Currently inactive, this attribute indicates that a static initializer should be emitted to register the Objective-C metadata when the image is loaded, rather than on first use of the Objective-C metadata. Infer this attribute for NSCoding classes that won’t have static Objective-C metadata or have an @NSKeyedArchiveLegacy attributed.
This introduces a few unfortunate things because the syntax is awkward.
In particular, the period and following token in \.[a], \.? and \.! are
token sequences that don't appear anywhere else in Swift, and so need
special handling. This is somewhat compounded by \foo.bar.baz possibly
being \(foo).bar.baz or \(foo.bar).baz (parens around the type), and,
furthermore, needing to distinguish \Foo?.bar from \Foo.?bar.
rdar://problem/31724243
Add a 'hasExplicitAnyObject()' bit to ProtocolCompositionType
to represent canonical composition types containing '& AnyObject'.
Serialize this bit and take it into account when building
ExistentialLayouts.
Rename ProtocolCompositionType::getProtocols() to getMembers()
since it can contain classes now, and update a few usages that
need further attention with FIXMEs or asserts.
For now, nothing actually constructs these types, and they will
trigger arounds asserts. Upcoming patches will introduce support
for this.
TODO:
- Select the KeyPath subclass corresponding to the write capability of the key path components
- Figure out an issue with unresolved solutions being chosen with contextually-typed keypaths
- Diagnostic QoI
Fixes:
https://bugs.swift.org/browse/SR-3455https://bugs.swift.org/browse/SR-3663https://bugs.swift.org/browse/SR-4032https://bugs.swift.org/browse/SR-4031
Now, compilation conditions are validated at first, then evaluated. Also,
in non-Swift3 mode, '&&' now has higher precedence than '||'.
'A || B && C || D' are evaluated as 'A || (B && C) || D'.
Swift3 source breaking changes:
* [SR-3663] This used to be accepted and evaluate to 'true' because of short
circuit without any validation.
#if true || true * 12 = try Anything is OK?
print("foo")
#endif
In this change, remaining expressions are properly validated and
diagnosed if it's invalid.
* [SR-4031] Compound name references are now diagnosed as errors.
e.g. `#if os(foo:bar:)(macOS)` or `#if FLAG(x:y:)`
Swift3 compatibility:
* [SR-3663] The precedence of '||' and '&&' are still the same and the
following code evaluates to 'true'.
#if false || true && false
print("foo")
#endif
In the general case, this is done by reverse engineering the "best"
places for requirements to go from the requirement signature.
Conformance/superclass requirements like Self: Foo and Self.T: Bar defer
to the inheritance clause if they appear there, or are attached to the
protocol where clause or T (respectively) if not. A conformance
requirement like Self.T.U: Baz will go on T (if T is declared in the
protocol being printed).
Same-type requirements always go in where clauses, and specifically a
where clause of an associated type that is mentioned in them, so
something simple like Self.T.U == Int goes on the T associated type
definition, and similarly Self.T.U == Self.V will go on V (it's kinda
nonsense, but also more directly connected to V). There's a left-bias
for cases without an "obvious" choice, meaning something more
complicated like Self.T.U == Foo<Self.V> will end up on T.
Requirements that don't fit elsewhere will go on the
protocol (e.g. Self.AssocTypeFromSuperProtocol == Int).
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.
However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.
Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.