This was a hack needed to let CSApply re-write
IUO-returning applies, and is no longer needed now
that we can directly perform the unwrapping when
needed.
Introduce the ArgumentList type, which represents
a set of call arguments for a function or
subscript. This will supersede the use of tuple
and paren exprs as argument lists.
We used to represent the interface type of variadic parameters directly
with ArraySliceType. This was awfully convenient for the constraint
solver since it could just canonicalize and open [T] to Array<$T>
wherever it saw a variadic parameter. However, this both destroys the
sugaring of T... and locks the representation to Array<T>. In the
interest of generalizing this in the future, introduce
VariadicSequenceType. For now, it canonicalizes to Array<T> just like
the old representation. But, as you can guess, this is a new staging
point for teaching the solver how to munge variadic generic type bindings.
rdar://81628287
Designated types were removed from the constraint solver in #34315, but they are currently still represented in the AST and fully checked. This change removes them as completely as possible without breaking source compatibility (mainly with old swiftinterfaces) or changing the SwiftSyntax tree. Designated types are still parsed, but they are dropped immediately and a warning is diagnosed. During decl checking we also still check if the precedence group is really a designated type, but only so that we can diagnose a warning and fall back to DefaultPrecedence.
This change also fixes an apparent bug in the parser where we did not diagnose operator declarations that contained a `:` followed by a non-identifier token.
Start treating the null {Can}GenericSignature as a regular signature
with no requirements and no parameters. This not only makes for a much
safer abstraction, but allows us to simplify a lot of the clients of
GenericSignature that would previously have to check for null before
using the abstraction.
This commit essentially consistes of the following steps:
- Add a new code completion key path component that represents the code completion token inside a key path. Previously, the key path would have an invalid component at the end if it contained a code completion token.
- When type checking the key path, model the code completion token’s result type by a new type variable that is unrelated to the previous components (because the code completion token might resolve to anything).
- Since the code completion token is now properly modelled in the constraint system, we can use the solver based code completion implementation and inspect any solution determined by the constraint solver. The base type for code completion is now the result type of the key path component that preceeds the code completion component.
This resolves bugs where code completion was not working correctly if the key path’s type had a generic base or result type. It’s also nice to have moved another completion type over to the solver-based implementation.
Resolves rdar://78779234 [SR-14685] and rdar://78779335 [SR-14703]
- Allow named opaque types in typed patterns and subscripts
- Fix inheritance clause printing for `GenericParamList`
- clang-format changes from previous commit on this branch
In order to put constraints on opaque types in function returns, we want to
support naming them like 'func f() -> <T> T { }'. This commit parses that
syntax into the new `OpaqueReturnParameteriedTypeRepr`. This is hidden behind
the new flag --enable-experimental-opaque-return-types.
This new attribute can be used on parameters of `@Sendable async` type
to indicate that the closures arguments passed to such parameters
should inherit the actor context where they are formed, which is not
the normal behavior for `@Sendable` closures.
Another part of rdar://76927008.
Add a new parameter attribute `@_implicitSelfCapture` that disables the
requirement to explicitly use `self.` to refer to a member of `self`
in an escaping closure.
Part of rdar://76927008.
If have a function that takes a trailing closure as follows
```
func sort(callback: (_ left: Int, _ right: Int) -> Bool) {}
```
completing a call to `sort` and expanding the trailing closure results in
```
sort { <#Int#>, <#Int#> in
<#code#>
}
```
We should be doing a better job here and defaulting the trailing closure's to the internal names specified in the function signature. I.e. the final result should be
```
sort { left, right in
<#code#>
}
```
This commit does exactly that.
Firstly, it keeps track of the closure's internal names (as specified in the declaration of `sort`) in the closure's type through a new `InternalLabel` property in `AnyFunctionType::Param`. Once the type containing the parameter gets canonicalized, the internal label is dropped.
Secondly, it adds a new option to `ASTPrinter` to always try and print parameter labels. With this option set to true, it will always print external paramter labels and, if they are present, print the internal parameter label as `_ <internalLabel>`.
Finally, we can use this new printing mode to print the trailing closure’s type as
```
<#T##callback: (Int, Int) -> Bool##(_ left: Int, _ right: Int) -> Bool#>
```
This is already correctly expanded by code-expand to the desired result. I also added a test case for that behaviour.
Introduce `@concurrent` attribute on function types, including:
* Parsing as a type attribute
* (De-/re-/)mangling for concurrent function types
* Implicit conversion from @concurrent to non-@concurrent
- (De-)serialization for concurrent function types
- AST printing and dumping support
Since these types have an implicit stored property, this requires
adding an abstraction over fields to IRGen, at least throughout
the class code. In some ways I think this significantly improves
the code, especially in how we approach missing members.
Fixes rdar://72202671.
Compute the actor isolation for every closure, noting whether it is
part of an actor instance (and which 'self' variable describes the
instance), global actor, or independent of any actor. This information
is required for propertly generating `hop_to_executor` instructions in
SIL.
Fixes rdar://71126554.