In general, this forces SILGen and IRGen code that's grabbing
a declaration to state whether it's doing so to define it.
Change SIL serialization to serialize the linkage of functions
and global variables, which means also serializing declarations.
Change the deserializer to use this stored linkage, even when
only deserializing a declaration, and to call a callback to
inform the client that it has deserialized a new entity.
Take advantage of that callback in the linking pass to alter
the deserialized linkage as appropriate for the fact that we
imported the declaration. This computation should really take
advantage of the relationship between modules, but currently
it does not.
Swift SVN r12090
Part of the FileUnit restructuring. A serialized module is now represented as
a TranslationUnit containing a single SerializedASTFile.
As part of this change, the FileUnit interface has been made virtual, rather
than switching on the Kind in every accessor. We think the operations
performed on files are sufficiently high-level that this shouldn't affect us.
A nice side effect of all this is that we now properly model the visibility
of modules imported into source files. Previously, we would always consider
the top-level imports of all files within a target, whether re-exported or
not.
We may still end up wanting to distinguish properties of a complete Swift
module file from a partial AST file, but we can do that within
SerializedModuleLoader.
Swift SVN r10832
Start using null-page values as extra inhabitants when laying out single-payload enums that contain class pointers as their payload type. Don't use inhabitants that set the lowest bit, to avoid trampling potential ObjC tagged pointer representations. This means that 'T?' for class type T now has a null pointer representation. Enums with multiple empty cases, as well as nested enums like 'T??', should now have optimal representations for class type T as well.
Note that we don't yet expose extra inhabitants for aggregates that contain heap object references, such as structs with class fields, Swift function types, or class-bounded existentials (even when the existential has no witness tables).
Swift SVN r10061
Produce protocol descriptors when we see a protocol definition in the current module. If the protocol is @objc, go through the existing path for generating full Protocol* metadata for objc objects; otherwise, emit our layout-compatible but strong-external-linkage Swift protocol descriptor record.
Swift SVN r9867
So that Swift-defined classes actually do the right thing when -conformsToProtocol:-ed by dynamic protocol casts. Partially addresses <rdar://problem/15247517>, but we still need to dynamically emit runtime calls to register the conformance when compiling extensions in the JIT.
Swift SVN r9471
Greg indicated that objc_getProtocol only works if somebody actually reifies a protocol_t record for the protocol with the runtime, so we need to emit our own protocol_t for every Protocol* value we do a checked cast with. Hijack the ClassDataBuilder to also build protocol_t records.
Swift SVN r9420
of having a ton of ad-hoc bools in it. This allows us to consolidate a ton of
boilerplate, eliminating 250 lines of code:
17 files changed, 435 insertions(+), 662 deletions(-)
2) This eliminates the special case for weak and unowned attributes, which previously
didn't show up in Attr.def.
3) While we're at it, keep track of proper source locations for each attribute, and
use these to emit diagnostics pointing at the attribute in question instead of at
a funcdecl or the @ sign.
4) Fix axle attributes, which had vertex and fragment swapped.
Swift SVN r9263
In particular, when a nongeneric class inherits a fragile generic class, we need to populate the field offsets for the instantiated base class because we can't rely on the runtime to populate it for us.
Swift SVN r9258
When allocating and deallocating dependent generic class instances, load the instance size and alignment from the metadata instead of trying to use a static size from the compile-time class layout.
Swift SVN r9250
We need these for dependent-layout generic classes so we know the allocation/deallocation size and alignment. When I figure out ObjC interop with generic subclasses these should move to the rodata so they get handled resiliently by the ObjC runtime, but for generic class bringup this is convenient.
Swift SVN r9249
The field's layout kind affects its own field access in addition to that of its following fields. This puts dependent fragile field accesses down the right code path. The NonFixedOffsets were inside us all along.
Swift SVN r9221
If a class inherits a generic class instance, apply substitutions from the superclass to expose better fixed layout opportunities in the derived class's own metadata when the base class instance is fragile and has fixed layout with the added constraints.
Swift SVN r9198
Some things we'll need to arrange to instantiate at runtime:
- The deallocation size in the deallocating destructor,
- The ivar offset pointers for dependent-layout fields,
- The ivar start offset in the rodata.
For now, just fill in zero as a placeholder until the runtime pieces are in place so the compiler doesn't assert out when emitting generic classes.
Swift SVN r9195
These are the terms sent out in the proposal last week and described in
StoredAndComputedVariables.rst.
variable
anything declared with 'var'
member variable
a variable inside a nominal type (may be an instance variable or not)
property
another term for "member variable"
computed variable
a variable with a custom getter or setter
stored variable
a variable with backing storage; any non-computed variable
These terms pre-exist in SIL and IRGen, so I only attempted to solidify
their definitions. Other than the use of "field" for "tuple element",
none of these should be exposed to users.
field
a tuple element, or
the underlying storage for a stored variable in a struct or class
physical
describes an entity whose value can be accessed directly
logical
describes an entity whose value must be accessed through some accessor
Swift SVN r8698
Introduce an EnumCaseDecl for source fidelity to track the 'case' location and ordering of EnumElementDecls. Parse a comma-separated list of EnumElementDecls after a 'case' token.
Swift SVN r8509
Now that all [objc] constructors have a suitable "init" selector, emit
an Objective-C thunk for the initializing constructor (not the
allocating constructor!) with that selector, and make sure it shows up
in the Objective-C metadata.
With this, we can write a Swift constructor "constructor()" to
override "-init"; see the change to ListMaker that exercises this.
Joe or John: I'd love a review of these.
Swift SVN r8373
Previously, we were creating the type corresponding to
class/struct/union declarations as part of creating the declaration
node, which happens at parse time. The main problem with this (at the
moment) occurs with nested nominal types, where we'd end up with the
wrong "parent" type when the type was nested inside an extension
(because the extension hadn't been resolved at the time we accessed
the parent's type). Amusingly, only code completion observed this,
because the canonical type system hid the problem. The churn in the
code-completion tests come from the fact that we now have the proper
declared type for class/struct/union declarations within extensions.
Take a step toward order-independent type checking by setting the type
of a class/struct/union declaration in type checking when we either
find the declaration (e.g., due to name lookup) or walk to the
declaration (in our walk of the whole translation unit to type-check
it), extending the existing TypeChecker::validateTypeDecl() entry
point and adding a few more callers.
The removeShadowedDecls() hack is awful; this needs to move out to the
callers, which should be abstracted better in the type checker anyway.
Incremental, non-obvious step toward fixing the representation of
polymorphic function types. This yak has a *lot* of hair.
Swift SVN r7444
Previously, TypeAliasDecl was used for typealiases, generic
parameters, and assocaited types, which is hideous and the source of
much confusion. Factor the latter two out into their own decl nodes,
with a common abstract base for "type parameters", and push these
nodes throughout the frontend.
No real functionality change, but this is a step toward uniquing
polymorphic types, among other things.
Swift SVN r7345
We haven't fully updated references to union cases, and enums still are not
their own thing yet, but "oneof" is gone. Long live "union"!
Swift SVN r6783
Standardize on the more-common "superclass" and "subclass" terminology
throughout the compiler, rather than the odd mix of base/derived and
super/sub.
Also, have ClassDecl only store the Type of the superclass. Location
information will be part of the inheritance clause for parsed classes.
Swift SVN r6687
If a protocol requirement is satisfied by a generic method, we'll need to save the substitutions necessary to call that method from the witness thunk. This patch adds the spot in the ProtocolConformance::Mapping to save the substitutions; for now, always leave it empty and update the code for the type change.
Swift SVN r6399
Include methods from other contexts used to conform to an extension's declared objc protocol conformances in the category generated for that extension.
Swift SVN r5669