In Swift, only value types can have mutating instance member functions
or computed properties. The importer logic was violating this invariant
when generating setters for bit fields of shared references.
Fixes#80182
When importing C++ decls in symbolic mode, class templates are not instantiated, which means they might not have a destructor or a move constructor. Make sure we are not trying to diagnose those missing lifetime operations in symbolic mode.
This fixes incorrect diagnostics that were emitted during indexing at the end of compilation:
```
warning: 'import_owned' Swift attribute ignored on type 'basic_string': type is not copyable or destructible
```
As a nice side effect, this moves the logic that emits these diagnostics from the request body, which might be invoked many times, to the importer itself, which is only invoked once per C++ class.
rdar://147421710
This fixes a compiler bug that got exposed by f11abac652.
If a C++ type is declared in a nested Clang submodule, Swift was emitting errors that look like:
```
Type alias 'string' is not available due to missing import of defining module 'fwd’
```
rdar://146899125
This adds conformances for C++ string types (`std::string`, `std::u16string`, `std::u32string`) to `Swift.ExpressibleByStringInterpolation`.
These conformances currently implicitly use `DefaultStringInterpolation`. In the future we can provide more performant interpolation mechanisms for C++ strings specifically that avoid the extra conversion between Swift String and C++ string types.
rdar://147249169
Lookup into C++ namespaces uses a different path from C++ record declarations.
Augment the C++ namespace lookup path to also account for the auxiliary
declarations introduced by peer macro expansions.
When performing name lookup into a C++ record type, make sure that we
also walk through auxiliary declarations (i.e., declarations that can
come from peer macro expansions) to find results.
Fixes rdar://146833294.
While we expect our users to use type aliases for template
instantiations, there are some contexts when we import instantiations
without aliases. Unfortunately, in case of C++ span we generated a name
for the instantiation that cannot be a syntactically valid Swift type
due to unary negation appearing in the type name. This PR replaces the
unary negation with "Neg" in the type name and also fixed a bug that
ended up printing certain unsigned values as signed. Moreover, this PR
also fixes some other fallouts in the SwiftifyImport macro.
rdar://146833480
It is possible for a module interface (e.g., ModuleA) to be generated
with C++ interop disabled, and then rebuilt with C++ interop enabled
(e.g., because ModuleB, which imports ModuleA, has C++ interop enabled).
This circumstance can lead to various issues when name lookup behaves
differently depending on whether C++ interop is enabled, e.g., when
a module name is shadowed by a namespace of the same name---this only
happens in C++ because namespaces do not exist in C. Unfortunately,
naming namespaces the same as a module is a common C++ convention,
leading to many textual interfaces whose fully-qualified identifiers
(e.g., c_module.c_member) cannot be correctly resolved when C++ interop
is enabled (because c_module is shadowed by a namespace of the same
name).
This patch does two things. First, it introduces a new frontend flag,
-formal-cxx-interoperability-mode, which records the C++ interop mode
a module interface was originally compiled with. Doing so allows
subsequent consumers of that interface to interpret it according to the
formal C++ interop mode. Note that the actual "versioning" used by this
flag is very crude: "off" means disabled, and "swift-6" means enabled.
This is done to be compatible with C++ interop compat versioning scheme,
which seems to produce some invalid (but unused) version numbers. The
versioning scheme for both the formal and actual C++ interop modes
should be clarified and fixed in a subsequent patch.
The second thing this patch does is fix the module/namespace collision
issue in module interface files. It uses the formal C++ interop mode to
determine whether it should resolve C++-only decls during name lookup.
For now, the fix is very minimal and conservative: it only filters out
C++ namespaces during unqualified name lookup in an interface that was
originally generated without C++ interop. Doing so should fix the issue
while minimizing the chance for collateral breakge. More cases other
than C++ namespaces should be added in subsequent patches, with
sufficient testing and careful consideration.
rdar://144566922
These two tests require execution privileges in order to run `check-libcxx-version`, which is used to restrict the tests to a range of libc++ versions. They were failing on `non_executable` CI jobs because of missing `// REQUIRES: executable_test`.
rdar://145821727
We now accept @lifetime annotations in the import macro generated code
so no longer need to guard the emission of these attributes with this
feature flag.
We can use swift_name to import a static factory function as a Swift
initializer. This was tested with foreign reference types but not with
value types. This PR adds a test case for the latter.
rdar://117531428
ClangImporter has logic that infers default arguments of certain C/C++ types, such as the types declared via `CF_OPTIONS`/`NS_OPTIONS` macros.
There were some workarounds in place which triggered for C++ interop mode specifically. The workarounds were applying a heuristic based on the name of the type, which tried to match the behavior to non-C++ interop mode for certain types from the OS SDK. That was not working well for user-defined types, causing source compatibility breakages when enabling C++ interop.
This change replaces the name-based heuristic with a more robust criteria.
See also 3791ccb6.
rdar://142961112
This removes a workaround from the module interface loader, which was forcing AppKit and UIKit to be rebuilt from their textual interfaces with C++ interop disabled, even if the current compilation explicitly enables it.
The workaround was previously put in place because of a compiler error:
```
error: type 'AttributeScopes.AppKitAttributes.StrikethroughStyleAttribute' does not conform to protocol 'AttributedStringKey'
note: possibly intended match 'AttributeScopes.AppKitAttributes.StrikethroughStyleAttribute.Value' (aka 'NSUnderlineStyle') does not conform to 'Hashable'
```
`NSUnderlineStyle` is a C/C++ type from AppKit that is declared using `NS_OPTIONS` macro. `NS_OPTIONS`/`CF_OPTIONS` macros have different expansions in C vs C++ language modes. The C++ expansions weren't handled correctly by ClangImporter, resulting in two distinct Swift types being created: a `typealias NSUnderlineStyle` which was marked as unavailable in Swift, and `enum NSUnderlineStyle`. This mostly worked fine, since the lookup logic was picking the enum during regular name lookup. However, this silently broke down when rebuilding the explicit conformance from `AppKit.swiftinterface`:
```
extension AppKit.NSUnderlineStyle : Swift.Hashable {}
```
Swift was picking the (unavailable) typealias when rebuilding this extension, which means the (available) enum wasn't getting the conformance.
This is verified by an existing test (`test/Interop/Cxx/objc-correctness/appkit-uikit.swift`).
rdar://142961112
Importing these annotations were behind the LifetimeDependence
experimental flag. However, this feature flag is intended to guard the
use of @lifetime annotations on the Swift side and lifetime inference.
The checking of imported lifetime contracts should work even when this
flag is off. Removing the flag from the importer caused some fallout.
This was mostly due to calling getInterfaceType functions before the
import of some Swift declarations were fully done so the code was
slightly improved to make decisions only based on the C++ types.
There was also a crash when on-member functions imported as methods into
Swift. That is worked around in this PR.
There is one last feature check that we cannot remove yet, we generate
@lifetime annotations in the SwiftifyImport macro.
ClangImporter can now import non-public members as of be73254cdc and 66c2e2c52b, but doing so triggers some latent ClangImporter bugs in projects that don't use or need those non-public members.
This patch introduces a new experimental feature flag, ImportNonPublicCxxMembers, that guards against the importation of non-public members while we iron out those latent issues. Adopters of the SWIFT_PRIVATE_FILEID feature introduced in bdf22948ce can enable this flag to opt into importing private members they wish to access from Swift.
rdar://145569473
Unfortunately, Unsafe*Pointer types do not support non-escapable
pointees so we do not really have anything to map these types to at the
moment. Previously, importing such code resulted in crashes.
rdar://145800679