Always add constraints, find fixes during simplify.
New separate fix for allow generic function specialization.
Improve parse heuristic for isGenericTypeDisambiguatingToken.
The refactoring in #68760 accidentally caused us to
start parsing skipped function bodies if they have
parameters, as the local discriminator request kicks
parsing through `getBody()`. Cherry-pick part of
47ff9568db749def08007b64a5425789cb514ac3 which was
never landed, ensuring we don't call `getBody` for
a skipped function body.
This is meant to be a minimal low-risk change that
fixes the issue in question, restoring the behavior
we had in 5.10. Fixing the parser skipping
behavior for `#sourceLocation` will be done in
a follow-up. We also ought to see if there's a
better way we can enforce that skipped function
bodies don't end up getting parsed, for now I've
added a test.
rdar://131726797
As much as possible, we should avoid using `REQUIRES: maccatalyst_support`
since tests restricted this way are not run in PR tests. Many tests that
exercise macCatalyst behaviors can be run in a macOS configuration, without
full macCatalyst standard library support.
Also, adopt `%target-cpu` lit substitution where appropriate to avoid needless
standard library module rebuilds when running tests locally.
- when compiling embedded cross compile target standard libraries, include AVR
- add 16-bit pointer as a conditional compilation condition and get the void pointer size right for gyb sources
- attempt to fix clang importer not importing __swift_intptr_t correctly on 16 bit platforms
- changed the unit test target to avr-none-none-elf to match the cmake build
[AVR] got the standard library compiling in a somewhat restricted form:
General
- updated the Embedded Runtime
- tweaked CTypes.swift to fix clang import on 16 bit platforms
Strings
- as discussed in https://forums.swift.org/t/stringguts-stringobject-internals-how-to-layout-on-16-bit-platforms/73130, I went for just using the same basic layout in 16 bit as 32 bit but with 16 bit pointers/ints... the conversation is ongoing, I think something more efficient is possible but at least this compiles and will probably work (inefficiently)
Unicode
- the huge arrays of unicode stuff in UnicodeStubs would not compile, so I skipped it for AVR for now.
Synchronization
- disabled building the Synchronization library on AVR for now. It's arguable if it adds value on this platform anyway.
- Add simple support for the AVR architecture, as a supported conditional compilation value, and added to the default llvm targets to build.
(Later PRs will fix support for 16-bit pointers, which is broken in places, and any fixes needed to get the standard library to build.)
(Note: AVR as a target is expected to always be compiled with -enable-experimental-feature Embedded.)
Out of an abundance of caution, we:
1. Left in parsing support for transferring but internally made it rely on the
internals of sending.
2. Added a warning to tell people that transferring was going to
be removed very soon.
Now that we have given people some time, remove support for parsing
transferring.
rdar://130253724
Previously we would strictly match `{` + `}`, but
that ignored the fact that when parsing we consider
`#if` + `#endif` to be a stronger delimiter than
`{` + `}`, so can ignore a stray `}` in a `#if`.
Update the logic to also track opening and closing
`#if` decls, ignoring any braces that happen within
them.
rdar://129195380
Previously we would only diagnose and recover for
invalid tokens following a `#if` body for the decl
and postfix expression case. Sink this logic into
`parseIfConfigRaw`, ensuring that we do this for
all `#if` cases. This requires propagating the
context we're parsing in to customize the
diagnostic.
The parser is supposed to avoid looking inside unmatched `#if` compiler (et al) blocks.
This usually means that the following code builds fine
#if compiler(>=100)
foo bar
#endif
however, a logical bug meant that if the check was nested inside an already-inactive
`#if` block, it would not adhere to this evaluation-skipping behavior
#if false
#if compiler(>=100)
foo bar // error!
#endif
#endif
This PR fixes this specific case.
We are leaving this as an open part of the design space. In the mean time if
people need a +0 parameter, they can use __shared with sending.
rdar://129116182
TLDR: This makes it so that we always can parse sending/transferring but changes
the semantic language effects to be keyed on RegionBasedIsolation instead.
----
The key thing that makes this all work is that I changed all of the "special"
semantic changes originally triggered on *ArgsAndResults to now be triggered
based on RegionBasedIsolation being enabled. This makes a lot of sense since we
want these semantic changes specifically to be combined with the checkers that
RegionBasedIsolation turns on. As a result, even though this causes these two
features to always be enabled, we just parse it but we do not use it for
anything semantically.
rdar://128961672
Teach dependency scanner to report all the module canImport check result
to swift-frontend, so swift-frontend doesn't need to parse swiftmodule
or parse TBD file to determine the versions. This ensures dependency
scanner and swift-frontend will have the same resolution for all
canImport checks.
This also fixes two related issues:
* Previously, in order to get consistant results between scanner and
frontend, scanner will request building the module in canImport check
even it is not imported later. This slightly alters the definition of
the canImport to only succeed when the module can be found AND be
built. This also can affect the auto-link in such cases.
* For caching build, the location of the clang module is abstracted away
so swift-frontend cannot locate the TBD file to resolve
underlyingVersion.
rdar://128067152
Allow lifetime depenendence on types that are BitwiseCopyable & Escapable.
This is unsafe in the sense that the compiler will not diagnose any use of the
dependent value outside of the lexcial scope of the source value. But, in
practice, dependence on an UnsafePointer is often needed. In that case, the
programmer should have already taken responsibility for ensuring the lifetime of the
pointer over all dependent uses. Typically, an unsafe pointer is valid for the
duration of a closure. Lifetime dependence prevents the dependent value from
being returned by the closure, so common usage is safe by default.
Typical example:
func decode(_ bufferRef: Span<Int>) { /*...*/ }
extension UnsafeBufferPointer {
// The client must ensure the lifetime of the buffer across the invocation of `body`.
// The client must ensure that no code modifies the buffer during the invocation of `body`.
func withUnsafeSpan<Result>(_ body: (Span<Element>) throws -> Result) rethrows -> Result {
// Construct Span using its internal, unsafe API.
try body(Span(unsafePointer: baseAddress!, count: count))
}
}
func decodeArrayAsUBP(array: [Int]) {
array.withUnsafeBufferPointer { buffer in
buffer.withUnsafeSpan {
decode($0)
}
}
}
In the future, we may add SILGen support for tracking the lexical scope of
BitwiseCopyable values. That would allow them to have the same dependence
behavior as other source values.
A few things:
1. Internally except for in the parser and the clang importer, we only represent
'sending'. This means that it will be easy to remove 'transferring' once enough
time has passed.
2. I included a warning that suggested to the user to change 'transferring' ->
'sending'.
3. I duplicated the parsing diagnostics for 'sending' so both will still get
different sets of diagnostics for parsing issues... but anywhere below parsing,
I have just changed 'transferring' to 'sending' since transferring isn't
represented at those lower levels.
4. Since SendingArgsAndResults is always enabled when TransferringArgsAndResults
is enabled (NOTE not vis-a-versa), we know that we can always parse sending. So
we import "transferring" as "sending". This means that even if one marks a
function with "transferring", the compiler will guard it behind a
SendingArgsAndResults -D flag and in the imported header print out sending.
rdar://128216574
This protocol appears in the stdlib as scaffolding for the
`NonescapableTypes` feature, which is still experimental and not gone
through evolution as an approved addition to the stdlib.
Rather than delete it from the stdlib, because it needs to still remain
to support that feature work, gate references to it behind a feature
flag.
Additionally, prevent documentation from seeing this declaration.
rdar://126705184