This is going to let me just pass through the error struct to the diagnostic
rather than having the CRTP and then constructing an info object per CRTP.
Currently, to make it easier to refactor, I changed the code in
TransferNonSendable to just take in the new error and call the current CRTP
routines. In the next commit, I am going to refactor TransferNonSendable.cpp
itself. This just makes it easier to test that I did not break anything.
The unittests for PartitionUtils pass in mocked operands and instructions that
cannot be dereferenced. Adding this static CRTP helper allows for the unittest
PartitionOpEvaluator subclass to just return false for it instead of
dereferencing operands or instructions. The rest of the evaluators just get to
use the default "normal" implementation that actually accesses program state.
Specifically, the partition unit tests pass in bogus instructions/operands so we
cannot call /any/ methods on them. So I created stubed out helpers on the
evaluator that in the case of mocking just return a default initialized
SILIsolationInfo().
This is backing out an approach that I thought would be superior, but ended up
causing problems.
Originally, we mapped a region number to an immutable pointer set containing
Operand * where the region was tranferred. This worked great for a time... until
I began to need to propagate other information from the transferring code in the
analysis to the actual diagnostic emitter.
To be able to do that, my thought was to make a wrapper type around Operand
called TransferringOperand that contained the operand and the other information
I needed. This seemed to provide me what I wanted but I later found that since
the immutable pointer set was tracking TransferringOperands which were always
newly wrapped with an Operand *, we actually always created new pointer
sets. This is of course wasteful from a memory perspective, but also prevents me
from tracking transferring operand sets during the dataflow since we would never
converge.
In this commit, I fix that issue by again tracking just an Operand * in the
TransferringOperandSet and instead map each operand to a state structure which
we merge dataflow state into whenever we visit it. This provides us with
everything we need to in the next commit to including a region -> transferring
operand set equality check in our dataflow equations and always converge.
We package all isolation history nodes from a single instruction by placing a
sequence boundary at the bottom. When ever we pop, we actually pop a PartitionOp
at a time meaning that we pop until we see a SequenceBoundary. Thus the sequence
boundary will always be the last element visited when popping meaning that it is
a convenient place to stick the SILLocation associated with the entire
PartitionOp. As a benefit, there was some unused space in IsolationHistory::Node
for that case since we were not using the std::variant field at all.
This means that I added an IsolationHistory field to Partition. Just upstreaming
the beginning part of this work. I added some unittests to exercise the code as
well. NOTE: This means that I did need to begin tracking an
IsolationHistoryFactory and propagating IsolationHistory in the pass
itself... but we do not use it for anything.
A quick overview of the design.
IsolationHistory is the head of an immutable directed acyclic graph. It is
actually represented as an immutable linked list with a special node that ties
in extra children nodes. The users of the information are expected to get a
SmallVectorImpl and process those sibling nodes afterwards. The reason why we
use an immutable approach is that it fits well with the problem and saves space
since different partitions could be pointing at the same linked list
node. Operations occur on an isolation history by pushing/popping nodes. It is
assumed that the user will push nodes in batches with a sequence boundary at the
bottom of the addition which signals to stop processing nodes.
Tieing this together, each Partition within it contains an IsolationHistory. As
the PartitionOpEvaluator applies PartitionOps to Partition in
PartitionOpEvaluator::apply, the evaluator also updates the isolation history in
the partition by first pushing a SequenceBoundary node and then pushing nodes
that will undo the operation that it is performing. This information is used by
the method Partition::popHistory. This pops linked list nodes from its history,
performing the operation in reverse until it hits a SequenceBoundary node.
This allows for one to rewind Partition history. And if one stashes an isolation
history as a target, one can even unwind a partition to what its state was at a
specific transfer point or earlier. Once we are at that point, we can begin
going one node back at a time and see when two values that we are searching for
no longer are apart of the same region. That is a place where we want to emit a
diagnostic. We then process until we find for both of our values history points
where they were the immediate reason why the two regions merge.
rdar://123479934
To squelch errors, we need access to functionality not available in the
unittests. The unittests do not require this functionality anyways, so just
disable squelching during the unittests.
As an example of the change:
- // expected-note @-1 {{'x' is transferred from nonisolated caller to main actor-isolated callee. Later uses in caller could race with potential uses in callee}}
+ // expected-note @-1 {{transferring disconnected 'x' to main actor-isolated callee could cause races in between callee main actor-isolated and local nonisolated uses}}
Part of the reason I am doing this is that I am going to be ensuring that we
handle a bunch more cases and I wanted to fix this diagnostic before I added
more incaranations of it to the tests.
Previously I avoided doing this since the only problem would be that in a case
where we had two transfer instructions that were in an if-else block, we would
just emit an error for one:
```swift
if boolValue {
transfer(x)
} else {
transfer(x) // Only emit error for this transfer!
}
useValue(x)
```
Now that we are tracking at the transfer point if any element in the transfer
was captured in a closure, this becomes an actual semantic issue since if we
track the transfer instruction that isn't reachable from the closure capture, we
will not become more pessimistic:
```swift
if boolValue {
closure = { useInOut(&x) }
transfer(x)
} else {
transfer(x)
}
// Since we grab from the else block, sendableField is allowed to be accessed
// since we do not track that x was captured by reference in a closure.
x.sendableField
useValue(x)
```
To be truly safe, we need to emit both errors.
rdar://119048779
If the var is captured in a closure before it is transferred, it is not safe to
access the Sendable field since we may race on accessing the field with an
assignment to the field in another concurrency domain.
rdar://115124361
Specifically:
1. If the value is transferred such that it becomes part of an actor region, the
value is permanently part of the actor region as one would normally have.
2. If the value is just used in an async let or is used by a nonisolated async
function within the async let then while the async let is alive it cannot be
used. But once the async let has been awaited upon, we allow for it to be used
again.
rdar://117506395
This is another NFC refactor in preparation for changing how we emit
errors. Specifically, we need access to not only the instruction, but also the
specific operand that the transfer occurs at. This ensures that we can look up
the specific type information later when we emit an error rather than tracking
this information throughout the entire pass.
What this does is really split the one dataflow we are performing into two
dataflows we perform at the same time. The first dataflow is the region dataflow
that we already have with transferring never occurring. The second dataflow is a
simple gen/kill dataflow where we gen on a transfer instruction and kill on
AssignFresh. What it tracks are regions where a specific element is transferred
and propagates the region until the element is given a new value. This of course
means that once the dataflow has converged, we have to emit an error not if the
value was transferred, but if any value in its region was transferred.
Specifically:
1. I changed Partition::apply so that it has an emitLog flag. The reason why I
did this is we run apply in a few different situations sometimes when we want to
emit logging other times when we really don't. For instance, we want to emit
logging when walking instructions and updating the entry partition. On the other
hand, we do not want to emit logging if we apply a value to a partition while
attempting to determine why an error needed to be emitted.
2. When we create an assign partition op and we see that our destination and
source are the same representative, we do not create the actual assign. Before
we did not log this so it looked like there was a logic error that was stopping
us from emitting a partition op when visiting said instructions. Now, we emit a
small logging message so it isn't possible to be confused.
3. Since I am adding another parameter to Partition::apply, I decided to
refactor Partition::apply to be in a separate PartitionOpEvaluator data
structure that contains the options that we used to pass into Partition::apply.
This prevents any mistakes around configuring Partition::apply since the fields
provide nice names/common sense default values.
We were performing a union on the intersection of the lhs/rhs but were dropping
the parts of lhs/rhs that were in the symmetric difference of the two sets.
Without this, we would not diagnose cases like this where we had elements on the
lhs/rhs that were not in the intersection.
```
var closure: () -> () = {}
await transferToMain(closure)
if await booleanFlag {
closure = {
print(self.klass)
}
} else {
closure = {}
}
// At this point we would lose closure since they were different elements
await transferToMain(closure) // We wouldn't error on this!
```
rdar://117437059
This is the correct thing to do since the header is in SILOptimizer. That being
said the reason why I am doing this is that I want to add a command line flag to
PartitionUtils.h to allow for more verbose debug output and the flag's
definition will be in the SILOptimizer library. So this is just a little cleanup
that follows from that.