Create a version of the metadata specialization code which is abstracted so that it can work in different contexts, such as building specialized metadata from dylibs on disk rather than from inside a running process.
The GenericMetadataBuilder class is templatized on a ReaderWriter. The ReaderWriter abstracts out everything that's different between in-process and external construction of this data. Instead of reading and writing pointers directly, the builder calls the ReaderWriter to resolve and write pointers. The ReaderWriter also handles symbol lookups and looking up other Swift types by name.
This is accompanied by a simple implementation of the ReaderWriter which works in-process. The abstracted calls to resolve and write pointers are implemented using standard pointer dereferencing.
A new SWIFT_DEBUG_VALIDATE_EXTERNAL_GENERIC_METADATA_BUILDER environment variable uses the in-process ReaderWriter to validate the builder by running it in parallel with the existing metadata builder code in the runtime. When enabled, the GenericMetadataBuilder is used to build a second copy of metadata built by the runtime, and the two are compared to ensure that they match. When this environment variable is not set, the new builder code is inactive.
The builder is incomplete, and this initial version only works on structs. Any unsupported type produces an error, and skips the validation.
rdar://116592420
When loading input from CAS, `swift-frontend` relies on the input file
name to determine the type to look from CAS entry. In the case where
file extension is `.private.swiftinterface`, swift mis-identify that as
`.swiftinterface` file and look up the wrong input file. Add a new
file type lookup function that can figure out the type from the full
filename.
Also add few diagnostics during the CAS lookup for the input file to
error out immediately, rather than rely on the lookup failure later.
Merge `$<Feature>` and `hasFeature` implementations.
- `$<Feature>` did not support upcoming language features.
- `hasFeature` did not support promoted language features and also
didn't take into account `Options` in `Features.def`.
Remove `Options` entirely, it was always one of three cases:
- `true`
- `langOpts.hasFeature`
- `hasSwiftSwiftParser`
Since `LangOptions::hasFeature` should always be used anyway, it's no
longer necessary. `hasSwiftSwiftParser` can be special cased when adding
the default promoted language features (by removing those features).
Resolves rdar://117917456.
Now that the diagnostics are automatically errors in Swift 6, we don't need an
`-enable-conformance-availability-errors` flag to control whether unavailable
conformances are diagnosed as errors. Nobody was using the flag so it should be
safe to remove.
Part of rdar://88210812
Redirecting file system can canonicalize the file path before forwarding
the path to IncludeTreeFileSystem, which is a simplied FS that can only
intepret the paths that has been seen by dep-scanner. Since all files
that need redirecting already added to underlying FS via DepScan, there
is no need for such layer when compiling using clang-include-tree.
rdar://119727344
Currently, `-direct-clang-cc1-module-build` and `-only-use-extra-clang-opts`
have to be passed together for clang importer creation to succeed.
Missing either will result in error. Simplified the swift-frontend flags
by removing `-only-use-extra-clang-opts` and let
`-direct-clang-cc1-module-build` to do both.
Follow the feature flag convention for capitalization and be
consistent with the related NoncopyableGenerics feature.
This is a new feature that no wild Swift code has used it yet:
commit e99ce1cc5d
Author: Kavon Farvardin <kfarvardin@apple.com>
Date: Tue Dec 5 23:25:09 2023
[NCGenerics] add `~Escapable`
Basic implementation of `~Escapable` in the type system.
The number of errors in a function scope can scale exponentially,
making it hard to root cause and resolve unless we group them into
a single error. Grouping the error diagnostics will considerably
improve the concurrency user experience.
These search paths will not get used during Swift module compilation and can only hinder module sharing among different targets.
Resolves rdar://119217774
- Remove `std::` from `std::size_t` where we're importing `stddef.h`
instead of `cstddef`.
- Add an inclusion of `<cstdlib>` where needed because libc++ has
cleaned up some of their transitive inclusions.
Previously I avoided doing this since the only problem would be that in a case
where we had two transfer instructions that were in an if-else block, we would
just emit an error for one:
```swift
if boolValue {
transfer(x)
} else {
transfer(x) // Only emit error for this transfer!
}
useValue(x)
```
Now that we are tracking at the transfer point if any element in the transfer
was captured in a closure, this becomes an actual semantic issue since if we
track the transfer instruction that isn't reachable from the closure capture, we
will not become more pessimistic:
```swift
if boolValue {
closure = { useInOut(&x) }
transfer(x)
} else {
transfer(x)
}
// Since we grab from the else block, sendableField is allowed to be accessed
// since we do not track that x was captured by reference in a closure.
x.sendableField
useValue(x)
```
To be truly safe, we need to emit both errors.
rdar://119048779
This allows one to place types like PointerIntPair and value types that wrap a
pointer into the pointer set.
I am making this change before I use this data structure in TransferNonSendable
and using ARC to validate that I haven't broken anything.
ASTScope assertions that a new child node inserted into its parent list
is after all other child nodes in the source, which included some bespoke
code for dealing with macro expansions. Replace this bespoke code with
uses of the newer SourceManager operations that check ordering of
source locations in a manner that respects macro expansions.
SourceManager's `isBeforeInBuffer` in buffer takes two source locations
that are assumed to be within the same source buffer and determines
whether the first precedes the second. However, due to macro
expansion, there can be source locations in different source buffers
that are nonetheless conceptually part of the same source file. For
such cases, `isBeforeInBuffer` will silently produce wrong results.
Extend `SourceManager` with a new `isBefore` operation that determines
whether one source location precedes another in the same conceptual
source file, even if they are in different source buffers that (e.g.)
represent macro expansions within that source file. Also introduce
`isAtOrBefore` to cover the case where the source locations might be
equivalent, which was previously handled via a separate equality check
on the source locations that won't work with macro expansions.
Add caching for the list of accessors of a buffer, so we aren't doing
a full walk up the source-buffer chain ever time we do a comparison of
source locations. LCA is still linear-time, but this eliminates
extraneous hash table lookups along the way.
Over time, we should both move more clients over to these new variants
and introduce more assertions into the old (in-buffer) versions to
catch improper uses of them.