Function body macros allow one to introduce a function body for a
particular function, either providing a body for a function that
doesn't have one, or wholesale replacing the body of a function that
was written with a new one.
Yet more preprocessor metaprogramming to eliminate per-macro-role boilerplate
in the compiler. This time, focused on mangling, demangling, and remangling
of the accessor macro roles.
ASTGen always builds with the host Swift compiler, without requiring
bootstrapping, and is enabled in more places. Move the regex literal
parsing logic there so it is enabled in more host environments, and
makes use of CMake's Swift support. Enable all of the regex literal
tests when ASTGen is built, to ensure everything is working.
Remove the "AST" and "Parse" Swift modules from SwiftCompilerSources,
because they are no longer needed.
Generalize the existing `-playground-high-performance` flag into a set of options that control various aspects of the "playground transformation" in Sema.
This commit adds the first two of those controllable parts of the transform, matching what the existing flag already controls (scope entry/exit and function arguments), but in an extensible way. The intent is for this to be a scalable way to control a larger set of upcoming options.
So instead of a single flag, we represent the playground transform options as a set of well-defined choices, with a new `-playground-option` flag to individually enable or disable those options (when prefixed with "No", the corresponding option is instead disabled). Enabling an already-enabled option or disabling an already-disabled option is a no-op.
For compatibility, the existing `-playground-high-performance` flag causes "expensive" transforms to be disabled, as before. We can also leave it as a useful shorthand to include or exclude new options even in the future, based on their cost. There is a comment on the old function indicating that new code should use the more general form, but it remains for clients like LLDB until they can switch over.
The machinery for implementing the playground options is similar to how `Features.def` works, with a new `PlaygroundOptions.def` that defines the supported playground transform options. Each playground definition specifies the name and description, as well as whether the option is enabled by default, and whether it's also enabled in the "high performance" case.
Adding a new option in the future only requires adding it to `PlaygroundOptions.def`, deciding whether it should be on or off by default, deciding whether it should also be on or off in `-playground-high-performance` mode, and checking for its presence from the appropriate places in `PlaygroundTransform.cpp`.
Note that this is intended to control the types of user-visible results that the invoker of the compiler wants, from an externally detectable standpoint. Other flags, such as whether or not to use the extended form of the callbacks, remain as experimental features, since those deal with the mechanics and not the desired observed behavior.
rdar://109911673
There's no reason to generate only TypeRepr using ASTGen anymore.
Use ParserASTGen feature to test test/ASTGen/types.swift because
ASTGen now can generate the whole test file for type checking.
Add a new flag to enable package interface loading.
Use the last value of package-name in case of dupes.
Rename PrintInterfaceContentMode as InterfaceMode.
Update diagnostics.
Test package interface loading with various scenarios.
Test duplicate package-name.
It has an extension .package.swiftinterface and contains package decls
as well as SPIs and public/inlinable decls. When a module is loaded
from interface, it now looks up the package-name in the interface
and checks if the importer is in the same package. If so, it uses
that package interface found to load the module. If not, uses the existing
logic to load modules.
Resolves rdar://104617854
The current implementation of `-application-extension` has a problem that affects the generation of ObjC headers for regular Swift modules.
The primary purpose of `-application-extension` is to prevent the use of unavailable APIs in app extensions. However, it has an impact on the generation of -Swift.h headers and exposes Swift's internal declarations to ObjC. This behavior is appropriate for mixed modules that are not consumed externally, such as app extensions, but it fails to address the situation when a module is not an extension itself but is consumed by the extension (c90cd11).
To resolve this issue while maintaining the desired behavior, we can introduce a new flag for this particular use-case.
With the growing popularity of using Features, I think it's important to
ensure our Features querying set is as fast as possible. In particular,
we sometimes may end up putting a feature check in a hot function, so
the `contains` overhead is important.
While I haven't done *any* measurements to verify this, I think a
`llvm::SmallSet<Feature, 2>` is slower than a FixedBitSet. For the
former, if the set grows more than the constant size, it switches over
to using a `std::set`. Setting the size to `numFeatures()` is not
particularly attractive or possible, because `SmallSet` is limited to a
size of 32 to be considered small, as it uses linear search over a
SmallVector to service a `contains` query.
Meanwhile, a FixedBitSet has a small constant factor overhead for
querying if the element is contained: two divisions by a
constant power-of-two, a bit shift, and a memory-read / compare. I think
that'll beat a SmallSet in all cases.
Remove the default constructor footgun present with
the struct implementations, and sprinkle some
`SWIFT_NAME` and bridging utilities to make them
nicer to work with.
Merge with BasicBridging and ASTBridging
respectively. The changes here should be pretty
uncontroversial, I tried to keep it to just moving
code about.
Introduce a macro that can stamp out wrapper
classes for underlying C++ pointers, and use
it to define BridgedDiagnosticEngine in
ASTBridging. Then, migrate users of
BridgedDiagEngine onto it.
Previously, inverses were only accounted-for in inheritance clauses.
This batch of changes handles inverses appearing in other places, like:
- Protocol compositions
- `some ~Copyable`
- where clauses
with proper attribution of default requirements in their absence.