SourceKit always sets it positively. This may lead to more aggressive fixits however
less informative messages. We currently use the flag only for filling protocol stubs.
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
Avoid using std::string and std::vector in the demangler. Instead use vectors/strings with storage allocated by the NodeFactory’s bump pointer allocator.
This brings another 35% speedup. Especially in the case the Demangle::Context is not reused for subsequent demanglings.
Put in a general mechanism for mapping user-specified "compatibility
versions" to proper "effective versions" (what #if and @available
checking should respect). This may still be different from the
intrinsic "language version"; right now master is considered a "3.1"
compiler with a "Swift 4 mode", and we plan to ship a "4.0" compiler
with a "Swift 3 mode" that will have a version number of something
like "3.2".
rdar://problem/29884401 / SR-3791
This makes the demangler about 10 times faster.
It also changes the lifetimes of nodes. Previously nodes were reference-counted.
Now the returned demangle node-tree is owned by the Demangler class and it’s lifetime ends with the lifetime of the Demangler.
Therefore the old (and already deprecated) global functions demangleSymbolAsNode and demangleTypeAsNode are no longer available.
Another change is that the demangling for reflection now only supports the new mangling (which should be no problem because
we are generating only new mangled names for reflection).
This is disabled by default but enabled under the frontend option
-propagate-constraints.
The idea here is to have a pass that enforces local consistency in our
constraint system, in order to reduce the domains of constraint
variables, speeding up the solving of the constraint system.
The initial focus will be on reducing the size of the disjunctions for
function overloads with the hope that it substantially improves the
performance of type checking many expressions.
Add an option to the lexer to go back and get a list of "full"
tokens, which include their leading and trailing trivia, which
we can index into from SourceLocs in the current AST.
This starts the Syntax sublibrary, which will support structured
editing APIs. Some skeleton support and basic implementations are
in place for types and generics in the grammar. Yes, it's slightly
redundant with what we have right now. lib/AST conflates syntax
and semantics in the same place(s); this is a first step in changing
that to separate the two concepts for clarity and also to get closer
to incremental parsing and type-checking. The goal is to eventually
extract all of the syntactic information from lib/AST and change that
to be more of a semantic/symbolic model.
Stub out a Semantics manager. This ought to eventually be used as a hub
for encapsulating lazily computed semantic information for syntax nodes.
For the time being, it can serve as a temporary place for mapping from
Syntax nodes to semantically full lib/AST nodes.
This is still in a molten state - don't get too close, wear appropriate
proximity suits, etc.
Only those types can be de-mangled by the ObjC runtime anyway.
Also move this mangling logic into the ASTMangler class. This avoids keeping the old mangler around just for that purpose.
It also uses the new mangling for type names in meta-data (except for top-level non-generic classes).
lldb has now support for new mangled metadata type names.
This reinstates commit 21ba292943.
The mangler never produces a mangling here, the demangler doesn't
demangle anything here, the remangler punted or asserted, and type
reconstruction did something very wrong. Delete this code.
Instead of a global demangleSymbolAsNode, which returns a reference-counted NodePointer, there is now a Context class which owns the nodes.
So now demangleSymbolAsNode is a member of Context and the returned NodePointer is alive as long as the Context is alive.
This is still a NFC: the new ABI still maps to the old functions.
The purpose of this change is to let lldb adapt to the new API and then we can switch to the new implementation.
For this we are linking the new re-mangler instead of the old one into the swift runtime library.
Also we are linking the new de-mangling into the swift runtime library.
It also switches to the new mangling for class names of generic swift classes in the metadata.
Note that for non-generic class we still have to use the old mangling, because the ObjC runtime in the OS depends on it (it de-mangles the class names).
But names of generic classes are not handled by the ObjC runtime anyway, so there should be no problem to change the mangling for those.
The reason for this change is that it avoids linking the old re-mangler into the runtime library.