This is useful to discover when a specific cleanup is being eliminated while
debugging. The implementation is compiled out when assertions are disabled.
rdar://29791263
[NFC] Add -enable-sil-opaque-values frontend option.
This will be used to change the SIL-level calling convention for opaque values,
such as generics and resilient structs, to pass-by-value. Under this flag,
opaque values have SSA lifetimes, managed by copy_value and destroy_value.
This will make it easier to optimize copies and verify ownership.
* [SILGen] type lowering support for opaque values.
Add OpaqueValueTypeLowering.
Under EnableSILOpaqueValues, lower address-only types as opaque values.
* [SIL] Fix ValueOwnershipKind to support opaque SIL values.
* Test case: SILGen opaque value support for Parameter/ResultConvention.
* [SILGen] opaque value support for function arguments.
* Future Test case: SILGen opaque value specialDest arguments.
* Future Test case: SILGen opaque values: emitOpenExistential.
* Test case: SIL parsing support for EnableSILOpaqueValues.
* SILGen opaque values: prepareArchetypeCallee.
* [SIL Verify] allow copy_value for EnableSILOpaqueValues.
* Test cast: SIL serializer support for opaque values.
* Add a static_assert for ParameterConvention layout.
* Test case: Mandatory SILOpt support for EnableSILOpaqueValues.
* Test case: SILOpt support for EnableSILOpaqueValues.
* SILGen opaque values: TypeLowering emitCopyValue.
* SILBuilder createLoad. Allow loading opaque values.
* SIL Verifier. Allow loading and storing opaque values.
* SILGen emitSemanticStore support for opaque values.
* Test case for SILGen emitSemanticStore.
* Test case for SIL mandatory support for inout assignment.
* Fix SILGen opaque values test case after rebasing.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
* Add the signal number of the terminated task to the output of the driver on platforms for which the signal number is available. The new key in the parseable driver output is "signal".
* Add a test to verify that the signal number is emitted.
* Add documentation for the new "signal" key emitted in the parseable driver output.
https://bugs.swift.org/browse/SR-3175
Rather than waiting until we've used a huge amount of memory, attempt to
make the choice to bail out based on the number of type bindings /
disjunction choices we visit.
I expect this will generally fail faster than the Swift 3 metric, but
will still only fail when we've got clearly exponential type checking
behvior.
Since we have multiple sources of exponential behavior today, I don't
want to make the bounds too tight. Once we fix some/most of that
behavior we can look at further tightening up the metric.
The difference is that TransformArrayRef stores its function as an std::function
instead of using a template parameter. This is useful in situations where one
wants to define such a type in a header on forward declared pointers. If one had
to define the function to be used as a template parameter, one would have to
define the function or provide a forward declared version