Complete scopes of scoped addresses (introduced by `store_borrow` and
`begin_access`) in dead end blocks via
`ScopedAddressValue::computeTransitiveLiveness`.
rdar://141037060
The mangling of macro expansions relies on having a type-checked AST
for its enclosing context. When that enclosing context is within a
local context (say, a local type), mangling would trigger type
checking of that local type, which could then involve assigning local
discriminators. However, if this happens before type checking of the
enclosing function body, we would end up failing to assign closure
discriminators to (e.g.) autoclosures within the body.
The fundamental problem here is the interaction between discriminator
assignment (which can only happen after type checking) and mangling of
macro expansion buffers (which can happen during that type checking).
Break this cycle by providing a different approach to mangling macro
expansions within local contexts as the innermost non-local context +
a name-based discriminator within that local context. These manglings
are not ABI and are not stable, so we can adjust them later if we come
up with a scheme we like better. However, by breaking this cycle, we
eliminate assertions and miscompiles that come from missing
discriminators in this case.
Fixes rdar://139734958.
This query's functionality was not useful enough to be exposed on `Decl` and
cached in the request evaluator. Instead, just share a local implementation of
it in `TypeCheckAttr.cpp`.
This makes sure that the compiler does not emit `-enable-experimental-cxx-interop`/`-cxx-interoperability-mode` flags in `.swiftinterface` files. Those flags were breaking explicit module builds. The module can still be rebuilt from its textual interface if C++ interop was enabled in the current compilation.
rdar://140203932
In preparation for only recording the defs once, replace the
GraphNodeWorklist of defs with a SetVector. Preserve the current
visitation order by creating a worklist of indices to be visited.
There are a bunch of AST nodes that can have
associated DeclNameLocs, make sure we cover them
all. I don't think this makes a difference for
`unwrapPropertyWrapperParameterTypes` since the
extra cases should be invalid, but for cursor info
it ensures we handle UnresolvedMemberExprs.
Add a type which distinguishes among the types of defs that are pushed
onto the "def-use worklist". Note that it's not possible to rely on the
kind of value because the root may itself be a copy_value. For now, the
distinction is discarded as soon as the def is visited.
Just because the type of the initializer expression is an opaque return type,
does not mean it is the opaque return type *for the variable being initialized*.
It looks like there is a bit of duplicated logic and layering violations going
on so I only fixed one caller of openOpaqueType(). This addresses the test case
in the issue. For the remaining calls I added FIXMEs to investigate what is
going on.
Fixes https://github.com/swiftlang/swift/issues/73245.
Fixes rdar://127180656.
Instead, each scan's 'ModuleDependenciesCache' will hold all of the data corresponding to discovered module dependencies.
The initial design presumed the possibility of sharing a global scanning cache amongs different scanner invocations, possibly even different concurrent scanner invocations.
This change also deprecates two libSwiftScan entry-points: 'swiftscan_scanner_cache_load' and 'swiftscan_scanner_cache_serialize'. They never ended up getting used, and since this code has been largely stale, we are confident they have not otherwise had users, and they do not fit with this design.
A follow-up change will re-introduce moduele dependency cache serialization on a per-query basis and bring the binary format up-to-date.
When serializing the module interface path of an interface that
is part of the SDK, we serialize relative to the SDK path. During
deserialization we need to know if a path was serialized relative
to the SDK or not. The existing logic assumes any relative path
has been serialized relative to the SDK, which makes it impossible
to compile modules from relative swiftinterface paths that are not
part of the SDK.
Update the swiftmodule file to include an attribute to show if the
path was serialized relative to the SDK or not, which is used
during deserialization to correctly reconstruct the interface path.
In rare scenarios, Swift was emitting diagnostics that looked like this:
```
warning: 'import_owned' swift attribute ignored on type 'basic_string': type is not copyable or destructible
```
This change makes sure the compiler does not emit these (incorrect) warnings. See the inline comment for more details.
Now that IUOs are supported for compound function
references, we can properly set the compound bit
here.
This is a source breaking change since this used
to be legal:
```swift
struct S {
static func foo(x: Int) -> Self { .init() }
}
let _: S = .foo(x:)(x: 0)
```
However I somewhat doubt anyone is intentionally
writing code like that.
Many APIs using nonescapable types would like to vend interior pointers to their
parameter bindings, but this isn't normally always possible because of representation
changes the caller may do around the call, such as moving the value in or out of memory,
bridging or reabstracting it, etc. `@_addressable` forces the corresponding parameter
to be passed indirectly in memory, in its maximally-abstracted representation.
[TODO] If return values have a lifetime dependency on this parameter, the caller must
keep this in-memory representation alive for the duration of the dependent value's
lifetime.
The symbol graph output from a module can contain an arbitrary number of
files, depending on what extensions it contains, so cache a list of
symbol graph files with their base name and contents so that they can be
replayed.
rdar://140286819