If the output loading failed after cache key lookup, treat that as a
warning and resume as if that is a cache miss. This is not a valid
configuration for builtin CAS but can happen for a remote CAS service
that failed to serve the output. Instead of failing, we should continue
to compile to avoid disruptive failures.
rdar://140822432
This change addresses the following issue: when an error is being wrapped in a warning, the diagnostic message will use the wrapper's `DiagGroupID` as the warning's name. However, we want to retain the original error's group for use. For example, in Swift 5, async_unavailable_decl is wrapped in error_in_future_swift_version. When we print a diagnostic of this kind, we want to keep the `DiagGroupID` of `async_unavailable_decl`, not that of `error_in_future_swift_version`.
To achieve this, we add `DiagGroupID` to the `Diagnostic` class. When an active diagnostic is wrapped in DiagnosticEngine, we retain the original `DiagGroupID`.
For illustration purposes, this change also introduces a new group: `DeclarationUnavailableFromAsynchronousContext`.
With this change, we produce errors and warnings of this kind with messages like the following:
```
global function 'fNoAsync' is unavailable from asynchronous contexts [DeclarationUnavailableFromAsynchronousContext]
global function 'fNoAsync' is unavailable from asynchronous contexts; this is an error in the Swift 6 language mode [DeclarationUnavailableFromAsynchronousContext]
```
Also remove the underlying `SemanticUnavailableAttrRequest`, which used memory
very inefficiently in order to cache a detailed answer to what was usually a
much simpler question.
The only remaining use of `Decl::getSemanticUnavailableAttr()` that actually
needed to locate the semantic attribute making a declaration unavailable was in
`TypeCheckAttr.cpp`. The implementation of the request could just be used
directly in that one location. The other remaining callers only needed to know
if the decl was unavailable or not, which there are simpler queries for.
# Please enter the commit message for your changes. Lines starting
Previously we would not propagate those into the generated distributed
actor, making a lot of generic distributed actor protocols impossible to
express.
We indeed cannot handle protocols WITHOUT primary associated types, but
we certainly can handle them with!
This resolves rdar://139332556
Many existing C APIs for retaining references, including Apple's own, return
the reference. Support this pattern, along with the existing void return
signature, with when importing reference types from C++.
As the utility runs, new gens may become local: as access scopes are
determined to contain deinit barriers, their `end_access` instructions
become kills; if such an `end_access` occurs in the same block above an
initially-non-local gen, that gen is now local.
Previously, it was asserted that initially-non-local gens would not
encounter when visiting the block backwards from that gen. Iteration
would also _stop_ at the discovered kill, if any. As described above,
the assertion was incorrect.
Stopping at the discovered kill was also incorrect. It's necessary to
continue walking the block after finding such a new kill because the
book-keeping the utility does for which access scopes contain barriers.
Concretely, there are two cases:
(1) It may contain another `end_access` and above it a deinit barrier
which must result in that second scope becoming a deinit barrier.
(2) Some of its predecessors may be in the region, all the access scopes
which are open at the begin of this block must be unioned into the set
of scopes open at each predecessors' end, and more such access scopes
may be discovered above the just-visited `end_access`.
Here, both the assertion failure and the early bailout are fixed by
walking from the indicated initially-non-local gen backwards over the
entire block, regardless of whether a kill was encountered. If a kill
is encountered, it is asserted that the kill is an `end_access` to
account for the case described above.
rdar://139840307
In terms of the test suite the only difference is that we allow for non-Sendable
types to be returned from nonisolated functions. This is safe due to the rules
of rbi. We do still error when we return non-Sendable functions across isolation
boundaries though.
The reason that I am doing this now is that I am implementing a prototype that
allows for nonisolated functions to inherit isolation from their caller. This
would have required me to implement support both in Sema for results and
arguments in SIL. Rather than implement results in Sema, I just finished the
work of transitioning the result checking out of Sema and into SIL. The actual
prototype will land in a subsequent change.
rdar://127477211
It replaces `DeclAttr::getUnavailable()` and `AvailableAttr::isUnavailable()`
as the designated way to query for the attribute that makes a decl unavailable.
FunctionRefKind was originally designed to represent
the handling needed for argument labels on function
references, in which the unapplied and compound cases
are effectively the same. However it has since been
adopted in a bunch of other places where the
spelling of the function reference is entirely
orthogonal to the application level.
Split out the application level from the
"is compound" bit. Should be NFC. I've left some
FIXMEs for non-NFC changes that I'll address in a
follow-up.
The renamed decl is now stored exclusively in the split request evaluator
storage, which is more efficient since most availability attributes do not
specify a renamed decl.
Propagating array element values is done by load-simplification and redundant-load-elimination.
So ArrayElementPropagation is not needed anymore.
ArrayElementPropagation also replaced `Array.append(contentsOf:)` with individual `Array.append` calls.
This optimization is removed, because the benefit is questionably, anyway.
In most cases it resulted in a code size increase.
Change an assert to a bail-out condition.
I found that it _can_ happen to have a function without a debug scope.
In such a case even printing the SIL crashed.
Be a bit more tolerant.
Currently we set `FunctionRefKind::Compound` for
enum element patterns with tuple sub-patterns to
ensure the member has argument labels stripped. As
such, we need to account for the correct application
level in `getNumApplications`. We ought to be
setting the correct FunctionRefKind and properly
handling the label matching in the solver though.
We also ought to consider changing FunctionRefKind
such that "is compound" is a separate bit from the
application level.
rdar://139234188