Today unchecked_bitwise_cast returns a value with ObjCUnowned ownership. This is
important to do since the instruction can truncate memory meaning we want to
treat it as a new object that must be copied before use.
This means that in OSSA we do not have a purely ossa forwarding unchecked
layout-compatible assuming cast. This role is filled by unchecked_value_cast.
This adds support to `ClangImporter` to import C++ member function operators as static methods into Swift, which is part of SR-12748.
The left-hand-side operand, which gets passed as the `this` pointer to the C++ function is represented as an additional first parameter in the Swift method. It gets mapped back in SILGen.
Two of the tests are disabled on Windows because we can't yet call member functions correctly on Windows (SR-13129).
Previously we would only link `.sib` partial
modules in SILGen, with other kinds of serialized
ASTs being linked just before the SILOptimizer if
`-sil-merge-partial-modules` was specified.
However linking them always seems to be the desired
behaviour, so adjust SILGen to link SIL for all
serialized AST inputs.
The ``base_addr_for_offset`` instruction creates a base address for offset calculations.
The result can be used by address projections, like ``struct_element_addr``, which themselves return the offset of the projected fields.
IR generation simply creates a null pointer for ``base_addr_for_offset``.
Reverse-mode differentiation now supports `apply` instructions with multiple
active "semantic results" (formal results or `inout` parameters).
The "cannot differentiate through multiple results" non-differentiability error
is lifted.
Resolves TF-983.
Private and internal classes shouldn't have ABI constraints on their concrete vtable layout, so if methods
don't have overrides in practice, we can elide their vtable entries.
* [SILGenFunction] Don't create redundant nested debug scopes
Instead of emitting:
```
sil_scope 4 { loc "main.swift":6:19 parent 3 }
sil_scope 5 { loc "main.swift":7:3 parent 4 }
sil_scope 6 { loc "main.swift":7:3 parent 5 }
sil_scope 7 { loc "main.swift":7:3 parent 5 }
sil_scope 8 { loc "main.swift":9:5 parent 4 }
```
Emit:
```
sil_scope 4 { loc "main.swift":6:19 parent 3 }
sil_scope 5 { loc "main.swift":7:3 parent 4 }
sil_scope 6 { loc "main.swift":9:5 parent 5 }
```
* [IRGenSIL] Diagnose conflicting shadow copies
If we attempt to store a value with the wrong type into a slot reserved
for a shadow copy, diagnose what went wrong.
* [SILGenPattern] Defer debug description of case variables
Create unique nested debug scopes for a switch, each of its case labels,
and each of its case bodies. This looks like:
```
switch ... { // Enter scope 1.
case ... : // Enter scope 2, nested within scope 1.
<body-1> // Enter scope 3, nested within scope 2.
case ... : // Enter scope 4, nested within scope 1.
<body-2> // Enter scope 5, nested within scope 4.
}
```
Use the new scope structure to defer emitting debug descriptions of case
bindings. Specifically, defer the work until we can nest the scope for a
case body under the scope for a pattern match.
This fixes SR-7973, a problem where it was impossible to inspect a case
binding in lldb when stopped at a case with multiple items.
Previously, we would emit the debug descriptions too early (in the
pattern match), leading to duplicate/conflicting descriptions. The only
reason that the ambiguous description was allowed to compile was because
the debug scopes were nested incorrectly.
rdar://41048339
* Update tests
We were not using the primary benefits of an intrusive list, namely the
ability to insert or remove from the middle of the list, so let's switch
to a plain vector. This also avoids linked-list pointer chasing.
```
class Generic<T> {
@objc dynamic func method() {}
}
extension Generic {
@_dynamicReplacement(for:method())
func replacement() {}
}
```
The standard mechanism of using Objective-C categories for dynamically
replacing @objc methods in generic classes does not work.
Instead we mark the native entry point as replaceable.
Because this affects all @objc methods in generic classes (whether there
is a replacement or not) by making the native entry point
`[dynamically_replaceable]` (regardless of optimization mode) we guard this by
the -enable-implicit-dynamic flag because we are late in the release cycle.
* Replace isNativeDynamic and isObjcDynamic by calls to shouldUse*Dispatch and
shouldUse*Replacement
This disambiguates between which dispatch method we should use at call
sites and how these methods should implement dynamic function
replacement.
* Don't emit the method entry for @_dynamicReplacement(for:) of generic class
methods
There is not way to call this entry point since we can't generate an
objective-c category for generic classes.
rdar://63679357
For COW support in SIL it's required to "finalize" array literals.
_finalizeUninitializedArray is a compiler known stdlib function which is called after all elements of an array literal are stored.
This runtime function marks the array literal as finished.
%uninitialized_result_tuple = apply %_allocateUninitializedArray(%count)
%mutable_array = tuple_extract %uninitialized_result_tuple, 0
%elem_base_address = tuple_extract %uninitialized_result_tuple, 1
...
store %elem_0 to %elem_addr_0
store %elem_1 to %elem_addr_1
...
%final_array = apply %_finalizeUninitializedArray(%mutable_array)
In this commit _finalizeUninitializedArray is still a no-op because the COW support is not used in the Array implementation yet.
`DifferentiableFunctionInst` now stores result indices.
`SILAutoDiffIndices` now stores result indices instead of a source index.
`@differentiable` SIL function types may now have multiple differentiability
result indices and `@noDerivative` resutls.
`@differentiable` AST function types do not have `@noDerivative` results (yet),
so this functionality is not exposed to users.
Resolves TF-689 and TF-1256.
Infrastructural support for TF-983: supporting differentiation of `apply`
instructions with multiple active semantic results.
This is letting me refactor the implementation of every place that I work with
branches as "ownership phi operands" to instead work with
OwnershipPhiOperand. In a future commit, I am going to use this to add support
for optimizing structs and tuples that have multiple owned incoming values.
<rdar://problem/63950481>
This will let us track class methods that must exist for pass ordering, interface, or ABI reasons, but which can
be given more efficient runtime representation because they have no overrides.
This simplifies the handling of the subdirectories in the SIL and
SILOptimizer paths. Create individual libraries as object libraries
which allows the analysis of the source changes to be limited in scope.
Because these are object libraries, this has 0 overhead compared to the
previous implementation. However, string operations over the filenames
are avoided. The cost for this is that any new sub-library needs to be
added into the list rather than added with the special local function.
* a new [immutable] attribute on ref_element_addr and ref_tail_addr
* new instructions: begin_cow_mutation and end_cow_mutation
These new instructions are intended to be used for the stdlib's COW containers, e.g. Array.
They allow more aggressive optimizations, especially for Array.
Adjust `SILModule::createEmptyModule` to accept a
FileUnit or ModuleDecl, and pass the corresponding
context for SIL generation and parsing. This
change means that SIL parsing will now correctly
use a SourceFile associated context when in
single-file mode.