Convert a bunch of places where we're dumping to stderr and calling
`abort` over to using `ABORT` such that the message gets printed to
the pretty stack trace. This ensures it gets picked up by
CrashReporter.
Add a boolean parameter `salvageDebugInfo` to `Context.erase(instruction:)`.
Sometimes it needs to be turned off because the caller might require that after erasing the original instruction the operands no users anymore.
Reimplement the simplification in swift and add a new transformation:
```
%1 = unchecked_addr_cast %0 : $*Builtin.FixedArray<N, Element> to $*Element
```
->
```
%1 = vector_base_addr %0 : $*Builtin.FixedArray<N, Element>
```
The standard library uses `_precondition` calls which have a message argument.
Allow disabling the generated cond_fail by these message arguments.
For example:
_precondition(source >= (0 as T), "Negative value is not representable")
Results in a `cond_fail "Negative value is not representable"`.
This commit allows for specifying a file that contains these messages on
each line.
/path/to/disable_cond_fails:
```
Negative value is not representable
Array index is out of range
```
The optimizer will remove these cond_fails if the swift frontend is invoked with
`-Xllvm -cond-fail-config-file=/path/to/disable_cond_fails`.
* move the "SILCombine passes" into a separate file `Simplifications.def` which lives in the SILCombiner directory
* group passes by kind
* rename PASS -> LEGACY_PASS and add a comment to make clear that new passes should be implemented in Swift
NFC
* Reimplement most of the logic in Swift as an Instruction simplification and remove the old code from SILCombine
* support more cases of existential archetype replacements:
For example:
```
%0 = alloc_stack $any P
%1 = init_existential_addr %0, $T
use %1
```
is transformed to
```
%0 = alloc_stack $T
use %0
```
Also, if the alloc_stack is already an opened existential and the concrete type is known,
replace it as well:
```
%0 = metatype $@thick T.Type
%1 = init_existential_metatype %0, $@thick any P.Type
%2 = open_existential_metatype %1 : $@thick any P.Type to $@thick (@opened("X", P) Self).Type
...
%3 = alloc_stack $@opened("X", any P) Self
use %3
```
is transformed to
```
...
%3 = alloc_stack $T
use %3
```
If an apply uses an existential archetype (`@opened("...")`) and the concrete type is known, replace the existential archetype with the concrete type
1. in the apply's substitution map
2. in the arguments, e.g. by inserting address casts
For example:
```
%5 = apply %1<@opend("...")>(%2) : <τ_0_0> (τ_0_0) -> ()
```
->
```
%4 = unchecked_addr_cast %2 to $*ConcreteType
%5 = apply %1<ConcreteType>(%4) : <τ_0_0> (τ_0_0) -> ()
```
Replace `unconditional_checked_cast` to an existential metatype with an `init_existential_metatype`, it the source is a conforming type.
Note that init_existential_metatype is better than unconditional_checked_cast because it does not need to do any runtime casting.
So far a `SILCombineSimplifiable` could only replace a SILCombine visit implementation.
With the `SWIFT_SILCOMBINE_PASS_WITH_LEGACY` (to be used in Passes.def) it's possible to keep an existing C++ implementation and on top of that add a Swift Simplification pass.
At one point, OpenedArchetypeType did not exist as a separate subclass
of ArchetypeType, so this method did something. Now, it's just
equivalent to calling is<> or isa<>.
I also removed a couple of asserts that were obvious no-ops as a result.
To handle borrowing operands that produce a dependence value but do not create a
nested borrow scope. This includes non-reborrow borrowed-from and guaranteed
mark_dependence [nonescaping].
The pass is structured to drain an instruction worklist and perform a
sequence of operations on each popped instruction. Extract that
sequence of operations into a new processInstruction function. Enables
testing the sequence on a single instruction.
The operands to the original apply are cast via an ownership forwarding
instruction to the appropriate type for the rewritten apply.
```
%converted = convert_function %original to $(NewTy) -> ()
apply %converted(%operand)
```
->
```
%cast = cast %operand to $OriginalTy
apply %original(%cast)
```
Previously, when an original operand is owned but the new apply does not
consume that operand, the newly added cast would consume the original
operand (an owned value)--something the original code being replaced did
not do.
```
%converted = convert_function %original to $(NewTy) -> ()
apply %converted(%operand : @guaranteed)
// %operand remains available
```
->
```
%cast = cast %operand to $OriginalTy // consumes %operand!
apply %original(%cast : @guaranteed)
// %operand is not available!
```
This is incorrect for the complementary reasons that the result of the
cast is leaked and any uses of the original operand subsequent to the
new apply are uses-after-consume.
Here, this is fixed by borrowing the original operand before casting in
this case.
rdar://142570727
Don't use previously found owned concrete values in ossa. They will consumed by
forwarding operations like init_existential_ref. Instead create an unconditional cast
of the opened existential to concrete type and use that to create a concrete apply.
Which consists of
* removing redundant `address_to_pointer`-`pointer_to_address` pairs
* optimize `index_raw_pointer` of a manually computed stride to `index_addr`
* remove or increase the alignment based on a "assumeAlignment" builtin
This is a big code cleanup but also has some functional differences for the `address_to_pointer`-`pointer_to_address` pair removal:
* It's not done if the resulting SIL would result in a (detectable) use-after-dealloc_stack memory lifetime failure.
* It's not done if `copy_value`s must be inserted or borrow-scopes must be extended to comply with ownership rules (this was the task of the OwnershipRAUWHelper).
Inserting copies is bad anyway.
Extending borrow-scopes would only be required if the original lifetime of the pointer extends a borrow scope - which shouldn't happen in save code. Therefore this is a very rare case which is not worth handling.
Canonicalize a `fix_lifetime` from an address to a `load` + `fix_lifetime`:
```
%1 = alloc_stack $T
...
fix_lifetime %1
```
->
```
%1 = alloc_stack $T
...
%2 = load %1
fix_lifetime %2
```
This transformation is done for `alloc_stack` and `store_borrow` (which always has an `alloc_stack` operand).
The benefit of this transformation is that it enables other optimizations, like mem2reg.
This peephole optimization was already done in SILCombine, but it didn't handle store_borrow.
A good opportunity to make an instruction simplification out of it.
This is part of fixing regressions when enabling OSSA modules:
rdar://140229560
* Remove dead `load_borrow` instructions (replaces the old peephole optimization in SILCombine)
* If the `load_borrow` is followed by a `copy_value`, combine both into a `load [copy]`