This change ensures the insertion point of the unchecked_addr_cast is after
any copies/borrows that OSSA rauw may create.
Before this fix we could end up creating invalid SIL where operands do not
dominate its instruction.
This fixes a bad optimization deficiency for dictionary subscript lookups with default values: there shouldn't be a closure context allocated.
rdar://106423763
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
* for testing: add the option `-simplify-instruction=<instruction-name>` to only run simplification passes for that instruction type
* on the swift side, add `Options.enableSimplification`
* split the `PassContext` into multiple protocols and structs: `Context`, `MutatingContext`, `FunctionPassContext` and `SimplifyContext`
* change how instruction passes work: implement the `simplify` function in conformance to `SILCombineSimplifyable`
* add a mechanism to add a callback for inserted instructions
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
To improve the debugging experience of values whose lifetimes are
canonicalized without compromising the semantics expressed in the source
language, when canonicalizing OSSA lifetimes at Onone, lengthen
lifetimes as much as possible without incurring copies that would be
eliminated at O.
rdar://99618502
to SILBuilder::createUncheckedForwardingCast
It would be disastrous to confuse this utility with a bit cast. A bit
cast always produces an Unowned value which must immediately be copied
to be used. This utility always forwards ownership. It cannot be used
to truncate values.
Also, be careful not to convert "reinterpret cast"
(e.g. Builtin.reinterpretCast) into a "value cast" since ownership
will be incorrect and the reinterpreted types might not have
equivalent layout.
We had two notions of canonical types, one is the structural property
where it doesn't contain sugared types, the other one where it does
not contain reducible type parameters with respect to a generic
signature.
Rename the second one to a 'reduced type'.
`int_trap` doesn't provide a failure message, which makes crash reports hard to understand.
This is mostly the case for optimized casts which fail.
rdar://97681511
The metatype value isn't needed to do the memory layout computation, and
IRGen only looks at the substitutions passed to the generic signature, so
we can reduce SIL code size, and avoid leaving behind useless metadata
accesses, if we don't emit it.
Andy some time ago already created the new API but didn't go through and update
the old occurences. I did that in this PR and then deprecated the old API. The
tree is clean, so I could just remove it, but I decided to be nicer to
downstream people by deprecating it first.
If a `convert_function` instruction operates on a function with indirect
results, or changes the type of direct results, then we can transform
an application of the converted function into an application of the
original function followed by bitwise conversions of the results, just
like we have done for arguments. Now that closures are emitted at their
context abstraction level, they are more likely to be emitted with
indirect results, so the inability to simplify function conversions
in this case would lead to missed inlining opportunities we used to
take.
This optimization rewrites only the 'self' argument, and does not know how to
substitute types in the users of the given apply instruction in case the
underlying protocol method returns a `Self`-dependent type. With SE-0309 in
motion, the bail-out logic must be generalized to `Self`-rooted type parameters.
The main point of this change is to make sure that a shared function always has a body: both, in the optimizer pipeline and in the swiftmodule file.
This is important because the compiler always needs to emit code for a shared function. Shared functions cannot be referenced from outside the module.
In several corner cases we missed to maintain this invariant which resulted in unresolved-symbol linker errors.
As side-effect of this change we can drop the shared_external SIL linkage and the IsSerializable flag, which simplifies the serialization and linkage concept.
* Add the possibility to bisect the individual transforms of SILCombine and SimplifyCFG.
To do so, the `-sil-opt-pass-count` option now accepts the format `<n>.<m>`, where `m` is the sub-pass number.
The sub-pass number limits the number of individual transforms in SILCombine or SimplifyCFG.
* Add an option `-sil-print-last` to print the SIL of the currently optimized function before and after the last pass, which is specified with `-sil-opt-pass-count`.
Introduce a new instruction `dealloc_stack_ref ` and remove the `stack` flag from `dealloc_ref`.
The `dealloc_ref [stack]` was confusing, because all it does is to mark the deallocation of the stack space for a stack promoted object.