Introduce SingleValueStmtExpr, which allows the
embedding of a statement in an expression context.
This then allows us to parse and type-check `if`
and `switch` statements as expressions, gated
behind the `IfSwitchExpression` experimental
feature for now. In the future,
SingleValueStmtExpr could also be used for e.g
`do` expressions.
For now, only single expression branches are
supported for producing a value from an
`if`/`switch` expression, and each branch is
type-checked independently. A multi-statement
branch may only appear if it ends with a `throw`,
and it may not `break`, `continue`, or `return`.
The placement of `if`/`switch` expressions is also
currently limited by a syntactic use diagnostic.
Currently they're only allowed in bindings,
assignments, throws, and returns. But this could
be lifted in the future if desired.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
Introduce discriminators into freestanding macro expansion expressions
and declarations. Compute these discriminators alongside closure and
local-declaration discriminators, checking them in the AST verifier.
This is needed for general fidelity in SIL, since generic argument
lists are used for a lot of different things that aren't restricted
from containing multiple packs. I haven't actually done the work to
use Pack structure to disambiguate the resolution of pack parameters,
but this is a good start.
We'll probably need something like this in source eventually, so
there's no reason to regret adding all the infrastructure for it.
pack expansion type reprs.
Classic variadic parameters still use the postfix ellipsis syntax, and
pack expansion types now use a prefix 'repeat' keyword.
Some testing mechanisms depend on having closure discriminators
pre-computed when dumping the AST. When not dumping to either the
standard error or debugger output streams, trigger computation of
closure discriminators prior to dumping them.
Rather than set closure discriminators in both the parser (for explicit
closures) and then later as part of contextualizing closures (for
autoclosures), do so via a request that sets all of the discriminators
for a given context.
Although the declaration of macros doesn't appear in Swift source code
that uses macros, they still operate as declarations within the
language. Rework `Macro` as `MacroDecl`, a generic value declaration,
which appropriate models its place in the language.
The vast majority of this change is in extending all of the various
switches on declaration kinds to account for macros.
This is the start of the removal of the C++ implementation of libSyntax
in favor of the new Swift Parser and Swift Syntax libraries. Now that
the Swift Parser has switched the SwiftSyntaxParser library over to
being a thin wrapper around the Swift Parser, there is no longer any
reason we need to retain any libSyntax infrastructure in the swift
compiler.
As a first step, delete the infrastructure that builds
lib_InternalSwiftSyntaxParser and convert any scripts that mention
it to instead mention the static mirror libraries. The --swiftsyntax
build-script flag has been retained and will now just execute the
SwiftSyntax and Swift Parser builds with the just-built tools.
In the Swift grammar, the top-level of a source file is a mix of three
different kinds of "items": declarations, statements, and expressions.
However, the existing parser forces all of these into declarations at
parse time, wrapping statements and expressions in TopLevelCodeDecls,
so the primary API for getting the top-level entities in source files
is based on getting declarations.
Start generalizing the representation by storing ASTNode instances at
the top level, rather than declaration pointers, updating many (but
not all!) uses of this API. The walk over declarations is a (cached)
filter to pick out all of the declarations. Existing parsed files are
unaffected (the parser still creates top-level code declarations), but
the new "macro expansion" source file kind skips creating top-level
code declarations so we get the pure parse tree. Additionally, some
generalized clients (like ASTScope lookup) will now look at the list
of items, so they'll be able to walk into statements and expressions
without the intervening TopLevelCodeDecl.
Over time, I'd like to phase out `getTopLevelDecls()` entirely,
relying on the new `getTopLevelItems()` for parsed content. We can
introduce TopLevelCodeDecls more lazily for semantic walks.
Without this change, an `@_objcImplementation` cannot override parent class methods, because the special access control behavior breaks the access control checks for overrides.
Once we have expanded an expression macro, parse and type-check the
result given a priori knowledge of the expanded type. Then, create an
implicit macro-expansion expression to capture the result of the
rewrite.
Introduce `MacroExpansionExpr` and `MacroExpansionDecl` and plumb it through. Parse them in roughly the same way we parse `ObjectLiteralExpr`.
The syntax is gated under `-enable-experimental-feature Macros`.
Introduce the compiler directive `#_hasSymbol` which will be used to detect whether weakly linked symbols are present at runtime. It is intended for use in combination with `@_weakLinked import` or `-weak-link-at-target`.
```
if #_hasSymbol(foo(_:)) {
foo(42)
}
```
Parsing only; SILGen is coming in a later commit.
Resolves rdar://99342017