We needed a way to describe an ABI-safe cast of an address
representing an LValue to implement `@preconcurrency` and
its injection of casts during accesses of members.
This new AST node, `ABISafeConversionExpr` models what is
essentially an `unchecked_addr_cast` in SIL when accessing
the LVAlue.
As of now I simply implemented it and the verification of
the node for the concurrency needs to ensure that it's not
misused by accident. If it finds use outside of that,
feel free to update the verifier.
Even if we can't spell them in source, we want to model expansions where
the pattern does not depend on any pack type parameters, eg
func f<C...: Collection>(_ c: C...) {
let x = (c.count...)
}
Here, the type of 'x' is notionally 'Int * C.count'.
Since I am beginning to prepare for adding real move only types to the language,
I am renaming everything that has to do with copyable types "move only wrapped"
values instead of move only. The hope is this reduces/prevents any confusion in
between the two.
Instead of asking SILGen to build calls to `makeIterator` and
`$generator.next()`, let's synthesize and type-check them
together with the rest of for-in preamble. This greatly simplifies
interaction between Sema and SILGen for for-in statements.
* [Distributed] dist actor always has default executor (currently)
* [Distributed] extra test for missing makeEncoder
* [DistributedDecl] Add DistributedActorSystem to known SDK types
* [DistributedActor] ok progress on getting the system via witness
* [Distributed] allow hop-to `let any: any X` where X is DistActor
* [Distributed] AST: Add an accessor to determine whether type is distributed actor
- Classes have specialized method on their declarations
- Archetypes and existentials check their conformances for
presence of `DistributedActor` protocol.
* [Distributed] AST: Account for distributed members declared in class extensions
`getConcreteReplacementForProtocolActorSystemType` should use `getSelfClassDecl`
otherwise it wouldn't be able to find actor if the member is declared in an extension.
* [Distributed] fix ad-hoc requirement checks for 'mutating'
[PreChecker] LookupDC might be null, so account for that
* [Distributed] Completed AST synthesis for dist thunk
* [Distributed][ASTDumper] print pretty distributed in right color in AST dumps
* wip on making the local/remote calls
* using the _local to mark the localCall as known local
* [Distributed] fix passing Never when not throwing
* fix lifetime of mangled string
* [Distributed] Implement recordGenericSubstitution
* [Distributed] Dont add .
* [Distributed] dont emit thunk when func broken
* [Distributed] fix tests; cleanups
* [Distributed] cleanup, move is... funcs to DistributedDecl
* [Distributed] Remove SILGen for distributed thunks, it is in Sema now!
* [Distributed] no need to check stored props in protocols
* remote not used flag
* fix mangling test
* [Distributed] Synthesis: Don't re-use AST nodes for `decodeArgument` references
* [Distributed] Synthesis: Make sure that each thunk parameter has an internal name
* [Distributed/Synthesis] NFC: Add a comment regarding empty internal parameter names
* [Distributed] NFC: Adjust distributed thunk manglings in the accessor section test-cases
* cleanup
* [Distributed] NFC: Adjust distributed thunk manglings in the accessor thunk test-cases
* review follow ups
* xfail some linux tests for now so we can land the AST thunk
* Update distributed_actor_remote_functions.swift
Co-authored-by: Pavel Yaskevich <xedin@apache.org>
The RequirementSignature generalizes the old ArrayRef<Requirement>
which stores the minimal requirements that a conforming type's
witnesses must satisfy, to also record the protocol typealiases
defined in the protocol.
Clients can explicitly ask for the opened existential type on the archetype's generic environment,
or use `getExistentialType` to obtain a specific archetype's upper bounds.
Nested archetypes are represented by their base archetype kinds (primary,
opened, or opaque type) with an interface type that is a nested type,
as represented by a DependentMemberType. This provides a more uniform
representation of archetypes throughout the frontend.
The most interesting one of these is `ArchetypeType::getRoot()`, which
we reimplement in terms of getting the root generic parameter and then
looking up the archetype in the generic environment.