It is like `zeroInitializer`, but does not actually initialize the memory.
It only indicates to mandatory passes that the memory is going to be initialized.
It derives the address of the first element of a vector, i.e. a `Builtin.FixedArray`, from the address of the vector itself.
Addresses of other vector elements can then be derived with `index_addr`.
This instruction obviously borrows its base value. Liveness extends to the uses
of the result.
Code that switches on OperandOwnership assumes that an Instantaneous use does
not propagate any information that may extend liveness.
Although it's not used anymore we still have to support it to be able to read old Swift.interface files which still contain the builtin.
rdar://144781646
This fixes an OSSA verification bug introduced here:
commit 79b649854b
Author: Meghana Gupta <meghanavgupta@gmail.com>
Date: Wed Jan 22 01:24:49 2025
Fix operand ownership of mark_dependence [nonescaping] of address values
The bug only showed up with mark_dependence [nonescaping], which means mainly
affects `~Escapable` types. Adddressors happened to work because SILGen was
emitting a borrow scope around them.
Rather than reverting the change above, this fix migrates mark_dependence
[nonescaping] to an implicit borrow scope.
Fixes rdar://144199759 (Assert: mark_dependence [nonescaping]:
ownership incompatible with an owned value)
The problem with `is_escaping_closure` was that it didn't consume its operand and therefore reference count checks were unreliable.
For example, copy-propagation could break it.
As this instruction was always used together with an immediately following `destroy_value` of the closure, it makes sense to combine both into a `destroy_not_escaped_closure`.
It
1. checks the reference count and returns true if it is 1
2. consumes and destroys the operand
This is used for synthetic uses like _ = x that do not act as a true use but
instead only suppress unused variable warnings. This patch just adds the
instruction.
Eventually, we can use it to move the unused variable warning from Sema to SIL
slimmming the type checker down a little bit... but for now I am using it so
that other diagnostic passes can have a SIL instruction (with SIL location) so
that we can emit diagnostics on code like _ = x. Today we just do not emit
anything at all for that case so a diagnostic SIL pass would not see any
instruction that it could emit a diagnostic upon. In the next patch of this
series, I am going to add SILGen support to do that.
I am adding this instruction to express artificially that two non-Sendable
values should be part of the same region. It is meant to be used in cases where
due to unsafe code using Sendable, we stop propagating a non-Sendable dependency
that needs to be made in the same region of a use of said Sendable value. I
included an example in ./docs/SIL.rst of where this comes up with @out results
of continuations.
This requires two major changes.
The first is that we need to teach SILGen that the isolation of an initializer
is essentially dynamic (as far as SILGen is concerned) --- that it needs to emit
code in order to get the isolation reference. To make this work, I needed to
refactor how we store the expected executor of a function so that it's not
always a constant value; instead, we'll need to emit code that DI will lower
properly. Fortunately, I can largely build on top of the work that Doug previously
did to support #isolation in these functions. The SIL we emit here around delegating
initializer calls is not ideal --- the breadcrumb hop ends up jumping to the
generic executor, and then DI actually emits the hop to the actor. This is a little
silly, but it's hard to eliminate without special-casing the self-rebinding, which
honestly we should consider rather than the weirdly global handling of that in
SILGen today. The optimizer should eliminate this hop pretty reliably, at least.
The second is that we need to teach DI to handle the pattern of code we get in
delegating initializers, where the builtin actually has to be passed the self var
rather than a class reference. This is because we don't *have* a class reference
that's consistently correct in these cases. This ended up being a fairly
straightforward generalization.
I also taught the hop_to_executor optimizer to skip over the initialization of
the default-actor header; there are a lot of simple cases where we still do emit
the prologue generic-executor hop, but at least the most trivial case is handled.
To do this better, we'd need to teach this bit of the optimizer that the properties
of self can be stored to in an initializer prior to the object having escaped, and
we don't have that information easily at hand, I think.
Fixes rdar://87485045.
For now this will only be used for HopToMainActorIfNeeded thunks. I am creating
this now since in the past there has only been one option for creating
thunks... to create the thunk in SILGen using SILGenThunk. This code is hard to
test and there is a lot of it. By using an instruction here we get a few benefits:
1. We decouple SILGen from needing to generate new kinds of thunks. This means
that SILGenThunk does not need to expand to handle more thunks.
2. All thunks implemented via ThunkInst will be easy to test in a decoupled way
with SIL tests.
3. Even though this stabilizes the patient, we still have many thunks in SILGen
and various parts of the compiler. Over time, we can swap to this model,
allowing us to hopefully eventually delete SILGenThunk.
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes
This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697
Distributed actors can be treated as actors by accessing the `asLocalActor`
property. When lowering `#isolation` in a distributed actor initializer,
use a separate builtin `flowSensitiveDistributedSelfIsolation` to
capture the conformance to `DistributedActor`, and have Definite
Initialization introduce the call to the `asLocalActor` getter when
needed.
Actor initializers have a flow-sensitive property where they are isolated
to the actor being initialized only after the actor instance itself is
fully-initialized. However, this behavior was not being reflected in
the expansion of `#isolation`, which was always expanding to `self`,
even before `self` is fully formed.
This led to a source compatibility issue with code that used the async
for..in loop within an actor initializer *prior* to the point where the
actor was fully initialized, because the type checker is introducing
the `#isolation` (SE-0421) but Definite Initialization properly rejects
the use of `self` before it is initialized.
Address this issue by delaying the expansion of `#isolation` until
after the actor is fully initialized. In SILGen, we introduce a new
builtin for this case (and *just* this case) called
`flowSensitiveSelfIsolation`, which takes in `self` as its argument
and produces an `(any Actor)?`. Definite initialization does not treat
this as a use of `self`. Rather, it tracks these builtins and
replaces them either with `self` (if it is fully-initialized at this
point) or `nil` (if it is not fully-initialized at this point),
mirroring the flow-sensitive isolation semantics described in SE-0327.
Fixes rdar://127080037.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
It indicates that the value's lifetime continues to at least this point.
The boundary formed by all consuming uses together with these
instructions will encompass all uses of the value.
* Implement Builtin.freeze for integer and integer-vector types.
https://llvm.org/docs/LangRef.html#freeze-instruction
> If the argument is undef or poison, ‘freeze’ returns an arbitrary, but fixed, value of type ‘ty’. Otherwise, this instruction is a no-op and returns the input argument. All uses of a value returned by the same ‘freeze’ instruction are guaranteed to always observe the same value, while different ‘freeze’ instructions may yield different values.
It's most importation for integer and integer-vector types because floating-point results are generally not poison (except in the case of conversion from poison integer values).
However, we might want to implement this for other types as well in the future.
* Make builtin.freeze TrivialUse
Also fix filecheck patterns for its test to work with asserts build.
The copy operator has been implemented and doesn't use it. Remove
`Builtin.copy` and `_copy` as much as currently possible.
Source compatibility requires that `_copy` remain in the stdlib. It is
deprecated here and just uses the copy operator.
Handling old swiftinterfaces requires that `Builtin.copy` be defined.
Redefine it here as a passthrough--SILGen machinery will produce the
necessary copy_addr.
rdar://127502242
We've been building up this exponential explosion of task-creation
builtins because it's not currently possible to overload builtins.
As long as all of the operands are scalar, though, it's pretty easy
to peephole optional injections in IRGen, which means we can at
least just use a single builtin in SIL and then break it apart in
IRGen to decide which options to set.
I also eliminated the metadata argument, which can easily be recreated
from the substitutions. I also added proper verification for the builtin,
which required (1) getting `@Sendable` right more consistently and (2)
updating a bunch of tests checking for things that are not actually
valid, like passing a function that returns an Int directly.
When an actual instance of a distributed actor is on the local node, it is
has the capabilities of `Actor`. This isn't expressible directly in the type
system, because not all `DistributedActor`s are `Actor`s, nor is the
opposite true.
Instead, provide an API `DistributedActor.asLocalActor` that can only
be executed when the distributed actor is known to be local (because
this API is not itself `distributed`), and produces an existential
`any Actor` referencing that actor. The resulting existential value
carries with it a special witness table that adapts any type
conforming to the DistributedActor protocol into a type that conforms
to the Actor protocol. It is "as if" one had written something like this:
extension DistributedActor: Actor { }
which, of course, is not permitted in the language. Nonetheless, we
lovingly craft such a witness table:
* The "type" being extended is represented as an extension context,
rather than as a type context. This hasn't been done before, all Swift
runtimes support it uniformly.
* A special witness is provided in the Distributed library to implement
the `Actor.unownedExecutor` operation. This witness back-deploys to the
Swift version were distributed actors were introduced (5.7). On Swift
5.9 runtimes (and newer), it will use
`DistributedActor.unownedExecutor` to support custom executors.
* The conformance of `Self: DistributedActor` is represented as a
conditional requirement, which gets satisfied by the witness table
that makes the type a `DistributedActor`. This makes the special
witness work.
* The witness table is *not* visible via any of the normal runtime
lookup tables, because doing so would allow any
`DistributedActor`-conforming type to conform to `Actor`, which would
break the safety model.
* The witness table is emitted on demand in any client that needs it.
In back-deployment configurations, there may be several witness tables
for the same concrete distributed actor conforming to `Actor`.
However, this duplication can only be observed under fairly extreme
circumstances (where one is opening the returned existential and
instantiating generic types with the distributed actor type as an
`Actor`, then performing dynamic type equivalence checks), and will
not be present with a new Swift runtime.
All of these tricks together mean that we need no runtime changes, and
`asLocalActor` back-deploys as far as distributed actors, allowing it's
use in `#isolation` and the async for...in loop.
Optionally, the dependency to the initialization of the global can be specified with a dependency token `depends_on <token>`.
This is usually a `builtin "once"` which calls the initializer for the global variable.
Concurrency runtime expects discarding task operation entrypoint
function not to have result type, but the current SILGen
implementation generates reabstraction thunk to convert `() -> Void`
to `() -> T` for the operation function.
Since the `T` is always `Void` for DiscardingTG, the mismatch of result
type expectation does not cause any problem on most platforms, but the
signature mismatch causes a problem on WebAssembly.
This patch introduces new builtin operations for creating discarding
task, which always takes `() -> Void` as the operation function type.
* `alloc_vector`: allocates an uninitialized vector of elements on the stack or in a statically initialized global
* `vector`: creates an initialized vector in a statically initialized global
This commit just introduces the instruction. In a subsequent commit, I am going
to add support to SILGen to emit this. This ensures that when we assign into a
tuple var we initialize it with one instruction instead of doing it in pieces.
The problem with doing it in pieces is that when one is emitting diagnostics it
looks semantically like SILGen actually is emitting code for initializing in
pieces which could be an error.