It derives the address of the first element of a vector, i.e. a `Builtin.FixedArray`, from the address of the vector itself.
Addresses of other vector elements can then be derived with `index_addr`.
Store specialize witness tables in a separate lookup table in the module. This allows that for a normal conformance there can exist the original _and_ a specialized witness table.
Also, add a boolean property `isSpecialized` to `WitnessTable` which indicates whether the witness table is specialized or not.
When performing a dynamic cast to an existential type that satisfies
(Metatype)Sendable, it is unsafe to allow isolated conformances of any
kind to satisfy protocol requirements for the existential. Identify
these cases and mark the corresponding cast instructions with a new flag,
`[prohibit_isolated_conformances]` that will be used to indicate to the
runtime that isolated conformances need to be rejected.
The Protocol field isn't really necessary, because the conformance
stores the protocol. But we do need the substituted subject type
of the requirement, just temporarily, until an abstract conformance
stores its own subject type too.
Introduce a constructor that takes an `llvm::VersionTuple` directly, instead of
needing to spell out `VersionRange::allGTE(<tuple>)` which is unnecessarily
verbose.
This patch adds support for serialization of debug value instructions. Enablement is currently gated behind the -experimental-serialize-debug-info flag.
Previously, debug_value instructions were lost during serialization. This made it harder to debug cross module inlined functions.
The problem with `is_escaping_closure` was that it didn't consume its operand and therefore reference count checks were unreliable.
For example, copy-propagation could break it.
As this instruction was always used together with an immediately following `destroy_value` of the closure, it makes sense to combine both into a `destroy_not_escaped_closure`.
It
1. checks the reference count and returns true if it is 1
2. consumes and destroys the operand
This is used for synthetic uses like _ = x that do not act as a true use but
instead only suppress unused variable warnings. This patch just adds the
instruction.
Eventually, we can use it to move the unused variable warning from Sema to SIL
slimmming the type checker down a little bit... but for now I am using it so
that other diagnostic passes can have a SIL instruction (with SIL location) so
that we can emit diagnostics on code like _ = x. Today we just do not emit
anything at all for that case so a diagnostic SIL pass would not see any
instruction that it could emit a diagnostic upon. In the next patch of this
series, I am going to add SILGen support to do that.
The switch is not safely covered since deserialization could read any
`unsigned` value, so there must be a return at the end of the method.
Also, run clang-format.
This patch adds support for serialization and deserialization of
debug scopes.
Debug scopes are serialized in post order and enablement is
controlled through the experimental-serialize-debug-info flag which
is turned off by default. Functions only referred to by these debug
scopes are deserialized as zombie functions directly.
I am adding this instruction to express artificially that two non-Sendable
values should be part of the same region. It is meant to be used in cases where
due to unsafe code using Sendable, we stop propagating a non-Sendable dependency
that needs to be made in the same region of a use of said Sendable value. I
included an example in ./docs/SIL.rst of where this comes up with @out results
of continuations.
A binary module with PackageCMO includes instructions that are typically disallowed in resilient mode. If the client module belongs to the same package, these instructions can be deserialized and inlined during optimization. However, this must be prevented for clients outside the package, as such instructions are invalid beyond the package domain and could trigger an assertion failure.
Resolves rdar://135345358
For now this will only be used for HopToMainActorIfNeeded thunks. I am creating
this now since in the past there has only been one option for creating
thunks... to create the thunk in SILGen using SILGenThunk. This code is hard to
test and there is a lot of it. By using an instruction here we get a few benefits:
1. We decouple SILGen from needing to generate new kinds of thunks. This means
that SILGenThunk does not need to expand to handle more thunks.
2. All thunks implemented via ThunkInst will be easy to test in a decoupled way
with SIL tests.
3. Even though this stabilizes the patient, we still have many thunks in SILGen
and various parts of the compiler. Over time, we can swap to this model,
allowing us to hopefully eventually delete SILGenThunk.
The generality of the `AvailabilityContext` name made it seem like it
encapsulates more than it does. Really it just augments `VersionRange` with
additional set algebra operations that are useful for availability
computations. The `AvailabilityContext` name should be reserved for something
pulls together more than just a single version.
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes
In case of cross-module-optimizations it can happen that a private global variable is changed to public,
but it's declaration is not available in the module file.
- While an opaque borrow access occurs to part of a value, the entire scope of
the access needs to be treated as a liveness range, so add the `EndAccess`es
to the liveness range.
- The SIL verifier may crash the compiler on SILGen-generated code when the
developer's source contains consume-during-borrow code patterns. Allow
`load_borrow` instructions to be marked `[unchecked]`, which suppresses
verifier checks until the move checker runs and gets a chance to properly
diagnose these errors.
Fixes rdar://124360175.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
It indicates that the value's lifetime continues to at least this point.
The boundary formed by all consuming uses together with these
instructions will encompass all uses of the value.
inlining, generic/closure specialization, and devirtualization optimization passes.
SILFunction::canBeInlinedIntoCaller now exlicitly requires a caller's SerializedKind_t arg.
isAnySerialized() is added as a convenience function that checks if [serialized] or [serialized_for_pkg].
Resolves rdar://128704752
[serialized_for_package] if Package CMO is enabled. The latter kind
allows a function to be serialized even if it contains loadable types,
if Package CMO is enabled. Renamed IsSerialized_t as SerializedKind_t.
The tri-state serialization kind requires validating inlinability
depending on the serialization kinds of callee vs caller; e.g. if the
callee is [serialized_for_package], the caller must be _not_ [serialized].
Renamed `hasValidLinkageForFragileInline` as `canBeInlinedIntoCaller`
that takes in its caller's SerializedKind as an argument. Another argument
`assumeFragileCaller` is also added to ensure that the calle sites of
this function know the caller is serialized unless it's called for SIL
inlining optimization passes.
The [serialized_for_package] attribute is allowed for SIL function, global var,
v-table, and witness-table.
Resolves rdar://128406520