This instructions marks the point where all let-fields of a class are initialized.
This is important to ensure the correctness of ``ref_element_addr [immutable]`` for let-fields,
because in the initializer of a class, its let-fields are not immutable, yet.
Codegen is the same, but `begin_dealloc_ref` consumes the operand and produces a new SSA value.
This cleanly splits the liferange to the region before and within the destructor of a class.
I was originally hoping to reuse mark_must_check for multiple types of checkers.
In practice, this is not what happened... so giving it a name specifically to do
with non copyable types makes more sense and makes the code clearer.
Just a pure rename.
The new instruction is needed for opaque values mode to allow values to
be extracted from tuples containing packs which will appear for example
as function arguments.
The new instruction wraps a value in a `@sil_weak` box and produces an
owned value. It is only legal in opaque values mode and is transformed
by `AddressLowering` to `store_weak`.
The new instruction unwraps an `@sil_weak` box and produces an owned
value. It is only legal in opaque values mode and is transformed by
`AddressLowering` to `load_weak`.
It is necessary for opaque values where for casts that will newly start
out as checked_cast_brs and be lowered to checked_cast_addr_brs, since
the latter has the source formal type, IRGen relies on being able to
access it, and there's no way in general to obtain the source formal
type from the source lowered type.
We would previously fail to deserialise the IsStaticLibrary bit on
certain declarations when they were imported implicitly. This would
result in incorrect IRGen on Windows when building against a static
swift module.
The `bare` attribute indicates that the object header is not used throughout the lifetime of the value.
This means, no reference counting operations are performed on the object and its metadata is not used.
The header of bare objects doesn't need to be initialized.
The `bare` attribute indicates that the object header is not used throughout the lifetime of the object.
This means, no reference counting operations are performed on the object and its metadata is not used.
The header of bare objects doesn't need to be initialized.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
This instruction is similar to AssignByWrapperInst, but instead of having
a destination operand, the initialization is fully factored into the init
function operand. Like AssignByWrapper, AssignOrInit has partial application
operands of both the initializer and the setter, and DI will lower the
instruction to a call based on whether the assignment is initialization or
a setter call.
Just the $*T -> $*@moveOnly T variant for addresses. Unlike the object version
this acts like a cast rather than something that provides semantics from the
frontend to the optimizer.
The reason why I am using a different instruction for addresses and objects here
is that the object checker doesnt have to deal with things like initialization.
The new alloc_pack_metadata and dealloc_pack_metadata are inserted as
part of IRGen lowering. The former indicates that the next instruction
might result in on-stack pack metadata being emitted. The latter
indicates that this is the position at which metadata emitted on behalf
of its operand should be cleaned up.
"reborrow" flag on the SILArgument avoids transitive walk over the phi operandsi
to determine if it is a reborrow in multiple utilities.
SIL transforms must keep the flag up-to-date by calling SILArgument::setReborrow.
SILVerifier checks to ensure the flag is not invalidated.
Currently "escaping" is not used anywhere.
The crash on `SILFunction type mismatch` provides little information and
tends to be difficult to reproduce. Let's print some of the available
information and distinguish the two failure sites.
I'm not confident all required information is written down so we may
need to improve this further in the future. This version still crashes
the compiler, we may want a proper type-check to prevent this failure
with a clean diagnostic for the example used here.
rdar://53821031
This is used to teach the checker that the thing being checked is supposed to be
uninitialized at the mark_must_check point so that we don't put a destroy_addr
there.
The way this is implemented is that we always initially add
assignable_but_not_consumable but in DI once we discover that the assign we are
guarding is an init, we convert the assignable to its initable variant.
rdar://106525988
This instruction can be inserted by Onone optimizations as a replacement for deleted instructions to
ensure that it's possible to single step on its location.
This allows dynamically indexing into tuples. IRGen not yet
implemented.
I think I'm going to need a type_refine_addr instruction in
order to handle substitutions into the operand type that
eliminate the outer layer of tuple-ness. Gonna handle that
in a follow-up commit.
Having added these, I'm not entirely sure we couldn't just use
alloc_stack and dealloc_stack. Well, if we find ourselves adding
a lot of redundancy with those instructions (e.g. around DI), we
can always go back and rip these out.
I am adding this to make it easy to determine if a SILFunction that is not inout
aliasable is captured. This is useful when emitting certain types of
diagnostics like I need to emit with move only.
Currently, ModuleFileSharedCore::fatal() calls abort(), which may be reasonable
in a swift-frontend invocation, but has dire consequences when the Swift
frontend is embedded into another process, for example, LLDB where the abort()
kills the entire debugging session.
This patch introduces a few alternatives to the ModuleFile::fatal() familiy of
functions that instead push a fatal diagnostic to the ASTContext's
DiagnosticsEngine and return an llvm::Error so the error can be roperly
communicated and the ASTContext can be wound down without killing the parent
process.
The transition is not complete, this patch does not yet handle
fatalIfUnexpected(), for example.
This patch is NFC for the Swift compiler: When DebuggerSupport in off
ModuleFile::diagnoseFatal() will still call abort(), but if it is on, the error
will be passed up, together with a pretty stack trace.
rdar://64511878
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022